1
|
Al-Ibraheem A, Abdlkadir AS, Al-Adhami DA, Sathekge M, Bom HHS, Ma’koseh M, Mansour A, Abdel-Razeq H, Al-Rabi K, Estrada-Lobato E, Al-Hussaini M, Matalka I, Abdel Rahman Z, Fanti S. The prognostic utility of 18F-FDG PET parameters in lymphoma patients under CAR-T-cell therapy: a systematic review and meta-analysis. Front Immunol 2024; 15:1424269. [PMID: 39286245 PMCID: PMC11402741 DOI: 10.3389/fimmu.2024.1424269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 08/20/2024] [Indexed: 09/19/2024] Open
Abstract
Background Chimeric antigen receptor (CAR) T-cell therapy has attracted considerable attention since its recent endorsement by the Food and Drug Administration, as it has emerged as a promising immunotherapeutic modality within the landscape of oncology. This study explores the prognostic utility of [18F]Fluorodeoxyglucose positron emission tomography ([18F]FDG PET) in lymphoma patients undergoing CAR T-cell therapy. Through meta-analysis, pooled hazard ratio (HR) values were calculated for specific PET metrics in this context. Methods PubMed, Scopus, and Ovid databases were explored to search for relevant topics. Dataset retrieval from inception until March 12, 2024, was carried out. The primary endpoints were impact of specific PET metrics on overall survival (OS) and progression-free survival (PFS) before and after treatment. Data from the studies were extracted for a meta-analysis using Stata 17.0. Results Out of 27 studies identified for systematic review, 15 met the criteria for meta-analysis. Baseline OS analysis showed that total metabolic tumor volume (TMTV) had the highest HR of 2.66 (95% CI: 1.52-4.66), followed by Total-body total lesion glycolysis (TTLG) at 2.45 (95% CI: 0.98-6.08), and maximum standardized uptake values (SUVmax) at 1.30 (95% CI: 0.77-2.19). TMTV and TTLG were statistically significant (p < 0.0001), whereas SUVmax was not (p = 0.33). For PFS, TMTV again showed the highest HR at 2.65 (95% CI: 1.63-4.30), with TTLG at 2.35 (95% CI: 1.40-3.93), and SUVmax at 1.48 (95% CI: 1.08-2.04), all statistically significant (p ≤ 0.01). The ΔSUVmax was a significant predictor for PFS with an HR of 2.05 (95% CI: 1.13-3.69, p = 0.015). Conclusion [18F]FDG PET parameters are valuable prognostic tools for predicting outcome of lymphoma patients undergoing CAR T-cell therapy.
Collapse
Affiliation(s)
- Akram Al-Ibraheem
- Department of Nuclear Medicine and PET/CT, King Hussein Cancer Center (KHCC), Amman, Jordan
- School of Medicine, The University of Jordan, Amman, Jordan
| | - Ahmed Saad Abdlkadir
- Department of Nuclear Medicine and PET/CT, King Hussein Cancer Center (KHCC), Amman, Jordan
| | - Dhuha Ali Al-Adhami
- Department of Nuclear Medicine and PET/CT, King Hussein Cancer Center (KHCC), Amman, Jordan
| | - Mike Sathekge
- Department of Nuclear Medicine, University of Pretoria & Steve Biko Academic Hospital, Pretoria, South Africa
- Nuclear Medicine Research Infrastructure (NuMeRI), Steve Biko Academic Hospital, Pretoria, South Africa
- Department of Nuclear Medicine, Steve Biko Academic Hospital, Pretoria, South Africa
| | - Henry Hee-Seung Bom
- Department of Nuclear Medicine, Chonnam National University Medical School (CNUMS) and Hospital, Gwangju, Republic of Korea
| | - Mohammad Ma’koseh
- Department of Medicine, King Hussein Cancer Center (KHCC), Amman, Jordan
| | - Asem Mansour
- Department of Diagnostic Radiology, King Hussein Cancer Center (KHCC), Amman, Jordan
| | - Hikmat Abdel-Razeq
- Department of Medicine, King Hussein Cancer Center (KHCC), Amman, Jordan
| | - Kamal Al-Rabi
- Department of Medicine, King Hussein Cancer Center (KHCC), Amman, Jordan
| | - Enrique Estrada-Lobato
- Nuclear Medicine and Diagnostic Section, Division of Human Health, International Atomic Energy Agency (IAEA), Vienna, Austria
| | - Maysaa Al-Hussaini
- Department of Pathology, King Hussein Cancer Center (KHCC), Amman, Jordan
| | - Ismail Matalka
- Department of Pathology and Microbiology, King Abdullah University Hospital- Jordan University of Science and Technology, Irbid, Jordan
- Department of Pathology, Ras Al Khaimah Medical and Health Sciences University, Ras Al Khaimah, United Arab Emirates
| | - Zaid Abdel Rahman
- Department of Nuclear Medicine, Steve Biko Academic Hospital, Pretoria, South Africa
| | - Stephano Fanti
- Nuclear Medicine Department, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Azienda Ospedaliero—Universitaria di Bologna, Bologna, Italy
- Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum University of Bologna, Bologna, Italy
| |
Collapse
|
2
|
Boretti A. Improving chimeric antigen receptor T-cell therapies by using artificial intelligence and internet of things technologies: A narrative review. Eur J Pharmacol 2024; 974:176618. [PMID: 38679117 DOI: 10.1016/j.ejphar.2024.176618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 04/18/2024] [Accepted: 04/25/2024] [Indexed: 05/01/2024]
Abstract
Cancer poses a formidable challenge in the field of medical science, prompting the exploration of innovative and efficient treatment strategies. One revolutionary breakthrough in cancer therapy is Chimeric Antigen Receptor (CAR) T-cell therapy, an avant-garde method involving the customization of a patient's immune cells to combat cancer. Particularly successful in addressing blood cancers, CAR T-cell therapy introduces an unprecedented level of effectiveness, offering the prospect of sustained disease management. As ongoing research advances to overcome current challenges, CAR T-cell therapy stands poised to become an essential tool in the fight against cancer. Ongoing enhancements aim to improve its effectiveness and reduce time and cost, with the integration of Artificial Intelligence (AI) and Internet of Things (IoT) technologies. The synergy of AI and IoT could enable more precise tailoring of CAR T-cell therapy to individual patients, streamlining the therapeutic process. This holds the potential to elevate treatment efficacy, mitigate adverse effects, and expedite the overall progress of CAR T-cell therapies.
