1
|
Suay G, Garcia-Cañaveras JC, Aparisi F, Garcia J, Juan-Vidal O, Lahoz A. Immune checkpoint inhibitors as first-line treatment for brain metastases in stage IV NSCLC patients without driver mutations. Cancer Lett 2024; 606:217317. [PMID: 39489211 DOI: 10.1016/j.canlet.2024.217317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/28/2024] [Accepted: 10/31/2024] [Indexed: 11/05/2024]
Abstract
Immune checkpoint inhibitors (ICI) therapy with or without chemotherapy has been established as the first-line treatment for patients with non-oncogene addicted advanced Non-Small Cell Lung Cancer (NSCLC). Yet some clinical settings, such as the treatment sequence in patients with brain metastases, have barely been evidenced. Although ICIs cannot directly cross the blood-brain barrier (BBB), evidence suggests that BBB damage could allow ICIs into the central nervous system, or that they can have an indirect effect on the tumor immune microenvironment (TIME) and cause an anti-tumor response. Pivotal phase III trials have included a highly selected population but offer few data on these patients. Here we first review how ICIs can indirectly shape the brain metastases microenvironment through different mechanisms, and some possible causes of ICIs resistance. We also analyze the evidence reported in pivotal phase III trials and phase II trials focused on NSCLC brain metastases for first-line treatment, and the evidence for upfront or delayed local brain therapy. Finally, we discuss the best evidence-based approach to treat NSCLC patients with brain metastases and propose future research.
Collapse
Affiliation(s)
- Guillermo Suay
- Medical Oncology Department - La Fe Hospital, Valencia, Spain; Biomarker and Precision Medicine Unit - Health Research Institute La Fe Hospital, Valencia, Spain
| | | | - Francisco Aparisi
- Medical Oncology Department - La Fe Hospital, Valencia, Spain; Biomarker and Precision Medicine Unit - Health Research Institute La Fe Hospital, Valencia, Spain
| | - José Garcia
- Medical Oncology Service, Hospital Arnau Vilanova, Valencia, Spain
| | - Oscar Juan-Vidal
- Medical Oncology Department - La Fe Hospital, Valencia, Spain; Biomarker and Precision Medicine Unit - Health Research Institute La Fe Hospital, Valencia, Spain
| | - Agustín Lahoz
- Biomarker and Precision Medicine Unit - Health Research Institute La Fe Hospital, Valencia, Spain.
| |
Collapse
|
2
|
Sampat PJ, Cortese A, Goodman A, Ghelani GH, Mix MD, Graziano S, Basnet A. Treatment of brain metastases from non-small cell lung cancer: preclinical, clinical, and translational research. Front Oncol 2024; 14:1411432. [PMID: 39534096 PMCID: PMC11554526 DOI: 10.3389/fonc.2024.1411432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 10/04/2024] [Indexed: 11/16/2024] Open
Abstract
Lung cancer is the second most common type of cancer and is the leading cause of cancer-related deaths in the United States. Approximately 10-40% of patients with solid tumors develop brain metastases, with non-small cell lung cancer accounting for approximately 50% of all cases of patients with brain metastases. Many management options are available which can include surgery, radiation, and systemic therapy. A variety of factors go into the selection of management of brain metastases. In this review, we will focus on the treatment strategies and optimizing the management of brain metastases in patients with non-small cell lung cancer.
