1
|
Bisceglia L, Morani F, Guerrieri L, Santoni-Rugiu E, Çakılkaya P, Scatena C, Scarpitta R, Engelholm LH, Behrendt N, Gemignani F, Landi S. BAG2, MAD2L1, and MDK are cancer-driver genes and candidate targets for novel therapies in malignant pleural mesothelioma. Cancer Gene Ther 2024; 31:1708-1720. [PMID: 39300217 PMCID: PMC11567880 DOI: 10.1038/s41417-024-00805-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 06/22/2024] [Accepted: 07/02/2024] [Indexed: 09/22/2024]
Abstract
Malignant pleural mesothelioma (MPM) is an aggressive cancer with a poor prognosis and the identification of novel druggable targets is urgently needed. In previous work, we identified 15 deregulated genes highly expressed in MPM tissues and correlated with a poor prognosis. Here, we validated these findings on an independent dataset of 211 MPM patients (EGA, EGAD00001001915) and on a panel of MPM cell lines. Furthermore, we carried out in vitro gene silencing followed by proliferation, cytotoxicity, caspase, and migration assays to define whether these targets could be cancer-driver genes. We ended up with three novel candidates (i.e., BAG2, MAD2L1, and MDK), whose encoded proteins could be exploited as druggable targets. Moreover, of novelty, immunohistochemistry analysis on tissues revealed that the overexpression of BAG2 and MAD2L1 could differentiate MPM from RMP patients. Furthermore, when we tested Neratinib (an inhibitor of MAD2L1) and iMDK (an inhibitor of MDK) we found that they are effective on MPM cells, in part phenocopying the effects of MAD2L1 and MDK gene silencing. In summary, in the present work, we report that BAG2, MAD2L1, and MDK are bona fide cancer-driver genes for MPM worth of further studies.
Collapse
Affiliation(s)
| | | | | | - Eric Santoni-Rugiu
- Department of Pathology, Rigshospitalet, University of Copenhagen, 2100, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, 2200, Copenhagen N, Denmark
| | - Pınar Çakılkaya
- Finsen Laboratory, Rigshospitalet/Biotech Research & Innovation Centre (BRIC), University of Copenhagen, 2200, Copenhagen, Denmark
| | - Cristian Scatena
- Dipartimento di Ricerca Traslazionale e delle Nuove Tecnologie in Medicina e Chirurgia, Università di Pisa, Pisa, Italy
- UO Anatomia Patologica 1 Universitaria, DAI - Medicina di Laboratorio, Azienda Ospedaliero Universitaria Pisana, Pisa, Italy
| | - Rosa Scarpitta
- Dipartimento di Ricerca Traslazionale e delle Nuove Tecnologie in Medicina e Chirurgia, Università di Pisa, Pisa, Italy
- UO Anatomia Patologica 1 Universitaria, DAI - Medicina di Laboratorio, Azienda Ospedaliero Universitaria Pisana, Pisa, Italy
| | - Lars H Engelholm
- Finsen Laboratory, Rigshospitalet/Biotech Research & Innovation Centre (BRIC), University of Copenhagen, 2200, Copenhagen, Denmark
| | - Niels Behrendt
- Finsen Laboratory, Rigshospitalet/Biotech Research & Innovation Centre (BRIC), University of Copenhagen, 2200, Copenhagen, Denmark
| | | | - Stefano Landi
- Department of Biology, University of Pisa, Pisa, Italy.
