1
|
Yuan B, Shi K, Zha J, Cai Y, Gu Y, Huang K, Yue W, Zhai Q, Ding N, Ren W, He W, Xu Y, Wang T. Nuclear receptor modulators inhibit osteosarcoma cell proliferation and tumour growth by regulating the mTOR signaling pathway. Cell Death Dis 2023; 14:51. [PMID: 36681687 PMCID: PMC9867777 DOI: 10.1038/s41419-022-05545-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 12/21/2022] [Accepted: 12/22/2022] [Indexed: 01/22/2023]
Abstract
Osteosarcoma is the most common primary malignant bone tumour in children and adolescents. Chemoresistance leads to poor responses to conventional therapy in patients with osteosarcoma. The discovery of novel effective therapeutic targets and drugs is still the main focus of osteosarcoma research. Nuclear receptors (NRs) have shown substantial promise as novel therapeutic targets for various cancers. In the present study, we performed a drug screen using 29 chemicals that specifically target 17 NRs in several different human osteosarcoma and osteoblast cell lines. The retinoic acid receptor beta (RARb) antagonist LE135, peroxisome proliferator activated receptor gamma (PPARg) antagonist T0070907, liver X receptor (LXR) agonist T0901317 and Rev-Erba agonist SR9011 significantly inhibited the proliferation of malignant osteosarcoma cells (U2OS, HOS-MNNG and Saos-2 cells) but did not inhibit the growth of normal osteoblasts. The effects of these NR modulators on osteosarcoma cells occurred in a dose-dependent manner and were not observed in NR-knockout osteosarcoma cells. These NR modulators also significantly inhibited osteosarcoma growth in vivo and enhanced the antitumour effect of doxorubicin (DOX). Transcriptomic and immunoblotting results showed that these NR modulators may inhibit the growth of osteosarcoma cells by regulating the PI3K/AKT/mTOR and ERK/mTOR pathways. DDIT4, which blocks mTOR activation, was identified as one of the common downstream target genes of these NRs. DDIT4 knockout significantly attenuated the inhibitory effects of these NR modulators on osteosarcoma cell growth. Together, our results revealed that modulators of RARb, PPARg, LXRs and Rev-Erba inhibit osteosarcoma growth both in vitro and in vivo through the mTOR signaling pathway, suggesting that treatment with these NR modulators is a novel potential therapeutic strategy.
Collapse
Affiliation(s)
- Baoshi Yuan
- Cambridge-Su Genomic Resource Center, Suzhou medical college of Soochow University, Suzhou, Jiangsu, 215123, China
| | - Kexin Shi
- Cambridge-Su Genomic Resource Center, Suzhou medical college of Soochow University, Suzhou, Jiangsu, 215123, China
- Ministry of Education Key Laboratory of Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, 310030, China
| | - Juanmin Zha
- Department of Oncology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, China
| | - Yujia Cai
- Cambridge-Su Genomic Resource Center, Suzhou medical college of Soochow University, Suzhou, Jiangsu, 215123, China
| | - Yue Gu
- Cambridge-Su Genomic Resource Center, Suzhou medical college of Soochow University, Suzhou, Jiangsu, 215123, China
| | - Kai Huang
- Cambridge-Su Genomic Resource Center, Suzhou medical college of Soochow University, Suzhou, Jiangsu, 215123, China
| | - Wenchang Yue
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, China
| | - Qiaocheng Zhai
- Department of Orthopaedics, the Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215004, China
| | - Ning Ding
- Cambridge-Su Genomic Resource Center, Suzhou medical college of Soochow University, Suzhou, Jiangsu, 215123, China
| | - Wenyan Ren
- Cambridge-Su Genomic Resource Center, Suzhou medical college of Soochow University, Suzhou, Jiangsu, 215123, China
| | - Weiqi He
- Cambridge-Su Genomic Resource Center, Suzhou medical college of Soochow University, Suzhou, Jiangsu, 215123, China
| | - Ying Xu
- Cambridge-Su Genomic Resource Center, Suzhou medical college of Soochow University, Suzhou, Jiangsu, 215123, China.
| | - Tao Wang
- Cambridge-Su Genomic Resource Center, Suzhou medical college of Soochow University, Suzhou, Jiangsu, 215123, China.
| |
Collapse
|
2
|
Zhou L, Chen G, Liu T, Liu X, Yang C, Jiang J. MJDs family members: Potential prognostic targets and immune-associated biomarkers in hepatocellular carcinoma. Front Genet 2022; 13:965805. [PMID: 36159990 PMCID: PMC9500549 DOI: 10.3389/fgene.2022.965805] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 08/10/2022] [Indexed: 11/21/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common gastrointestinal malignancies. It is not easy to be diagnosed in the early stage and is prone to relapse, with a very poor prognosis. And immune cell infiltration and tumor microenvironment play important roles in predicting therapeutic response and prognosis of HCC. Machado-Joseph domain-containing proteases (MJDs), as a gene family extensively involved in tumor progression, has pro-cancer and anti-cancer effects. However, the relationship between MJDs family members and immune cell infiltration and tumor microenvironment in HCC remains unclear. Therefore, cBio Cancer Genomics Portal (cBioPortal), The Cancer Genome Atlas (TCGA), UALCAN, Human Protein Atlas (HPA), MethSurv, and Tumor Immune Estimation Resource (TIMER) databases were performed to investigate the mRNA expression, DNA methylation, clinicopathologic features, immune cell infiltration and other related functions of MJDs family members in HCC. The results indicated that the expression of ATXN3, JOSD1, and JOSD2 was dramatically increased in HCC tissues and cell lines, and was correlated with histological grade, specimen type, TP53 mutation, lymph node metastatic, gender, and age of patients with HCC. Meanwhile, these genes also showed clinical value in improving the overall survival (OS), disease-specific survival (DSS), progression free survival (PFS), and relapse-free survival (RFS) in patients with HCC. The prognostic model indicated that the worse survival was associated with overall high expression of MJDs members. Next, the results suggested that promotor methylation levels of the MJDs family were closely related to these family mRNA expression levels, clinicopathologic features, and prognostic values in HCC. Moreover, the MJDs family were significantly correlated with CD4+ T cells, CD8+ T cells, B cells, neutrophils, macrophages, and DCs. And MJDs family members’ expression were substantially associated with the levels of several lymphocytes, immunomoinhibitors, immunomostimulators, chemokine ligands, and chemokine receptors. In addition, the expression levels of MJDs family were significantly correlated with cancer-related signaling pathways. Taken together, our results indicated that the aberrant expression of MJDs family in HCC played a critical role in clinical feature, prognosis, tumor microenvironment, immune-related molecules, mutation, gene copy number, and promoter methylation level. And MJDs family may be effective immunotherapeutic targets for patients with HCC and have the potential to be prognostic biomarkers.
Collapse
Affiliation(s)
- Lei Zhou
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
- School of Clinical Medicine, Guizhou Medical University, Guiyang, China
| | - Guojie Chen
- Hunan YoBon Biotechnology Limited Company, Changsha, China
| | - Tao Liu
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
- School of Clinical Medicine, Guizhou Medical University, Guiyang, China
| | - Xinyuan Liu
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
- School of Clinical Medicine, Guizhou Medical University, Guiyang, China
| | - Chengxiao Yang
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
- School of Clinical Medicine, Guizhou Medical University, Guiyang, China
| | - Jianxin Jiang
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
- School of Clinical Medicine, Guizhou Medical University, Guiyang, China
- Department of Hepatobiliary Surgery, Renmin Hospital of Wuhan University, Wuhan, China
- *Correspondence: Jianxin Jiang,
| |
Collapse
|