Collapse
Affiliation(s)
- Parth J. Sampat
- Division of Hematology and Medical Oncology, Department of Medicine, SUNY Upstate Medical University, Syracuse, NY, United States
| | - Alyssa Cortese
- Division of Hematology and Medical Oncology, Department of Medicine, SUNY Upstate Medical University, Syracuse, NY, United States
| | - Alexandra Goodman
- Division of Hematology and Medical Oncology, Department of Medicine, SUNY Upstate Medical University, Syracuse, NY, United States
| | - Ghanshyam H. Ghelani
- Division of Hematology and Medical Oncology, Department of Medicine, SUNY Upstate Medical University, Syracuse, NY, United States
| | - Michael D. Mix
- Department of Radiation Oncology, SUNY Upstate Medical University, Syracuse, NY, United States
| | - Stephen Graziano
- Division of Hematology and Medical Oncology, Department of Medicine, SUNY Upstate Medical University, Syracuse, NY, United States
| | - Alina Basnet
- Division of Hematology and Medical Oncology, Department of Medicine, SUNY Upstate Medical University, Syracuse, NY, United States
| |
Collapse
|
3
|
Abdul Manap AS, Ngwenya FM, Kalai Selvan M, Arni S, Hassan FH, Mohd Rudy AD, Abdul Razak NN. Lung cancer cell-derived exosomes: progress on pivotal role and its application in diagnostic and therapeutic potential. Front Oncol 2024; 14:1459178. [PMID: 39464709 PMCID: PMC11502357 DOI: 10.3389/fonc.2024.1459178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 09/24/2024] [Indexed: 10/29/2024] Open
Abstract
Lung cancer is frequently detected in an advanced stage and has an unfavourable prognosis. Conventional therapies are ineffective for the treatment of metastatic lung cancer. While certain molecular targets have been identified as having a positive response, the absence of appropriate drug carriers prevents their effective utilization. Lung cancer cell-derived exosomes (LCCDEs) have gained attention for their involvement in the development of cancer, as well as their potential for use in diagnosing, treating, and predicting the outcome of lung cancer. This is due to their biological roles and their inherent ability to transport biomolecules from the donor cells. Lung cancer-associated cell-derived extracellular vesicles (LCCDEVs) have the ability to enhance cell proliferation and metastasis, influence angiogenesis, regulate immune responses against tumours during the development of lung cancer, control drug resistance in lung cancer treatment, and are increasingly recognised as a crucial element in liquid biopsy evaluations for the detection of lung cancer. Therapeutic exosomes, which possess inherent intercellular communication capabilities, are increasingly recognised as effective vehicles for targeted drug delivery in precision medicine for tumours. This is due to their exceptional biocompatibility, minimal immunogenicity, low toxicity, prolonged circulation in the bloodstream, biodegradability, and ability to traverse different biological barriers. Currently, multiple studies are being conducted to create new means of diagnosing and predicting outcomes using LCCDEs, as well as to develop techniques for utilizing exosomes as effective carriers for medication delivery. This paper provides an overview of the current state of lung cancer and the wide range of applications of LCCDEs. The encouraging findings and technologies suggest that the utilization of LCCDEs holds promise for the clinical treatment of lung cancer patients.
Collapse
Affiliation(s)
- Aimi Syamima Abdul Manap
- Department of Biomedical Science, College of Veterinary Medicine, King Faisal University, Al-Ahsa, Saudi Arabia
| | | | | | - Syarafina Arni
- Faculty of Medicine, Bioscience and Nursing, MAHSA University, Jenjarom, Malaysia
| | | | | | | |
Collapse
|
4
|
Liu Y, Dai S, Liu Z, He L, Zhu L, Qin Z, Fan H, Fang F, Xie Y, Peng X. Serum tumor markers and outcomes in lung cancer patients with brain metastases: a retrospective longitudinal cohort study. Transl Lung Cancer Res 2024; 13:2282-2295. [PMID: 39430320 PMCID: PMC11484733 DOI: 10.21037/tlcr-24-404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 08/12/2024] [Indexed: 10/22/2024]
Abstract
Background Serum tumor markers (STMs) are recommended for cancer diagnosis and surveillance. However, their role in lung cancer with brain metastases (BM) is not yet clear. We aim to analyze the roles of baseline levels of STMs or ongoing STM surveillance on survival. Methods This retrospective longitudinal cohort study included 1,169 lung cancer patients with BM. The STM data during disease course were collected. Distinct trajectory groups were identified using the latent class growth mixed model (LCGMM). The roles of STMs on survival were further analyzed using Kaplan-Meier analysis and Cox proportional hazard models. Results Serum levels of cytokeratin-19 fragment (CYFRA21-1) (P<0.001), carcinoembryonic antigen (CEA) (P=0.005) and neuron-specific enolase (NSE) (P<0.001) at baseline exhibited significant correlation with overall survival (OS) of patients with BM, serving as independent prognostic factors. Further analysis indicated that baseline CYFRA21-1, CEA, NSE as well as status of key driver genes were independent prognostic factors in non-small cell lung cancer (NSCLC) patients with BM, while for small cell lung cancer (SCLC) patients with BM, baseline NSE and receiving chemotherapy show independent correlations with survival. Furthermore, we delineated the dynamic trajectories of STMs based on changes in disease course. More specifically, compared to those showing a baseline-high trend in CEA levels, the survival of patients with either persistently-rising or consistently normal levels seemed to be more promising. For CYFRA21-1, both early-rising and later-rising trends were observed, indicating a prognosis inferior to that of individuals with normal-level trajectory. Likewise, for NSE, patients with persistently-rising or persistently-descending trends showed no significantly survival difference. However, in comparison with the status of driver genes, receiving radiotherapy and targeted therapy, the dynamic changes in STM levels lacked independent prognostic significance. Further analysis indicated that among BM patients lacking key driver genes, NSE trajectory (P<0.05), CYFRA21-1 trajectory (P<0.05) and receiving chemotherapy (P<0.001) were independent prognostic factors. Conclusions Baseline levels of serum CYFRA21-1, CEA and NSE, as well as status of key driver genes are recommended for evaluating BM patients' outcome. Dynamic changes of STMs during disease course were not significantly associated with the final outcome of BM patients.