| |
Collapse
|
2
|
Reamon-Buettner SM, Rittinghausen S, Klauke A, Hiemisch A, Ziemann C. Malignant peritoneal mesotheliomas of rats induced by multiwalled carbon nanotubes and amosite asbestos: transcriptome and epigenetic profiles. Part Fibre Toxicol 2024; 21:3. [PMID: 38297314 PMCID: PMC10829475 DOI: 10.1186/s12989-024-00565-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 01/25/2024] [Indexed: 02/02/2024] Open
Abstract
BACKGROUND Malignant mesothelioma is an aggressive cancer that often originates in the pleural and peritoneal mesothelium. Exposure to asbestos is a frequent cause. However, studies in rodents have shown that certain multiwalled carbon nanotubes (MWCNTs) can also induce malignant mesothelioma. The exact mechanisms are still unclear. To gain further insights into molecular pathways leading to carcinogenesis, we analyzed tumors in Wistar rats induced by intraperitoneal application of MWCNTs and amosite asbestos. Using transcriptomic and epigenetic approaches, we compared the tumors by inducer (MWCNTs or amosite asbestos) or by tumor type (sarcomatoid, epithelioid, or biphasic). RESULTS Genome-wide transcriptome datasets, whether grouped by inducer or tumor type, showed a high number of significant differentially expressed genes (DEGs) relative to control peritoneal tissues. Bioinformatic evaluations using Ingenuity Pathway Analysis (IPA) revealed that while the transcriptome datasets shared commonalities, they also showed differences in DEGs, regulated canonical pathways, and affected molecular functions. In all datasets, among highly- scoring predicted canonical pathways were Phagosome Formation, IL8 Signaling, Integrin Signaling, RAC Signaling, and TREM1 Signaling. Top-scoring activated molecular functions included cell movement, invasion of cells, migration of cells, cell transformation, and metastasis. Notably, we found many genes associated with malignant mesothelioma in humans, which showed similar expression changes in the rat tumor transcriptome datasets. Furthermore, RT-qPCR revealed downregulation of Hrasls, Nr4a1, Fgfr4, and Ret or upregulation of Rnd3 and Gadd45b in all or most of the 36 tumors analyzed. Bisulfite sequencing of Hrasls, Nr4a1, Fgfr4, and Ret revealed heterogeneity in DNA methylation of promoter regions. However, higher methylation percentages were observed in some tumors compared to control tissues. Lastly, global 5mC DNA, m6A RNA and 5mC RNA methylation levels were also higher in tumors than in control tissues. CONCLUSIONS Our findings may help better understand how exposure to MWCNTs can lead to carcinogenesis. This information is valuable for risk assessment and in the development of safe-by-design strategies.
Collapse
Affiliation(s)
- Stella Marie Reamon-Buettner
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Nikolai-Fuchs-Strasse 1, 30625, Hannover, Germany.
| | - Susanne Rittinghausen
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Nikolai-Fuchs-Strasse 1, 30625, Hannover, Germany
| | - Annika Klauke
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Nikolai-Fuchs-Strasse 1, 30625, Hannover, Germany
| | - Andreas Hiemisch
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Nikolai-Fuchs-Strasse 1, 30625, Hannover, Germany
| | - Christina Ziemann
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Nikolai-Fuchs-Strasse 1, 30625, Hannover, Germany
| |
Collapse
|
3
|
Umeyama Y, Taniguchi H, Gyotoku H, Senju H, Tomono H, Takemoto S, Yamaguchi H, Tagod MSO, Iwasaki M, Tanaka Y, Mukae H. Three distinct mechanisms underlying human γδ T cell-mediated cytotoxicity against malignant pleural mesothelioma. Front Immunol 2023; 14:1058838. [PMID: 37006249 PMCID: PMC10063812 DOI: 10.3389/fimmu.2023.1058838] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 03/06/2023] [Indexed: 03/19/2023] Open
Abstract
IntroductionMalignant pleural mesothelioma (MPM) is a rare and highly aggressive thoracic tumor with poor prognosis and limited therapeutic options. Although immune checkpoint inhibitors exhibit a promising effect in some patients with unresectable MPM in clinical trials, the majority of MPM patients show only modest response rates to the currently available treatments. It is thus imperative to develop novel and innovative therapeutic modalities for MPM, including immune effector cell-based therapies.Methodsγδ T cells were expanded using tetrakis-pivaloyloxymethyl 2-(thiazole-2-ylamino) ethylidene-1,1-bisphosphonate (PTA) and interleukin-2, and the therapeutic potential of γδ T cells was examined through analyzing cell surface markers and cellular cytotoxicity against MPM in vitro using a europium chelate-based time-resolved fluorescence assay system and a luciferase-based luminescence assay system.Results and discussionWe successfully expanded γδ T cells from peripheral