Collapse
Affiliation(s)
- Alberto Boretti
- Independent Scientist, Johnsonville, Wellington, New Zealand.
| |
Collapse
|
3
|
Anurogo D, Luthfiana D, Anripa N, Fauziah AI, Soleha M, Rahmah L, Ratnawati H, Wargasetia TL, Pratiwi SE, Siregar RN, Sholichah RN, Maulana MS, Ikrar T, Chang YH, Qiu JT. The Art of Bioimmunogenomics (BIGs) 5.0 in CAR-T Cell Therapy for Lymphoma Management. Adv Pharm Bull 2024; 14:314-330. [PMID: 39206402 PMCID: PMC11347730 DOI: 10.34172/apb.2024.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 01/13/2024] [Accepted: 03/03/2024] [Indexed: 09/04/2024] Open
Abstract
Purpose Lymphoma, the most predominant neoplastic disorder, is divided into Hodgkin and Non-Hodgkin Lymphoma classifications. Immunotherapeutic modalities have emerged as essential methodologies in combating lymphoid malignancies. Chimeric Antigen Receptor (CAR) T cells exhibit promising responses in chemotherapy-resistant B-cell non-Hodgkin lymphoma cases. Methods This comprehensive review delineates the advancement of CAR-T cell therapy as an immunotherapeutic instrument, the selection of lymphoma antigens for CAR-T cell targeting, and the conceptualization, synthesis, and deployment of CAR-T cells. Furthermore, it encompasses the advantages and disadvantages of CAR-T cell therapy and the prospective horizons of CAR-T cells from a computational research perspective. In order to improve the design and functionality of artificial CARs, there is a need for TCR recognition investigation, followed by the implementation of a quality surveillance methodology. Results Various lymphoma antigens are amenable to CAR-T cell targeting, such as CD19, CD20, CD22, CD30, the kappa light chain, and ROR1. A notable merit of CAR-T cell therapy is the augmentation of the immune system's capacity to generate tumoricidal activity in patients exhibiting chemotherapy-resistant lymphoma. Nevertheless, it also introduces manufacturing impediments that are laborious, technologically demanding, and financially burdensome. Physical, physicochemical, and physiological limitations further exacerbate the challenge of treating solid neoplasms with CAR-T cells. Conclusion While the efficacy and safety of CAR-T cell immunotherapy remain subjects of fervent investigation, the promise of this cutting-edge technology offers valuable insights for the future evolution of lymphoma treatment management approaches. Moreover, CAR-T cell therapies potentially benefit patients, motivating regulatory bodies to foster international collaboration.