Collapse
Affiliation(s)
- Yingtong Liu
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Shuang Dai
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
- Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Zheran Liu
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Ling He
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Lili Zhu
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Zijian Qin
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Haohan Fan
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Fang Fang
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
| | - Yuping Xie
- Department of Oncology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Xingchen Peng
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
5
|
Yang D, Munai E, Zeng S, Tao D, Yuan Z, Du L, Zhou W, Wu Y, Zhu XD. Triple therapy boosts survival in NSCLC patients with brain metastases: a retrospective cohort study of chemotherapy, ICIs, and antiangiogenic agents. Cancer Immunol Immunother 2024; 73:226. [PMID: 39237636 PMCID: PMC11377371 DOI: 10.1007/s00262-024-03797-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 08/01/2024] [Indexed: 09/07/2024]
Abstract
BACKGROUND Treatment of brain metastases (BMs) in non-small cell lung cancer (NSCLC) patients, especially those with non-sensitive genetic mutations, is hindered by limited drug delivery through the blood-brain barrier (BBB). This retrospective study explores the efficacy of systemic treatments during brain metastasis to radiotherapy evaluation window in improving patient survival. METHODS In this retrospective cohort study, we evaluated 209 NSCLC patients with non-sensitive mutations and BMs, treated between 2016 and 2023 at two tertiary medical centers (Chongqing University Cancer Hospital and Guangxi Medical University Cancer Hospital). The patients were divided into three groups, namely chemotherapy alone (C; n = 95), chemotherapy plus immune checkpoint inhibitors (ICIs) (C + I; n = 62), and chemotherapy with ICIs and antiangiogenic therapy (A) (C + I + A; n = 52). Statistical analyses were performed using R software, version 4.3.3. Categorical variables were compared using Fisher's exact test, and survival curves were estimated with the Kaplan-Meier method and compared via the log-rank test. Univariate and multivariate Cox regression models were used to assess factors associated with overall survival (OS). Bayesian model averaging (BMA) was employed to address model uncertainty and improve result robustness. Subgroup analyses evaluated treatment-related mortality risk. RESULTS From an initial cohort of 658 NSCLC patients with BMs, 209 were analyzed with a median age of 59; the majority were male (80.9%) and diagnosed with adenocarcinoma (78.9%). Univariate analysis identified significant variables influencing outcomes, including BMs radiotherapy EQD2, BMs count, local thoracic treatment, BMs radiotherapy field, intracranial response, and systemic treatment post-BMs diagnosis. The C + I + A regimen significantly improved median OS to 23.6 months compared to 11.4 months with C and 16.2 months with C + I, with a hazard ratio (HR) of 0.60 (95% CI: 0.43-0.82; P < 0.0001). The two-year OS rate was highest in the C + I + A group at 38.5%, versus 10.5% in C and 20.4% in C + I (P < 0.001). Cox regression and BMA analyses confirmed the stability of BMA in providing HR estimates, yielding area under the curve (AUC) values of 0.785 for BMA and 0.793 for the Cox model, with no significant difference in predictive performance. Subgroup analysis revealed a 71% mortality risk reduction with C + I + A (HR: 0.29; 95% CI: 0.18-0.47; P < 0.0001), showing consistent benefits regardless of patient sex, BMs count, extracranial metastases presence, and local thoracic treatments. Treatment sequence analysis indicated a median OS of 33.4 months for patients starting with A, though not statistically significant (HR: 0.59; P = 0.36). The overall incidence of radiation-induced brain injury was low at 3.3%, with rates in the C, C + I, and C + I + A groups being 3.2%, 4.8%, and 1.9%, respectively (P = 0.683). CONCLUSION Our study demonstrates the significant benefit of the C + I + A combination therapy in improving OS and reducing mortality risk in NSCLC patients with non-sensitive gene-mutated BMs. The sequential administration of A followed by ICIs shows a promising synergistic effect with cranial radiotherapy, highlighting the potential for optimized treatment sequencing. These findings emphasize the efficacy of tailored combination therapies in complex oncological care and suggest that our approach could lead to meaningful improvements in clinical outcomes for this challenging patient population.