blood mononuclear cells of healthy donors and MPM patients. γδ T cells expressed natural killer receptors such as NKG2D and DNAM-1 and exhibited a moderate level of cytotoxicity to MPM cells in the absence of antigens. The inclusion of PTA, (E)-4-hydroxy-3- methylbut-2-enyl diphosphate (HMBPP) or zoledronic acid (ZOL) induced a TCR-dependent cytotoxicity in γδ T cells and secreted interferon-γ (IFN-γ). In addition, γδ T cells expressing CD16 exhibited a significant level of cytotoxicity against MPM cells in the presence of an anti-epidermal growth factor receptor (EGFR) mAb, at lower concentrations than in clinical settings, whereas a detectable level of IFN-γ was not produced. Taken together, γδ T cells showed cytotoxic activity against MPM in three distinct mechanisms through NK receptors, TCRs and CD16. Since major histocompatibility complex (MHC) molecules are not involved in the recognition, both autologous and allogeneic γδ T cells could be used for the development of γδ T cell-based adoptive immunotherapy for MPM.
Collapse
Affiliation(s)
- Yasuhiro Umeyama
- Department of Respiratory Medicine, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
- Center for Medical Innovation, Nagasaki University, Nagasaki, Japan
| | - Hirokazu Taniguchi
- Department of Respiratory Medicine, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
- *Correspondence: Hirokazu Taniguchi,
| | - Hiroshi Gyotoku
- Department of Respiratory Medicine, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Hiroaki Senju
- Department of Respiratory Medicine, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
- Department of Respiratory Medicine, Senju Hospital, Sasebo, Japan
| | - Hiromi Tomono
- Department of Respiratory Medicine, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
- Center for Medical Innovation, Nagasaki University, Nagasaki, Japan
| | - Shinnosuke Takemoto
- Department of Respiratory Medicine, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Hiroyuki Yamaguchi
- Department of Respiratory Medicine, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
- Clinical Oncology Center, Nagasaki University Hospital, Nagasaki, Japan
| | | | - Masashi Iwasaki
- Center for Innovation in Immunoregulative Technology and Therapeutics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yoshimasa Tanaka
- Center for Medical Innovation, Nagasaki University, Nagasaki, Japan
- Center for Innovation in Immunoregulative Technology and Therapeutics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hiroshi Mukae
- Department of Respiratory Medicine, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| |
Collapse
|
4
|
Sauter JL, Dacic S, Galateau-Salle F, Attanoos RL, Butnor KJ, Churg A, Husain AN, Kadota K, Khoor A, Nicholson AG, Roggli V, Schmitt F, Tsao MS, Travis WD. The 2021 World Health Organization Classification of Tumors of the Pleura: Advances since the 2015 Classification. J Thorac Oncol 2022; 17:608-622. [PMID: 35026477 DOI: 10.1016/j.jtho.2021.12.014] [Citation(s) in RCA: 90] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/14/2021] [Accepted: 12/31/2021] [Indexed: 12/01/2022]
Abstract
Significant changes in the 2021 World Health Organization (WHO) Classification of Tumors of the Pleura and Pericardium since the 2015 WHO Classification include: 1) Pleural and pericardial tumors have been combined in one chapter whereas in the 2015 WHO, pericardial tumors were classified with cardiac tumors; 2) Well-differentiated papillary mesothelioma (WDPM) has been renamed well-differentiated papillary mesothelial tumor (WDPMT) given growing evidence that these tumors exhibit relatively indolent behavior; 3) Localized and diffuse mesothelioma no longer include the term "malignant" as a prefix; 4) Mesothelioma in situ (MIS) has been added to the 2021 classification since these lesions can now be recognized by loss of BAP1 and/or MTAP by immunohistochemistry and/or CDKN2A homozygous deletion by FISH; 5) The three main histologic subtypes (i.e. epithelioid, biphasic and sarcomatoid) remain the same but architectural patterns, cytologic and stromal features are more formally incorporated into the 2021 classification based on their prognostic significance; 6) Nuclear grading for epithelioid diffuse mesothelioma is introduced and it is recommended to record this and other histologically prognostic features in pathology reports; 7) BAP1, EZH2 and MTAP immunohistochemistry have been shown to be useful in separating benign mesothelial proliferations from mesothelioma; 8) Biphasic mesothelioma can be diagnosed in small biopsies showing both epithelioid and sarcomatoid components even if the amount of one component is less than 10%; and 9) The most frequently altered genes in diffuse pleural mesothelioma include BAP 1, CDKN2A, NF2, TP53, SETD2 and SETB1.