Collapse
Affiliation(s)
- Dito Anurogo
- International Ph.D. Program in Cell Therapy and Regenerative Medicine, College of Medicine, Taipei Medical University, Taipei, 110301, Taiwan
- Faculty of Medicine and Health Sciences, Muhammadiyah University of Makassar, Makassar, South Sulawesi, 90221, Indonesia
| | - Dewi Luthfiana
- Bioinformatics Research Center, Indonesian Institute of Bioinformatics (INBIO), Malang, East Java, 65162, Indonesia
| | - Nuralfin Anripa
- Department of Environmental Science, Dumoga University, Kotamobagu, South Sulawesi, 95711, Indonesia
- Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, 10400, Thailand
| | - Apriliani Ismi Fauziah
- MSc Program in Tropical Medicine, Kaohsiung Medical University, Kaohsiung City, 807378, Taiwan
| | - Maratu Soleha
- National Research and Innovation Agency (BRIN), Central Jakarta, 10340, Indonesia
- IKIFA College of Health Sciences, East Jakarta, Special Capital Region of Jakarta, 13470, Indonesia
| | - Laila Rahmah
- Department of Digital Health, School of Medicine, Tehran University of Medical Sciences, Tehran, 1416634793, Iran
- Faculty of Medicine, Muhammadiyah University of Surabaya, Surabaya, East Java, 60113, Indonesia
| | - Hana Ratnawati
- Faculty of Medicine, Maranatha Christian University, Bandung, West Java, 40164, Indonesia
| | | | - Sari Eka Pratiwi
- Department of Biology and Pathobiology, Faculty of Medicine, Tanjungpura University, Pontianak, West Kalimantan, 78115, Indonesia
| | - Riswal Nafi Siregar
- National Research and Innovation Agency (BRIN), Central Jakarta, 10340, Indonesia
| | - Ratis Nour Sholichah
- Department of Biotechnology, Postgraduate School of Gadjah Mada University, Yogyakarta, 55284, Indonesia
| | - Muhammad Sobri Maulana
- Community Health Center (Puskesmas) Temon 1, Kulon Progo, Special Region of Yogyakarta, 55654, Indonesia
| | - Taruna Ikrar
- Director of Members-at-Large, International Association of Medical Regulatory Authorities (IAMRA), Texas, 76039, USA
- Aivita Biomedical Inc., Irvine, California, 92612, USA
- Chairman of Medical Council, The Indonesian Medical Council (KKI), Central Jakarta, 10350, Indonesia
- Adjunct Professor, School of Military Medicine, The Republic of Indonesia Defense University (RIDU), Jakarta Pusat, 10440, Indonesia
- Department of Pharmacology, Faculty of Medicine, Malahayati University, Bandar Lampung, Lampung, 35152, Indonesia
| | - Yu Hsiang Chang
- International Ph.D. Program in Cell Therapy and Regenerative Medicine, College of Medicine, Taipei Medical University, Taipei, 110301, Taiwan
- Locus Cell Co., LTD., Xizhi Dist., New Taipei City, 221, Taiwan
| | - Jiantai Timothy Qiu
- International Ph.D. Program in Cell Therapy and Regenerative Medicine, College of Medicine, Taipei Medical University, Taipei, 110301, Taiwan
- Department of Obstetrics and Gynecology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 110301, Taiwan
- Department of Obstetrics and Gynecology, Taipei Medical University Hospital, Taipei, 110301, Taiwan
| |
Collapse
|
4
|
Murad V, Kohan A, Ortega C, Prica A, Veit-Haibach P, Metser U. Role of FDG PET/CT in Patients With Lymphoma Treated With Chimeric Antigen Receptor T-Cell Therapy: Current Concepts. AJR Am J Roentgenol 2024; 222:e2330301. [PMID: 38054958 DOI: 10.2214/ajr.23.30301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
Chimeric antigen receptor (CAR) T-cell therapy is a cellular therapy in which the patient's T cells are enhanced to recognize and bind to specific tumor antigens. CAR T-cell therapy was initially developed for the treatment of leukemia, but its current main indication is the treatment of relapsed or refractory non-Hodgkin lymphoma. FDG PET/CT plays a fundamental role in the diagnosis, staging, therapy response assessment, and recurrence evaluation of patients with metabolically active lymphoma. Consistent with the examination's role in lymphoma management, FDG PET/CT is also the imaging modality of choice to evaluate patients before and after CAR T-cell therapy, and evidence supporting its utility in this setting continues to accumulate. In this article, we review current concepts in CAR T-cell therapy in patients with lymphoma, emphasizing the critical role of FDG PET/CT before and after therapy. A framework is presented that entails performing FDG PET/CT at four time points over the course of CAR T-cell therapy: pretherapy at baseline at the time of decision to administer CAR T-cell therapy and after any bridging therapies and posttherapy 1 and 3 months after infusion. PET parameters assessed at these time points predict various patient outcomes.
Collapse
Affiliation(s)
- Vanessa Murad
- Joint Department of Medical Imaging, University Medical Imaging, University of Toronto and University Health Net work, Mount Sinai Hospital and Women's College Hospital, Princess Margaret Cancer Centre, 610 University Ave, Ste 3-920, Toronto, ON M5G 2M9, Canada
| | - Andres Kohan
- Joint Department of Medical Imaging, University Medical Imaging, University of Toronto and University Health Net work, Mount Sinai Hospital and Women's College Hospital, Princess Margaret Cancer Centre, 610 University Ave, Ste 3-920, Toronto, ON M5G 2M9, Canada
| | - Claudia Ortega
- Joint Department of Medical Imaging, University Medical Imaging, University of Toronto and University Health Net work, Mount Sinai Hospital and Women's College Hospital, Princess Margaret Cancer Centre, 610 University Ave, Ste 3-920, Toronto, ON M5G 2M9, Canada