Collapse
Affiliation(s)
- Dingyi Yang
- Department of Radiation Oncology, Guangxi Medical University Cancer Hospital, No. 71, He Di Road, Nanning, 530021, Guangxi, China
- Department of Radiation Oncology, Chongqing University Cancer Hospital, Chongqing, China
| | - Erha Munai
- School of Medicine, Chongqing University, Chongqing, China
| | - Siwei Zeng
- School of Medicine, Chongqing University, Chongqing, China
| | - Dan Tao
- Department of Radiation Oncology, Chongqing University Cancer Hospital, Chongqing, China
| | - Ze Yuan
- Department of Radiation Oncology, Chongqing University Cancer Hospital, Chongqing, China
| | - Liang Du
- Department of Radiation Oncology, Chongqing University Cancer Hospital, Chongqing, China
| | - Wei Zhou
- Department of Radiation Oncology, Chongqing University Cancer Hospital, Chongqing, China.
| | - Yongzhong Wu
- Department of Radiation Oncology, Chongqing University Cancer Hospital, Chongqing, China.
| | - Xiao-Dong Zhu
- Department of Radiation Oncology, Guangxi Medical University Cancer Hospital, No. 71, He Di Road, Nanning, 530021, Guangxi, China.
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, China.
| |
Collapse
|
6
|
Chen X, Zeng C. Pioneering the Way: The Revolutionary Potential of Antibody-Drug Conjugates in NSCLC. Curr Treat Options Oncol 2024; 25:556-584. [PMID: 38520605 DOI: 10.1007/s11864-024-01196-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/04/2024] [Indexed: 03/25/2024]
Abstract
OPINION STATEMENT Despite targeted therapy and immunotherapy being recognized as established frontline treatments for advanced non-small cell lung cancer (NSCLC), the unavoidable development of resistance and disease progression poses ongoing challenges. Antibody-drug conjugates (ADCs) offer a potent treatment option for NSCLC through the specific delivery of cytotoxic agents to tumor cells that display distinct antigens. This review delves into the latest evidence regarding promising ADC agents for NSCLC, focusing on their targets, effectiveness, and safety assessments. Additionally, our study provides insights into managing toxicities, identifying biomarkers, devising methods to counter resistance mechanisms, tackling prevailing challenges, and outlining prospects for the clinical implementation of these innovative ADCs and combination regimens in NSCLC.
Collapse
Affiliation(s)
- Xiehui Chen
- Department of Geriatric Medicine, Shenzhen Longhua District Central Hospital, Shenzhen, 518110, China
| | - Changchun Zeng
- Department of Medical Laboratory, Shenzhen Longhua District Central Hospital, Shenzhen, 518110, China.
| |
Collapse
|
7
|
Gacche RN. Changing landscape of anti-angiogenic therapy: Novel approaches and clinical perspectives. Biochim Biophys Acta Rev Cancer 2023; 1878:189020. [PMID: 37951481 DOI: 10.1016/j.bbcan.2023.189020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/03/2023] [Accepted: 11/04/2023] [Indexed: 11/14/2023]
Abstract
Targeting angiogenesis has remained one of the important aspects in disease biology in general and cancer in particular. Currently (June 2023), over 593 clinical trials have been registered at ClinicalTrials.gov having inference of term 'angiogenesis'. A panel of 14 anti-angiogenic drugs have been approved by FDA for the treatment of variety of cancers and other human ailments. Although the anti-angiogenic therapy (AAT) has gained significant clinical attention as a promising approach in the treatment of various diseases, particularly cancer, however, sizable literature has accumulated in the recent past describing the aggressive nature of tumours after the drug holidays, evolving drug resistance and off-target toxicities. Nevertheless, the emergence of inscrutable compensatory or alternative angiogenic mechanisms is limiting the efficacy of anti-angiogenic drugs and focussing the therapeutic regime as a puzzle of 'Lernaean hydra'. This review offers an overview of recent updates on the efficacy of antiangiogenic therapy and the current clinical performance of aaRTK inhibitors. Additionally, it also explores the changing application landscape of AAT, focusing on its role in diabetic nephropathy, age-related macular degeneration and other neovascular ocular disorders. Combination therapy with antiangiogenic drugs and immune check point inhibitors (ICIs) has emerged as a potential strategy to enhance the therapeutic index of cancer immunotherapy. While clinical studies have demonstrated the clinical efficacy of this approach, they also highlight the complex and sometimes unpredictable adverse events associated with it. Normalizing tumour vasculature has been identified as a key factor in unlocking the full potential of ICIs, thereby providing hope for improved treatment outcomes. The future prospects and challenges of AAT have been described with special reference to integration of technological advances for enhancing its efficacy and applications beyond its discovery.