Collapse
Affiliation(s)
- Jennifer L Sauter
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York, United States.
| | - Sanja Dacic
- Department of Pathology University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, United States
| | - Francoise Galateau-Salle
- MESOPATH Centre Leon Berard, Lyon, France, Unit of Cancer Research Center INSERM U1052-CNRS5286R, Lyon France
| | - Richard L Attanoos
- Department of Cellular Pathology, University Hospital of Wales and School of Medicine, Cardiff University, Wales, United Kingdom
| | - Kelly J Butnor
- Department of Pathology & Laboratory Medicine, The University of Vermont Medical Center, Burlington, Vermont, United States
| | - Andrew Churg
- Dept of Pathology, Vancouver General Hospital and University of British Columbia, Vancouver, British Columbia, Canada
| | - Aliya N Husain
- Department of Pathology, University of Chicago, Chicago, Illinois, United States
| | - Kyuichi Kadota
- Department of Pathology, Faculty of Medicine, Shimane University
| | - Andras Khoor
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Jacksonville, Florida, United States
| | - Andrew G Nicholson
- Royal Brompton and Harefield Hospitals, and National Heart and Lung Institute, Imperial College, London, United Kingdom
| | - Victor Roggli
- Department of Pathology, Duke University Medical Center, Durham, North Carolina, United States
| | - Fernando Schmitt
- RISE@Cintesis, Medical Faculty of Porto University, Porto, Portugal; Unit of Molecular Pathology of IPATIMUP, Porto, Portugal
| | - Ming-Sound Tsao
- Department of Pathology, University Health Network, Princess Margaret Cancer Centre, Toronto, Canada
| | - William D Travis
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York, United States
| |
Collapse
|
5
|
Pleural mesothelioma classification-update and challenges. Mod Pathol 2022; 35:51-56. [PMID: 34465883 DOI: 10.1038/s41379-021-00895-7] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 07/28/2021] [Accepted: 08/04/2021] [Indexed: 12/12/2022]
Abstract
Mesothelial tumors are classified into benign or preinvasive tumors, and mesotheliomas. The benign or preinvasive group includes adenomatoid tumors, well-differentiated papillary mesothelial tumors, and mesothelioma in situ. Malignant tumors are mesotheliomas and can be localized or diffuse. Histological classification of invasive mesotheliomas into three major subtypes-epithelioid, sarcomatoid, and biphasic is prognostically important. It also plays a significant role in the treatment decisions of patients diagnosed with this deadly disease. Grading and subtyping of epithelioid mesotheliomas have been one of the major changes in the recent WHO classification of pleural tumors. Mesothelioma in situ has emerged as a precisely defined clinico-pathologic entity that for diagnosis requires demonstration of loss of BAP1 or MTAP by immunohistochemistry, or CDKN2A homozygous deletion by FISH. The use of these two biomarkers improves the diagnostic sensitivity of effusion specimens and limited tissue samples and is valuable in establishing the diagnosis of epithelioid mesothelioma. In this review, recent changes in the histologic classification of pleural mesothelioma, importance of ancillary diagnostic studies, and molecular characteristics of mesotheliomas are discussed.