| | - Anca Prica
- Department of Hematology, Mount Sinai Hospital, Princess Margaret Cancer Centre, Toronto, ON, Canada
| | - Patrick Veit-Haibach
- Joint Department of Medical Imaging, University Medical Imaging, University of Toronto and University Health Net work, Mount Sinai Hospital and Women's College Hospital, Princess Margaret Cancer Centre, 610 University Ave, Ste 3-920, Toronto, ON M5G 2M9, Canada
| | - Ur Metser
- Joint Department of Medical Imaging, University Medical Imaging, University of Toronto and University Health Net work, Mount Sinai Hospital and Women's College Hospital, Princess Margaret Cancer Centre, 610 University Ave, Ste 3-920, Toronto, ON M5G 2M9, Canada
| |
Collapse
|
5
|
Winkelmann M, Blumenberg V, Rejeski K, Bücklein VL, Ingenerf M, Unterrainer M, Schmidt C, Dekorsy FJ, Bartenstein P, Ricke J, von Bergwelt-Baildon M, Subklewe M, Kunz WG. Staging of lymphoma under chimeric antigen receptor T-cell therapy: reasons for discordance among imaging response criteria. Cancer Imaging 2023; 23:44. [PMID: 37189191 PMCID: PMC10184388 DOI: 10.1186/s40644-023-00566-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 05/06/2023] [Indexed: 05/17/2023] Open
Abstract
BACKGROUND Chimeric antigen receptor T-cell therapy (CART) prolongs survival for patients with refractory or relapsed lymphoma. Discrepancies among different response criteria for lymphoma under CART were recently shown. Our objective was to evaluate reasons for discordance among different response criteria and their relation to overall survival. METHODS Consecutive patients with baseline and follow-up imaging at 30 (FU1) and 90 days (FU2) after CART were included. Overall response was determined based on Lugano, Cheson, response evaluation criteria in lymphoma (RECIL) and lymphoma response to immunomodulatory therapy criteria (LYRIC). Overall response rate (ORR) and rates of progressive disease (PD) were determined. For each criterion reasons for PD were analyzed in detail. RESULTS 41 patients were included. ORR was 68%, 68%, 63%, and 68% at FU2 by Lugano, Cheson, RECIL, and LYRIC, respectively. PD rates differed among criteria with 32% by Lugano, 27% by Cheson, 17% by RECIL, and 17% by LYRIC. Dominant reasons for PD according to Lugano were target lesion (TL) progression (84.6%), new appearing lesions (NL; 53.8%), non-TL progression (27.3%), and progressive metabolic disease (PMD; 15.4%). Deviations among the criteria for defining PD were largely explained by PMD of preexisting lesions that are defined as PD only by Lugano and non-TL progression, which is not defined as PD by RECIL and in some cases classified as indeterminate response by LYRIC. CONCLUSIONS Following CART, lymphoma response criteria show differences in imaging endpoints, especially in defining PD. The response criteria must be considered when interpreting imaging endpoints and outcomes from clinical trials.
Collapse
Affiliation(s)
- Michael Winkelmann
- Department of Radiology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - Viktoria Blumenberg
- Laboratory for Translational Cancer Immunology, Gene Center of the LMU Munich, Munich, Germany
- German Cancer Consortium (DKTK) and Bavarian Center for Cancer Research (BZKF), partner site Munich, Munich, Germany
- Department of Medicine III, University Hospital, LMU Munich, Munich, Germany
| | - Kai Rejeski
- Laboratory for Translational Cancer Immunology, Gene Center of the LMU Munich, Munich, Germany
- German Cancer Consortium (DKTK) and Bavarian Center for Cancer Research (BZKF), partner site Munich, Munich, Germany
- Department of Medicine III, University Hospital, LMU Munich, Munich, Germany
| | - Veit L Bücklein
- Laboratory for Translational Cancer Immunology, Gene Center of the LMU Munich, Munich, Germany
- German Cancer Consortium (DKTK) and Bavarian Center for Cancer Research (BZKF), partner site Munich, Munich, Germany
- Department of Medicine III, University Hospital, LMU Munich, Munich, Germany
| | - Maria Ingenerf
- Department of Radiology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - Marcus Unterrainer
- Department of Radiology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - Christian Schmidt
- Department of Medicine III, University Hospital, LMU Munich, Munich, Germany
| | - Franziska J Dekorsy
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany
| | - Peter Bartenstein
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany
- Comprehensive Cancer Center München-LMU (CCCM LMU ), LMU Munich, Munich, Germany
| | - Jens Ricke
- Department of Radiology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
- Comprehensive Cancer Center München-LMU (CCCM LMU ), LMU Munich, Munich, Germany
| | - Michael von Bergwelt-Baildon
- Department of Medicine III, University Hospital, LMU Munich, Munich, Germany
- Comprehensive Cancer Center München-LMU (CCCM LMU ), LMU Munich, Munich, Germany
| | - Marion Subklewe
- Laboratory for Translational Cancer Immunology, Gene Center of the LMU Munich, Munich, Germany
- German Cancer Consortium (DKTK) and Bavarian Center for Cancer Research (BZKF), partner site Munich, Munich, Germany
- Department of Medicine III, University Hospital, LMU Munich, Munich, Germany
- Comprehensive Cancer Center München-LMU (CCCM LMU ), LMU Munich, Munich, Germany
| | - Wolfgang G Kunz
- Department of Radiology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany.