Collapse
Affiliation(s)
- Rajesh N Gacche
- Department of Biotechnology, Savitribai Phule Pune University, Pune 411007, MS, India.
| |
Collapse
|
8
|
Ngaha TYS, Zhilenkova AV, Essogmo FE, Uchendu IK, Abah MO, Fossa LT, Sangadzhieva ZD, D. Sanikovich V, S. Rusanov A, N. Pirogova Y, Boroda A, Rozhkov A, Kemfang Ngowa JD, N. Bagmet L, I. Sekacheva M. Angiogenesis in Lung Cancer: Understanding the Roles of Growth Factors. Cancers (Basel) 2023; 15:4648. [PMID: 37760616 PMCID: PMC10526378 DOI: 10.3390/cancers15184648] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/11/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023] Open
Abstract
Research has shown the role of growth factors in lung cancer angiogenesis. Angiogenesis promotes lung cancer progression by stimulating tumor growth, enhancing tumor invasion, contributing to metastasis, and modifying immune system responses within the tumor microenvironment. As a result, new treatment techniques based on the anti-angiogenic characteristics of compounds have been developed. These compounds selectively block the growth factors themselves, their receptors, or the downstream signaling pathways activated by these growth factors. The EGF and VEGF families are the primary targets in this approach, and several studies are being conducted to propose anti-angiogenic drugs that are increasingly suitable for the treatment of lung cancer, either as monotherapy or as combined therapy. The efficacy of the results are encouraging, but caution must be placed on the higher risk of toxicity, outlining the importance of personalized follow-up in the management of these patients.
Collapse
Affiliation(s)
- Tchawe Yvan Sinclair Ngaha
- Institute for Personalized Oncology, Center for Digital Biodesign and Personalized Healthcare, First Moscow State Medical University of the Ministry of Health of Russia (Sechenov University), 8-2 Trubetskaya str., Moscow 119991, Russia; (T.Y.S.N.); (A.V.Z.); (F.E.E.); (I.K.U.); (M.O.A.); (Z.D.S.); (V.D.S.); (A.S.R.); (Y.N.P.); (A.B.); (A.R.); (L.N.B.)
- Department of Public Health, James Lind Institute, Rue de la Cité 1, 1204 Geneva, Switzerland
| | - Angelina V. Zhilenkova
- Institute for Personalized Oncology, Center for Digital Biodesign and Personalized Healthcare, First Moscow State Medical University of the Ministry of Health of Russia (Sechenov University), 8-2 Trubetskaya str., Moscow 119991, Russia; (T.Y.S.N.); (A.V.Z.); (F.E.E.); (I.K.U.); (M.O.A.); (Z.D.S.); (V.D.S.); (A.S.R.); (Y.N.P.); (A.B.); (A.R.); (L.N.B.)
| | - Freddy Elad Essogmo
- Institute for Personalized Oncology, Center for Digital Biodesign and Personalized Healthcare, First Moscow State Medical University of the Ministry of Health of Russia (Sechenov University), 8-2 Trubetskaya str., Moscow 119991, Russia; (T.Y.S.N.); (A.V.Z.); (F.E.E.); (I.K.U.); (M.O.A.); (Z.D.S.); (V.D.S.); (A.S.R.); (Y.N.P.); (A.B.); (A.R.); (L.N.B.)
| | - Ikenna K. Uchendu
- Institute for Personalized Oncology, Center for Digital Biodesign and Personalized Healthcare, First Moscow State Medical University of the Ministry of Health of Russia (Sechenov University), 8-2 Trubetskaya str., Moscow 119991, Russia; (T.Y.S.N.); (A.V.Z.); (F.E.E.); (I.K.U.); (M.O.A.); (Z.D.S.); (V.D.S.); (A.S.R.); (Y.N.P.); (A.B.); (A.R.); (L.N.B.)
- Medical Laboratory Science Department, Faculty of Health Science and Technology, College of Medicine, University of Nigeria, Enugu Campus, Enugu 410001, Nigeria
| | - Moses Owoicho Abah
- Institute for Personalized Oncology, Center for Digital Biodesign and Personalized Healthcare, First Moscow State Medical University of the Ministry of Health of Russia (Sechenov University), 8-2 Trubetskaya str., Moscow 119991, Russia; (T.Y.S.N.); (A.V.Z.); (F.E.E.); (I.K.U.); (M.O.A.); (Z.D.S.); (V.D.S.); (A.S.R.); (Y.N.P.); (A.B.); (A.R.); (L.N.B.)
| | - Lionel Tabola Fossa
- Department of Oncology, Bafoussam Regional Hospital, Bafoussam 980, Cameroon;
| | - Zaiana D. Sangadzhieva
- Institute for Personalized Oncology, Center for Digital Biodesign and Personalized Healthcare, First Moscow State Medical University of the Ministry of Health of Russia (Sechenov University), 8-2 Trubetskaya str., Moscow 119991, Russia; (T.Y.S.N.); (A.V.Z.); (F.E.E.); (I.K.U.); (M.O.A.); (Z.D.S.); (V.D.S.); (A.S.R.); (Y.N.P.); (A.B.); (A.R.); (L.N.B.)