Collapse
|
6
|
Cersosimo F, Barbarino M, Lonardi S, Vermi W, Giordano A, Bellan C, Giurisato E. Mesothelioma Malignancy and the Microenvironment: Molecular Mechanisms. Cancers (Basel) 2021; 13:cancers13225664. [PMID: 34830817 PMCID: PMC8616064 DOI: 10.3390/cancers13225664] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 11/05/2021] [Accepted: 11/08/2021] [Indexed: 12/13/2022] Open
Abstract
Several studies have reported that cellular and soluble components of the tumor microenvironment (TME) play a key role in cancer-initiation and progression. Considering the relevance and the complexity of TME in cancer biology, recent research has focused on the investigation of the TME content, in terms of players and informational exchange. Understanding the crosstalk between tumor and non-tumor cells is crucial to design more beneficial anti-cancer therapeutic strategies. Malignant pleural mesothelioma (MPM) is a complex and heterogenous tumor mainly caused by asbestos exposure with few treatment options and low life expectancy after standard therapy. MPM leukocyte infiltration is rich in macrophages. Given the failure of macrophages to eliminate asbestos fibers, these immune cells accumulate in pleural cavity leading to the establishment of a unique inflammatory environment and to the malignant transformation of mesothelial cells. In this inflammatory landscape, stromal and immune cells play a driven role to support tumor development and progression via a bidirectional communication with tumor cells. Characterization of the MPM microenvironment (MPM-ME) may be useful to understand the complexity of mesothelioma biology, such as to identify new molecular druggable targets, with the aim to improve the outcome of the disease. In this review, we summarize the known evidence about the MPM-ME network, including its prognostic and therapeutic relevance.
Collapse
Affiliation(s)
- Francesca Cersosimo
- Department of Biotechnology Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy;
| | - Marcella Barbarino
- Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy; (M.B.); (A.G.); (C.B.)
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA
| | - Silvia Lonardi
- Department of Molecular and Translational Medicine, University of Brescia, 25100 Brescia, Italy; (S.L.); (W.V.)
| | - William Vermi
- Department of Molecular and Translational Medicine, University of Brescia, 25100 Brescia, Italy; (S.L.); (W.V.)
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63130, USA
| | - Antonio Giordano
- Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy; (M.B.); (A.G.); (C.B.)
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA
| | - Cristiana Bellan
- Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy; (M.B.); (A.G.); (C.B.)
| | - Emanuele Giurisato
- Department of Biotechnology Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy;
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PL, UK
- Correspondence: ; Tel.: +39-057-723-2125
| |
Collapse
|
7
|
Lisini D, Lettieri S, Nava S, Accordino G, Frigerio S, Bortolotto C, Lancia A, Filippi AR, Agustoni F, Pandolfi L, Piloni D, Comoli P, Corsico AG, Stella GM. Local Therapies and Modulation of Tumor Surrounding Stroma in Malignant Pleural Mesothelioma: A Translational Approach. Int J Mol Sci 2021; 22:9014. [PMID: 34445720 PMCID: PMC8396500 DOI: 10.3390/ijms22169014] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/06/2021] [Accepted: 08/17/2021] [Indexed: 12/21/2022] Open
Abstract
Malignant Pleural Mesothelioma (MPM) is a rare and aggressive neoplasm of the pleural mesothelium, mainly associated with asbestos exposure and still lacking effective therapies. Modern targeted biological strategies that have revolutionized the therapy of other solid tumors have not had success so far in the MPM. Combination immunotherapy might achieve better results over chemotherapy alone, but there is still a need for more effective therapeutic approaches. Based on the peculiar disease features of MPM, several strategies for local therapeutic delivery have been developed over the past years. The common rationale of these approaches is: (i) to reduce the risk of drug inactivation before reaching the target tumor cells; (ii) to increase the concentration of active drugs in the tumor micro-environment and their bioavailability; (iii) to reduce toxic effects on normal, non-transformed cells, because of much lower drug doses than those used for systemic chemotherapy. The complex interactions between drugs and the local immune-inflammatory micro-environment modulate the subsequent clinical response. In this perspective, the main interest is currently addressed to the development of local drug delivery platforms, both cell therapy and engineered nanotools. We here propose a review aimed at deep investigation of the biologic effects of the current local therapies for MPM, including cell therapies, and the mechanisms of interaction with the tumor micro-environment.