- Comprehensive Cancer Center München-LMU (CCCM LMU ), LMU Munich, Munich, Germany.
| |
Collapse
|
6
|
Prendergast CM, Capaccione KM, Lopci E, Das JP, Shoushtari AN, Yeh R, Amin D, Dercle L, De Jong D. More than Just Skin-Deep: A Review of Imaging's Role in Guiding CAR T-Cell Therapy for Advanced Melanoma. Diagnostics (Basel) 2023; 13:992. [PMID: 36900136 PMCID: PMC10000712 DOI: 10.3390/diagnostics13050992] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/21/2023] [Accepted: 02/24/2023] [Indexed: 03/08/2023] Open
Abstract
Advanced melanoma is one of the deadliest cancers, owing to its invasiveness and its propensity to develop resistance to therapy. Surgery remains the first-line treatment for early-stage tumors but is often not an option for advanced-stage melanoma. Chemotherapy carries a poor prognosis, and despite advances in targeted therapy, the cancer can develop resistance. CAR T-cell therapy has demonstrated great success against hematological cancers, and clinical trials are deploying it against advanced melanoma. Though melanoma remains a challenging disease to treat, radiology will play an increasing role in monitoring both the CAR T-cells and response to therapy. We review the current imaging techniques for advanced melanoma, as well as novel PET tracers and radiomics, in order to guide CAR T-cell therapy and manage potential adverse events.
Collapse
Affiliation(s)
- Conor M. Prendergast
- Department of Radiology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Kathleen M. Capaccione
- Department of Radiology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Egesta Lopci
- Department of Nuclear Medicine, IRCSS Humanitas Research Hospital, 20089 Milan, Italy
| | - Jeeban P. Das
- Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | | | - Randy Yeh
- Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Daniel Amin
- Department of Radiology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Laurent Dercle
- Department of Radiology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Dorine De Jong
- Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| |
Collapse
|
7
|
Prognostic value of baseline and early response FDG-PET/CT in patients with refractory and relapsed aggressive B-cell lymphoma undergoing CAR-T cell therapy. J Cancer Res Clin Oncol 2023:10.1007/s00432-023-04587-4. [PMID: 36662305 PMCID: PMC10356653 DOI: 10.1007/s00432-023-04587-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 01/11/2023] [Indexed: 01/21/2023]
Abstract
PURPOSE Chimeric antigen receptor (CAR)-T cells are a viable treatment option for patients with relapsed or refractory (r/r) aggressive B-cell lymphomas. The prognosis of patients who relapse after CAR-T cell treatment is dismal and factors predicting outcomes need to be identified. Our aim was to assess the value of FDG-PET/CT in terms of predicting patient outcomes. METHODS Twenty-two patients with r/r B-cell lymphoma who received CAR-T cell treatment with tisagenlecleucel (n = 17) or axicabtagene ciloleucel (n = 5) underwent quantitative FDG-PET/CT before (PET-0) and 1 month after infusion of CAR-T cells (PET-1). PET-1 was classified as complete metabolic response (CMR, Deauville score 1-3) or non-CMR (Deauville score 4-5). RESULTS At the time of PET-1, 12/22 (55%) patients showed CMR, ten (45%) patients non-CMR. 7/12 (58%) CMR patients relapsed after a median of 223 days, three of them (25%) died. 9/10 (90%) non-CMR patients developed relapse or progressive disease after a median of 91 days, eight of them (80%) died. CMR patients demonstrated a significantly lower median total metabolic tumor volume (TMTV) in PET-0 (1 ml) than non-CMR patients (225 ml). CONCLUSION Our results confirm the prognostic value of PET-1. 42% of all CMR patients are still in remission 1 year after CAR T-cell treatment. 90% of the non-CMR patients relapsed, indicating the need for early intervention. Higher TMTV before CAR-T cell infusion was associated with lower chances of CMR.
Collapse
|
8
|
Sjöholm T, Korenyushkin A, Gammelgård G, Sarén T, Lövgren T, Loskog A, Essand M, Kullberg J, Enblad G, Ahlström H. Whole body FDG PET/MR for progression free and overall survival prediction in patients with relapsed/refractory large B-cell lymphomas undergoing CAR T-cell therapy. Cancer Imaging 2022; 22:76. [PMID: 36575477 PMCID: PMC9793670 DOI: 10.1186/s40644-022-00513-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 12/17/2022] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND To find semi-quantitative and quantitative Positron Emission Tomography/Magnetic Resonance (PET/MR) imaging metrics of both tumor and non-malignant lymphoid tissue (bone marrow and spleen) for Progression Free Survival (PFS) and Overall Survival (OS) prediction in patients with relapsed/refractory (r/r) large B-cell lymphoma (LBCL) undergoing Chimeric Antigen Receptor (CAR) T-cell therapy. METHODS A single-center prospective study of 16 r/r LBCL patients undergoing CD19-targeted CAR T-cell therapy. Whole body 18F-fluorodeoxyglucose (FDG) PET/MR imaging pre-therapy and 3 weeks post-therapy were followed by manual segmentation of tumors and lymphoid tissues. Semi-quantitative and quantitative metrics were extracted, and the metric-wise rate of change (Δ) between post-therapy and pre-therapy calculated. Tumor metrics included maximum Standardized Uptake Value (SUVmax), mean SUV (SUVmean), Metabolic Tumor Volume (MTV), Tumor Lesion Glycolysis (TLG), structural volume (V), total structural tumor burden (Vtotal) and mean Apparent Diffusion Coefficient (ADCmean). For lymphoid tissues, metrics extracted were SUVmean, mean Fat Fraction (FFmean) and ADCmean for bone marrow, and SUVmean, V and ADCmean for spleen. Univariate Cox regression analysis tested the relationship between extracted metrics and PFS and OS. Survival curves were produced using Kaplan-Meier analysis and compared using the log-rank test, with the median used for dichotomization. Uncorrected p-values < 0.05 were considered statistically significant. Correction for multiple comparisons was performed, with a False Discovery Rate (FDR) < 0.05 considered statistically significant. RESULTS Pre-therapy (p < 0.05, FDR < 0.05) and Δ (p < 0.05, FDR > 0.05) total tumor burden structural and metabolic metrics were associated with PFS and/or OS. According to Kaplan-Meier analysis, a longer PFS was reached for patients with pre-therapy MTV ≤ 39.5 ml, ΔMTV≤1.35 and ΔTLG≤1.35. ΔSUVmax was associated with PFS (p < 0.05, FDR > 0.05), while ΔADCmean was associated with both PFS and OS (p < 0.05, FDR > 0.05). ΔADCmean > 0.92 gave longer PFS and OS in the Kaplan-Meier analysis. Pre-therapy bone marrow SUVmean was associated with PFS (p < 0.05, FDR < 0.05) and OS (p < 0.05, FDR > 0.05). For bone marrow FDG uptake, patient stratification was possible pre-therapy (SUVmean ≤ 1.8). CONCLUSIONS MTV, tumor ADCmean and FDG uptake in bone marrow unaffected by tumor infiltration are possible PET/MR parameters for prediction of PFS and OS in r/r LBCL treated with CAR T-cells. TRIAL REGISTRATION EudraCT 2016-004043-36.
Collapse
Affiliation(s)
- Therese Sjöholm
- grid.8993.b0000 0004 1936 9457Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | | | - Gustav Gammelgård
- grid.8993.b0000 0004 1936 9457Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Tina Sarén
- grid.8993.b0000 0004 1936 9457Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Tanja Lövgren
- grid.8993.b0000 0004 1936 9457Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Angelica Loskog
- grid.8993.b0000 0004 1936 9457Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Magnus Essand
- grid.8993.b0000 0004 1936 9457Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Joel Kullberg
- grid.8993.b0000 0004 1936 9457Department of Surgical Sciences, Uppsala University, Uppsala, Sweden ,grid.511796.dAntaros Medical AB, Mölndal, Sweden
| | - Gunilla Enblad
- grid.8993.b0000 0004 1936 9457Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Håkan Ahlström
- grid.8993.b0000 0004 1936 9457Department of Surgical Sciences, Uppsala University, Uppsala, Sweden ,grid.511796.dAntaros Medical AB, Mölndal, Sweden
| |
Collapse
|
9
|
Chimeric Antigen Receptor T-cell Therapy: Imaging Response Criteria and Relation to Progression-free and Overall Survival. Hemasphere 2022; 6:e781. [PMID: 36187874 PMCID: PMC9519142 DOI: 10.1097/hs9.0000000000000781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 08/28/2022] [Indexed: 11/26/2022] Open
|
10
|
Dercle L, McGale J, Sun S, Marabelle A, Yeh R, Deutsch E, Mokrane FZ, Farwell M, Ammari S, Schoder H, Zhao B, Schwartz LH. Artificial intelligence and radiomics: fundamentals, applications, and challenges in immunotherapy. J Immunother Cancer 2022; 10:jitc-2022-005292. [PMID: 36180071 PMCID: PMC9528623 DOI: 10.1136/jitc-2022-005292] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/01/2022] [Indexed: 11/04/2022] Open
Abstract
Immunotherapy offers the potential for durable clinical benefit but calls into question the association between tumor size and outcome that currently forms the basis for imaging-guided treatment. Artificial intelligence (AI) and radiomics allow for discovery of novel patterns in medical images that can increase radiology’s role in management of patients with cancer, although methodological issues in the literature limit its clinical application. Using keywords related to immunotherapy and radiomics, we performed a literature review of MEDLINE, CENTRAL, and Embase from database inception through February 2022. We removed all duplicates, non-English language reports, abstracts, reviews, editorials, perspectives, case reports, book chapters, and non-relevant studies. From the remaining articles, the following information was extracted: publication information, sample size, primary tumor site, imaging modality, primary and secondary study objectives, data collection strategy (retrospective vs prospective, single center vs multicenter), radiomic signature validation strategy, signature performance, and metrics for calculation of a Radiomics Quality Score (RQS). We identified 351 studies, of which 87 were unique reports relevant to our research question. The median (IQR) of cohort sizes was 101 (57–180). Primary stated goals for radiomics model development were prognostication (n=29, 33.3%), treatment response prediction (n=24, 27.6%), and characterization of tumor phenotype (n=14, 16.1%) or immune environment (n=13, 14.9%). Most studies were retrospective (n=75, 86.2%) and recruited patients from a single center (n=57, 65.5%). For studies with available information on model testing, most (n=54, 65.9%) used a validation set or better. Performance metrics were generally highest for radiomics signatures predicting treatment response or tumor phenotype, as opposed to immune environment and overall prognosis. Out of a possible maximum of 36 points, the median (IQR) of RQS was 12 (10–16). While a rapidly increasing number of promising results offer proof of concept that AI and radiomics could drive precision medicine approaches for a wide range of indications, standardizing the data collection as well as optimizing the methodological quality and rigor are necessary before these results can be translated into clinical practice.