| | - Varvara D. Sanikovich
- Institute for Personalized Oncology, Center for Digital Biodesign and Personalized Healthcare, First Moscow State Medical University of the Ministry of Health of Russia (Sechenov University), 8-2 Trubetskaya str., Moscow 119991, Russia; (T.Y.S.N.); (A.V.Z.); (F.E.E.); (I.K.U.); (M.O.A.); (Z.D.S.); (V.D.S.); (A.S.R.); (Y.N.P.); (A.B.); (A.R.); (L.N.B.)
| | - Alexander S. Rusanov
- Institute for Personalized Oncology, Center for Digital Biodesign and Personalized Healthcare, First Moscow State Medical University of the Ministry of Health of Russia (Sechenov University), 8-2 Trubetskaya str., Moscow 119991, Russia; (T.Y.S.N.); (A.V.Z.); (F.E.E.); (I.K.U.); (M.O.A.); (Z.D.S.); (V.D.S.); (A.S.R.); (Y.N.P.); (A.B.); (A.R.); (L.N.B.)
| | - Yuliya N. Pirogova
- Institute for Personalized Oncology, Center for Digital Biodesign and Personalized Healthcare, First Moscow State Medical University of the Ministry of Health of Russia (Sechenov University), 8-2 Trubetskaya str., Moscow 119991, Russia; (T.Y.S.N.); (A.V.Z.); (F.E.E.); (I.K.U.); (M.O.A.); (Z.D.S.); (V.D.S.); (A.S.R.); (Y.N.P.); (A.B.); (A.R.); (L.N.B.)
| | - Alexander Boroda
- Institute for Personalized Oncology, Center for Digital Biodesign and Personalized Healthcare, First Moscow State Medical University of the Ministry of Health of Russia (Sechenov University), 8-2 Trubetskaya str., Moscow 119991, Russia; (T.Y.S.N.); (A.V.Z.); (F.E.E.); (I.K.U.); (M.O.A.); (Z.D.S.); (V.D.S.); (A.S.R.); (Y.N.P.); (A.B.); (A.R.); (L.N.B.)
| | - Alexander Rozhkov
- Institute for Personalized Oncology, Center for Digital Biodesign and Personalized Healthcare, First Moscow State Medical University of the Ministry of Health of Russia (Sechenov University), 8-2 Trubetskaya str., Moscow 119991, Russia; (T.Y.S.N.); (A.V.Z.); (F.E.E.); (I.K.U.); (M.O.A.); (Z.D.S.); (V.D.S.); (A.S.R.); (Y.N.P.); (A.B.); (A.R.); (L.N.B.)
| | - Jean D. Kemfang Ngowa
- Faculty of Medicine and Biomedical Sciences, University of Yaounde I, Yaounde 1364, Cameroon;
| | - Leonid N. Bagmet
- Institute for Personalized Oncology, Center for Digital Biodesign and Personalized Healthcare, First Moscow State Medical University of the Ministry of Health of Russia (Sechenov University), 8-2 Trubetskaya str., Moscow 119991, Russia; (T.Y.S.N.); (A.V.Z.); (F.E.E.); (I.K.U.); (M.O.A.); (Z.D.S.); (V.D.S.); (A.S.R.); (Y.N.P.); (A.B.); (A.R.); (L.N.B.)
| | - Marina I. Sekacheva
- Institute for Personalized Oncology, Center for Digital Biodesign and Personalized Healthcare, First Moscow State Medical University of the Ministry of Health of Russia (Sechenov University), 8-2 Trubetskaya str., Moscow 119991, Russia; (T.Y.S.N.); (A.V.Z.); (F.E.E.); (I.K.U.); (M.O.A.); (Z.D.S.); (V.D.S.); (A.S.R.); (Y.N.P.); (A.B.); (A.R.); (L.N.B.)
| |
Collapse
|
9
|
Wei Y, Xu Y, Wang M. Immune checkpoint inhibitors for the treatment of non-small cell lung cancer brain metastases. Chin Med J (Engl) 2023:00029330-990000000-00586. [PMID: 37106555 DOI: 10.1097/cm9.0000000000002163] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Indexed: 04/29/2023] Open
Abstract
ABSTRACT Lung cancer has the highest risk of brain metastasis (BM) among all solid carcinomas. The emergence of BM has a significant impact on the selection of oncologic treatment for patients. Immune checkpoint inhibitors (ICIs) are the most promising treatment option for patients without druggable mutations and have been shown to improve survival in patients with non-small cell lung cancer (NSCLC) BM in clinical trials with good safety. Moreover, ICI has shown certain effects in NSCLC BM, and the overall intracranial efficacy is comparable to extracranial efficacy. However, a proportion of patients showed discordant responses in primary and metastatic lesions, suggesting that multiple mechanisms may exist underlying ICI activity in BM. According to studies pertaining to tumor immune microenvironments, ICIs may be capable of provoking immunity in situ. Meanwhile, systematic immune cells activated by ICIs can migrate into the central nervous system and exert antitumor effects. This review summarizes the present evidence for ICI treatment efficacy in NSCLC BM and proposes the possible mechanisms of ICI treatment for NSCLC BMs based on existing evidence.