Collapse
Affiliation(s)
- Daniela Lisini
- Cell Therapy Production Unit-UPTC and Cerebrovascular Diseases Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy; (D.L.); (S.N.); (S.F.)
| | - Sara Lettieri
- Unit of Respiratory Diseases, Department of Medical Sciences and Infective Diseases, IRCCS Policlinico San Matteo Foundation and University of Pavia Medical School, 27100 Pavia, Italy; (S.L.); (G.A.); (L.P.); (D.P.); (A.G.C.)
| | - Sara Nava
- Cell Therapy Production Unit-UPTC and Cerebrovascular Diseases Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy; (D.L.); (S.N.); (S.F.)
| | - Giulia Accordino
- Unit of Respiratory Diseases, Department of Medical Sciences and Infective Diseases, IRCCS Policlinico San Matteo Foundation and University of Pavia Medical School, 27100 Pavia, Italy; (S.L.); (G.A.); (L.P.); (D.P.); (A.G.C.)
| | - Simona Frigerio
- Cell Therapy Production Unit-UPTC and Cerebrovascular Diseases Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy; (D.L.); (S.N.); (S.F.)
| | - Chandra Bortolotto
- Unit of Radiology, Department of Intensive Medicine, IRCCS Policlinico San Matteo Foundation and University of Pavia Medical School, 27100 Pavia, Italy;
| | - Andrea Lancia
- Unit of Radiation Therapy, Department of Medical Sciences and Infective Diseases, IRCCS Policlinico San Matteo Foundation and University of Pavia Medical School, 27100 Pavia, Italy; (A.L.); (A.R.F.)
| | - Andrea Riccardo Filippi
- Unit of Radiation Therapy, Department of Medical Sciences and Infective Diseases, IRCCS Policlinico San Matteo Foundation and University of Pavia Medical School, 27100 Pavia, Italy; (A.L.); (A.R.F.)
| | - Francesco Agustoni
- Unit of Oncology, Department of Medical Sciences and Infective Diseases, IRCCS Policlinico San Matteo Foundation and University of Pavia Medical School, 27100 Pavia, Italy;
| | - Laura Pandolfi
- Unit of Respiratory Diseases, Department of Medical Sciences and Infective Diseases, IRCCS Policlinico San Matteo Foundation and University of Pavia Medical School, 27100 Pavia, Italy; (S.L.); (G.A.); (L.P.); (D.P.); (A.G.C.)
| | - Davide Piloni
- Unit of Respiratory Diseases, Department of Medical Sciences and Infective Diseases, IRCCS Policlinico San Matteo Foundation and University of Pavia Medical School, 27100 Pavia, Italy; (S.L.); (G.A.); (L.P.); (D.P.); (A.G.C.)
| | - Patrizia Comoli
- Cell Factory and Pediatric Hematology-Oncology Unit, IRCCS Fondazione Policlinico San Matteo, 27100 Pavia, Italy;
| | - Angelo Guido Corsico
- Unit of Respiratory Diseases, Department of Medical Sciences and Infective Diseases, IRCCS Policlinico San Matteo Foundation and University of Pavia Medical School, 27100 Pavia, Italy; (S.L.); (G.A.); (L.P.); (D.P.); (A.G.C.)
| | - Giulia Maria Stella
- Unit of Respiratory Diseases, Department of Medical Sciences and Infective Diseases, IRCCS Policlinico San Matteo Foundation and University of Pavia Medical School, 27100 Pavia, Italy; (S.L.); (G.A.); (L.P.); (D.P.); (A.G.C.)
| |
Collapse
|