Collapse
Affiliation(s)
- Laurent Dercle
- Radiology, NewYork-Presbyterian/Columbia University Medical Center, New York, New York, USA
| | - Jeremy McGale
- Radiology, NewYork-Presbyterian/Columbia University Medical Center, New York, New York, USA
| | - Shawn Sun
- Radiology, NewYork-Presbyterian/Columbia University Medical Center, New York, New York, USA
| | - Aurelien Marabelle
- Therapeutic Innovation and Early Trials, Gustave Roussy, Villejuif, Île-de-France, France
| | - Randy Yeh
- Molecular Imaging and Therapy Service, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Eric Deutsch
- Radiation Oncology, Gustave Roussy, Villejuif, Île-de-France, France
| | | | - Michael Farwell
- Division of Nuclear Medicine and Molecular Imaging, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Samy Ammari
- Radiation Oncology, Gustave Roussy, Villejuif, Île-de-France, France.,Radiology, Institut de Cancérologie Paris Nord, Sarcelles, France
| | - Heiko Schoder
- Radiology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Binsheng Zhao
- Radiology, NewYork-Presbyterian/Columbia University Medical Center, New York, New York, USA
| | - Lawrence H Schwartz
- Radiology, NewYork-Presbyterian/Columbia University Medical Center, New York, New York, USA
| |
Collapse
|
11
|
Pfeifer R, Henze J, Wittich K, Gosselink A, Kinkhabwala A, Gremse F, Bleilevens C, Bigott K, Jungblut M, Hardt O, Alves F, Al Rawashdeh W. A multimodal imaging workflow for monitoring CAR T cell therapy against solid tumor from whole-body to single-cell level. Am J Cancer Res 2022; 12:4834-4850. [PMID: 35836798 PMCID: PMC9274742 DOI: 10.7150/thno.68966] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 05/19/2022] [Indexed: 01/12/2023] Open
Abstract
CAR T cell research in solid tumors often lacks spatiotemporal information and therefore, there is a need for a molecular tomography to facilitate high-throughput preclinical monitoring of CAR T cells. Furthermore, a gap exists between macro- and microlevel imaging data to better assess intratumor infiltration of therapeutic cells. We addressed this challenge by combining 3D µComputer tomography bioluminescence tomography (µCT/BLT), light-sheet fluorescence microscopy (LSFM) and cyclic immunofluorescence (IF) staining. Methods: NSG mice with subcutaneous AsPC1 xenograft tumors were treated with EGFR CAR T cell (± IL-2) or control BDCA-2 CAR T cell (± IL-2) (n = 7 each). Therapeutic T cells were genetically modified to co-express the CAR of interest and the luciferase CBR2opt. IL-2 was administered s.c. under the xenograft tumor on days 1, 3, 5 and 7 post-therapy-initiation at a dose of 25,000 IU/mouse. CAR T cell distribution was measured in 2D BLI and 3D µCT/BLT every 3-4 days. On day 6, 4 tumors were excised for cyclic IF where tumor sections were stained with a panel of 25 antibodies. On day 6 and 13, 8 tumors were excised from rhodamine lectin-preinjected mice, permeabilized, stained for CD3 and imaged by LSFM. Results: 3D µCT/BLT revealed that CAR T cells pharmacokinetics is affected by antigen recognition, where CAR T cell tumor accumulation based on target-dependent infiltration was significantly increased in comparison to target-independent infiltration, and spleen accumulation was delayed. LSFM supported these findings and revealed higher T cell accumulation in target-positive groups at day 6, which also infiltrated the tumor deeper. Interestingly, LSFM showed that most CAR T cells accumulate at the tumor periphery and around vessels. Surprisingly, LSFM and cyclic IF revealed that local IL-2 application resulted in early-phase increased proliferation, but long-term overstimulation of CAR T cells, which halted the early added therapeutic effect. Conclusion: Overall, we demonstrated that 3D µCT/BLT is a valuable non-isotope-based technology for whole-body cell therapy monitoring and investigating CAR T cell pharmacokinetics. We also presented combining LSFM and MICS for ex vivo 3D- and 2D-microscopy tissue analysis to assess intratumoral therapeutic cell distribution and status.