Collapse
Affiliation(s)
- Yuxi Wei
- Department of Respiratory and Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
- Peking Union Medical College (PUMC) and Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Yan Xu
- Department of Respiratory and Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Mengzhao Wang
- Department of Respiratory and Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| |
Collapse
|
10
|
Yu X, He S, Shen J, Huang Q, Yang P, Huang L, Pu D, Wang L, Li L, Liu J, Liu Z, Zhu L. Tumor vessel normalization and immunotherapy in gastric cancer. Ther Adv Med Oncol 2022; 14:17588359221110176. [PMID: 35872968 PMCID: PMC9297465 DOI: 10.1177/17588359221110176] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 06/09/2022] [Indexed: 02/05/2023] Open
Abstract
Gastric cancer (GC) is a common malignant tumor, and patients with GC have a low survival rate due to limited effective treatment methods. Angiogenesis and immune evasion are two key processes in GC progression, and they act synergistically to promote tumor progression. Tumor vascular normalization has been shown to improve the efficacy of cancer immunotherapy, which in turn may be improved through enhanced immune stimulation. Therefore, it may be interesting to identify synergies between immunomodulatory agents and anti-angiogenic therapies in GC. This strategy aims to normalize the tumor microenvironment through the action of the anti-vascular endothelial growth factor while stimulating the immune response through immunotherapy and prolonging the survival of GC patients.
Collapse
Affiliation(s)
- Xianzhe Yu
- Department of Gastrointestinal Surgery, Chengdu Second People's Hospital, Chengdu, Sichuan, People's Republic of China
| | - Shan He
- Department of Gastrointestinal Surgery, Chengdu Second People's Hospital, Chengdu, Sichuan, People's Republic of China
| | - Jian Shen
- Department of Gastrointestinal Surgery, Chengdu Second People's Hospital, Chengdu, Sichuan, People's Republic of China
| | - Qiushi Huang
- Department of Gastrointestinal Surgery, Chengdu Second People's Hospital, Chengdu, Sichuan, People's Republic of China
| | - Peng Yang
- Department of Gastrointestinal Surgery, Chengdu Second People's Hospital, Chengdu, Sichuan, People's Republic of China
| | - Lin Huang
- West China Hospital of Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Dan Pu
- West China Hospital of Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Li Wang
- Lung Cancer Center, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, People's Republic of China
| | - Lu Li
- Lung Cancer Center, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, People's Republic of China
| | - Jinghua Liu
- Department of Hepatobiliary Surgery, Linyi People's Hospital, Linyi, Shandong 276000, People's Republic of China
| | - Zelong Liu
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Lingling Zhu
- Lung Cancer Center, West China Hospital of Sichuan University, No. 37, Guo Xue Xiang, Wuhou District, Chengdu, Sichuan 610041, People's Republic of China
| |
Collapse
|
11
|
Hsu MJ, Chen HK, Lien JC, Huang YH, Huang SW. Suppressing VEGF-A/VEGFR-2 Signaling Contributes to the Anti-Angiogenic Effects of PPE8, a Novel Naphthoquinone-Based Compound. Cells 2022; 11:cells11132114. [PMID: 35805198 PMCID: PMC9266117 DOI: 10.3390/cells11132114] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 06/30/2022] [Accepted: 07/02/2022] [Indexed: 02/05/2023] Open
Abstract
Natural naphthoquinones and their derivatives exhibit a broad spectrum of pharmacological activities and have thus attracted much attention in modern drug discovery. However, it remains unclear whether naphthoquinones are potential drug candidates for anti-angiogenic agents. The aim of this study was to evaluate the anti-angiogenic properties of a novel naphthoquinone derivative, PPE8, and explore its underlying mechanisms. Determined by various assays including BrdU, migration, invasion, and tube formation analyses, PPE8 treatment resulted in the reduction of VEGF-A-induced proliferation, migration, and invasion, as well as tube formation in human umbilical vein endothelial cells (HUVECs). We also used an aorta ring sprouting assay, Matrigel plug assay, and immunoblotting analysis to examine PPE8’s ex vivo and in vivo anti-angiogenic activities and its actions on VEGF-A signaling. It has been revealed that PPE8 inhibited VEGF-A-induced micro vessel sprouting and was capable of suppressing angiogenesis in in vivo models. In addition, PPE8 inhibited VEGF receptor (VEGFR)-2, Src, FAK, ERK1/2, or AKT phosphorylation in HUVECs exposed to VEGF-A, and it also showed significant decline in xenograft tumor growth in vivo. Taken together, these observations indicated that PPE8 may target VEGF-A–VEGFR-2 signaling to reduce angiogenesis. It also supports the role of PPE8 as a potential drug candidate for the development of therapeutic agents in the treatment of angiogenesis-related diseases including cancer.
Collapse
Affiliation(s)
- Ming-Jen Hsu
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan;
- Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Cell Physiology and Molecular Image Research Center, Wan Fang Hospital, Taipei Medical University, Taipei 11031, Taiwan
| | - Han-Kun Chen
- Department of General Surgery, Chi Mei Medical Center, Tainan 71067, Taiwan;
| | - Jin-Cherng Lien
- School of Pharmacy, China Medical University, Taichung 40402, Taiwan;
- Department of Medical Research, Hospital of China Medical University, Taichung 40402, Taiwan
| | - Yu-Han Huang
- Division of Genetics and Genomics, Department of Pediatrics, Boston Children’s Hospital and Harvard Medical School, Boston, MA 02115, USA;
- The Manton Center for Orphan Disease Research, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Shiu-Wen Huang
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan;
- Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Department of Medical Research, Taipei Medical University Hospital, Taipei 11031, Taiwan
- Research Center of Thoracic Medicine, Taipei Medical University Hospital, Taipei 11031, Taiwan
- Correspondence: ; Tel.: +886-2-27361661 (ext. 3198)
| |
Collapse
|
12
|
Gao ZW, Liu C, Yang L, Chen HC, Yang LF, Zhang HZ, Dong K. CD73 Severed as a Potential Prognostic Marker and Promote Lung Cancer Cells Migration via Enhancing EMT Progression. Front Genet 2021; 12:728200. [PMID: 34868205 PMCID: PMC8635862 DOI: 10.3389/fgene.2021.728200] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 10/25/2021] [Indexed: 12/25/2022] Open
Abstract
To investigate the expression levels and prognostic value of CD73 in lung cancer. And moreover, to identify the effect and potential mechanism of CD73 on lung cancer cells proliferation and migration. CD73 expression levels in lung cancer were analyzed base on GEPIA2 and GEO database. GEPIA2 and Kaplan-Meier Plotter (KM Plotter) was used to analyzed the correlation between CD73 expression and prognosis. GEO dataset were analyzed via GEO2R. CD73 overexpression cell model was construction via recombinant lentivirus transfection into A549 and NCI-H520 cells. CCK8 assay were used to investigate cells proliferation. Migration and invasion ability were evaluated by scratch and transwell methods. Base on GEPIA2, GSE32683, GSE116959 and GSE37745 dataset, we found that CD73 expression were significant higher in tumor tissues of lung adenocarcinoma (LUAD) compared with that in non-tumor normal tissues and in lung squamous cell carcinoma (LUSC), while there were no significant difference of CD73 expression between LUSC and normal control tissues. Interestingly, a high CD73 level predict poor overall survival (OS) of LUSC. However, GEPIA2 and KM plotter showed the opposite conclusion of prognostic value of CD73 in LUAD. By using cell experiments, we found that CD73 overexpression promoted proliferation and migration of LUAD A549 cells. However, there was no significant effect of CD73 overexpression on LUSC NCI-H520 cells. Furthermore, CD73 overexpression facilitates epithelial to mesenchymal transition (EMT) progression of A549 cells. In conclusion, our results indicated that CD73 expression were increased in LUAD and might be an poor prognostic marker for LUSC patients. CD73 play an important role in LUAD cells proliferation and migration. These data allowed to support CD73 as a therapeutic target for LUAD.
Collapse
Affiliation(s)
- Zhao-Wei Gao
- Department of Clinical Laboratory, The Second Affiliated Hospital, Air Force Medical University, Xi'an, China
| | - Chong Liu
- Department of Clinical Laboratory, The Second Affiliated Hospital, Air Force Medical University, Xi'an, China
| | - Lan Yang
- Department of Clinical Laboratory, The Second Affiliated Hospital, Air Force Medical University, Xi'an, China
| | - Hao-Chuan Chen
- Department of Clinical Laboratory, The Second Affiliated Hospital, Air Force Medical University, Xi'an, China
| | - Long-Fei Yang
- Department of Clinical Laboratory, The Second Affiliated Hospital, Air Force Medical University, Xi'an, China
| | - Hui-Zhong Zhang
- Department of Clinical Laboratory, The Second Affiliated Hospital, Air Force Medical University, Xi'an, China
| | - Ke Dong
- Department of Clinical Laboratory, The Second Affiliated Hospital, Air Force Medical University, Xi'an, China
| |
Collapse
|