Collapse
Affiliation(s)
- Rita Pfeifer
- Miltenyi Biotec B.V. & Co. KG, R&D Reagents, Bergisch Gladbach, North Rhine-Westphalia, Germany
| | - Janina Henze
- Miltenyi Biotec B.V. & Co. KG, R&D Reagents, Bergisch Gladbach, North Rhine-Westphalia, Germany.,University Medical Center Göttingen, Translational Molecular Imaging, Institute for Diagnostic and Interventional Radiology & Clinic for Haematology and Medical Oncology, Göttingen, Lower Saxony, Germany
| | - Katharina Wittich
- Miltenyi Biotec B.V. & Co. KG, R&D Reagents, Bergisch Gladbach, North Rhine-Westphalia, Germany
| | - Andre Gosselink
- Miltenyi Biotec B.V. & Co. KG, R&D Reagents, Bergisch Gladbach, North Rhine-Westphalia, Germany.,Institute of Medical Statistics and Computational Biology, University of Cologne, Cologne, North Rhine-Westphalia, Germany
| | - Ali Kinkhabwala
- Miltenyi Biotec B.V. & Co. KG, R&D Reagents, Bergisch Gladbach, North Rhine-Westphalia, Germany
| | - Felix Gremse
- Gremse-IT GmbH, Aachen, North Rhine-Westphalia, Germany
| | - Cathrin Bleilevens
- Miltenyi Biotec B.V. & Co. KG, R&D Reagents, Bergisch Gladbach, North Rhine-Westphalia, Germany
| | - Kevin Bigott
- Miltenyi Biotec B.V. & Co. KG, R&D Reagents, Bergisch Gladbach, North Rhine-Westphalia, Germany
| | - Melanie Jungblut
- Miltenyi Biotec B.V. & Co. KG, R&D Reagents, Bergisch Gladbach, North Rhine-Westphalia, Germany
| | - Olaf Hardt
- Miltenyi Biotec B.V. & Co. KG, R&D Reagents, Bergisch Gladbach, North Rhine-Westphalia, Germany
| | - Frauke Alves
- University Medical Center Göttingen, Translational Molecular Imaging, Institute for Diagnostic and Interventional Radiology & Clinic for Haematology and Medical Oncology, Göttingen, Lower Saxony, Germany.,Max-Planck-Institute for Multidisciplinary Science, Translational Molecular Imaging, Göttingen, Lower Saxony, Germany
| | - Wa'el Al Rawashdeh
- Miltenyi Biotec B.V. & Co. KG, R&D Reagents, Bergisch Gladbach, North Rhine-Westphalia, Germany.,Ossium Health Inc, Indianapolis, Indiana, United States of America.,✉ Corresponding author: E-mail: (W.A.)
| |
Collapse
|
12
|
Translating Molecules into Imaging—The Development of New PET Tracers for Patients with Melanoma. Diagnostics (Basel) 2022; 12:diagnostics12051116. [PMID: 35626272 PMCID: PMC9139963 DOI: 10.3390/diagnostics12051116] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/22/2022] [Accepted: 04/27/2022] [Indexed: 01/27/2023] Open
Abstract
Melanoma is a deadly disease that often exhibits relentless progression and can have both early and late metastases. Recent advances in immunotherapy and targeted therapy have dramatically increased patient survival for patients with melanoma. Similar advances in molecular targeted PET imaging can identify molecular pathways that promote disease progression and therefore offer physiological information. Thus, they can be used to assess prognosis, tumor heterogeneity, and identify instances of treatment failure. Numerous agents tested preclinically and clinically demonstrate promising results with high tumor-to-background ratios in both primary and metastatic melanoma tumors. Here, we detail the development and testing of multiple molecular targeted PET-imaging agents, including agents for general oncological imaging and those specifically for PET imaging of melanoma. Of the numerous radiopharmaceuticals evaluated for this purpose, several have made it to clinical trials and showed promising results. Ultimately, these agents may become the standard of care for melanoma imaging if they are able to demonstrate micrometastatic disease and thus provide more accurate information for staging. Furthermore, these agents provide a more accurate way to monitor response to therapy. Patients will be able to receive treatment based on tumor uptake characteristics and may be able to be treated earlier for lesions that with traditional imaging would be subclinical, overall leading to improved outcomes for patients.
Collapse
|
13
|
Al Tabaa Y, Bailly C, Kanoun S. FDG-PET/CT in Lymphoma: Where Do We Go Now? Cancers (Basel) 2021; 13:cancers13205222. [PMID: 34680370 PMCID: PMC8533807 DOI: 10.3390/cancers13205222] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/11/2021] [Accepted: 10/15/2021] [Indexed: 01/06/2023] Open
Abstract
18F-fluorodeoxyglucose positron emission tomography combined with computed tomography (FDG-PET/CT) is an essential part of the management of patients with lymphoma at staging and response evaluation. Efforts to standardize PET acquisition and reporting, including the 5-point Deauville scale, have enabled PET to become a surrogate for treatment success or failure in common lymphoma subtypes. This review summarizes the key clinical-trial evidence that supports PET-directed personalized approaches in lymphoma but also points out the potential place of innovative PET/CT metrics or new radiopharmaceuticals in the future.
Collapse
Affiliation(s)
- Yassine Al Tabaa
- Scintidoc Nuclear Medicine Center, 25 rue de Clémentville, 34070 Montpellier, France
- Correspondence:
| | - Clement Bailly
- CRCINA, INSERM, CNRS, Université d’Angers, Université de Nantes, 44093 Nantes, France;
- Nuclear Medicine Department, University Hospital, 44093 Nantes, France
| | - Salim Kanoun
- Nuclear Medicine Department, Institute Claudius Regaud, 31100 Toulouse, France;
- Cancer Research Center of Toulouse (CRCT), Team 9, INSERM UMR 1037, 31400 Toulouse, France
| |
Collapse
|