1
|
Ceccarelli M, Rossi S, Bonaventura F, Massari R, D'Elia A, Soluri A, Micheli L, D'Andrea G, Mancini B, Raspa M, Scavizzi F, Alaggio R, Del Bufalo F, Miele E, Carai A, Mastronuzzi A, Tirone F. Intracerebellar administration of the chemokine Cxcl3 reduces the volume of medulloblastoma lesions at an advanced stage by promoting the migration and differentiation of preneoplastic precursor cells. Brain Pathol 2025; 35:e13283. [PMID: 38946128 PMCID: PMC11669415 DOI: 10.1111/bpa.13283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 06/18/2024] [Indexed: 07/02/2024] Open
Abstract
The prognosis for many pediatric brain tumors, including cerebellar medulloblastoma (MB), remains dismal but there is promise in new therapies. We have previously generated a mouse model developing spontaneous MB at high frequency, Ptch1+/-/Tis21-/-. In this model, reproducing human tumorigenesis, we identified the decline of the Cxcl3 chemokine in cerebellar granule cell precursors (GCPs) as responsible for a migration defect, which causes GCPs to stay longer in the proliferative area rather than differentiate and migrate internally, making them targets of transforming insults. We demonstrated that 4-week Cxcl3 infusion in cerebella of 1-month-old mice, at the initial stage of MB formation, forces preneoplastic GCPs (pGCPs) to leave lesions and differentiate, with a complete suppression of MB development. In this study, we sought to verify the effect of 4-week Cxcl3 treatment in 3-month-old Ptch1+/-/Tis21-/- mice, when MB lesions are at an advanced, irreversible stage. We found that Cxcl3 treatment reduces tumor volumes by sevenfold and stimulates the migration and differentiation of pGCPs from the lesion to the internal cerebellar layers. We also tested whether the pro-migratory action of Cxcl3 favors metastases formation, by xenografting DAOY human MB cells in the cerebellum of immunosuppressed mice. We showed that DAOY cells express the Cxcl3 receptor, Cxcr2, and that Cxcl3 triggers their migration. However, Cxcl3 did not significantly affect the frequency of metastases or the growth of DAOY-generated MBs. Finally, we mapped the expression of the Cxcr2 receptor in human MBs, by evaluating a well-characterized series of 52 human MBs belonging to different MB molecular subgroups. We found that Cxcr2 was variably expressed in all MB subgroups, suggesting that Cxcl3 could be used for therapy of different MBs.
Collapse
Affiliation(s)
- Manuela Ceccarelli
- Institute of Biochemistry and Cell Biology (IBBC)National Research Council of Italy (CNR), c/o International Campus “A. Buzzati‐Traverso”RomeItaly
- Onco‐Hematology, Cell Therapy, Gene Therapies and Hemopoietic Transplant, Bambino Gesù Children's Hospital IRCCSRomeItaly
| | - Sabrina Rossi
- Pathology UnitBambino Gesù Children's Hospital IRCCSRomeItaly
| | | | - Roberto Massari
- Institute of Biochemistry and Cell Biology (IBBC)National Research Council of Italy (CNR), c/o International Campus “A. Buzzati‐Traverso”RomeItaly
| | - Annunziata D'Elia
- Institute of Biochemistry and Cell Biology (IBBC)National Research Council of Italy (CNR), c/o International Campus “A. Buzzati‐Traverso”RomeItaly
| | - Andrea Soluri
- Institute of Biochemistry and Cell Biology (IBBC)National Research Council of Italy (CNR), c/o International Campus “A. Buzzati‐Traverso”RomeItaly
- Unit of Molecular NeurosciencesUniversity Campus Bio‐MedicoRomeItaly
| | - Laura Micheli
- Institute of Biochemistry and Cell Biology (IBBC)National Research Council of Italy (CNR), c/o International Campus “A. Buzzati‐Traverso”RomeItaly
| | - Giorgio D'Andrea
- Institute of Biochemistry and Cell Biology (IBBC)National Research Council of Italy (CNR), c/o International Campus “A. Buzzati‐Traverso”RomeItaly
| | - Barbara Mancini
- Pathology UnitBambino Gesù Children's Hospital IRCCSRomeItaly
| | - Marcello Raspa
- Institute of Biochemistry and Cell BiologyNational Research Council of Italy (IBBC‐CNR/EMMA/INFRAFRONTIER/IMPC), c/o International Campus “A. Buzzati‐Traverso”RomeItaly
| | - Ferdinando Scavizzi
- Institute of Biochemistry and Cell BiologyNational Research Council of Italy (IBBC‐CNR/EMMA/INFRAFRONTIER/IMPC), c/o International Campus “A. Buzzati‐Traverso”RomeItaly
| | - Rita Alaggio
- Pathology UnitBambino Gesù Children's Hospital IRCCSRomeItaly
- Department of Medico‐surgical Sciences and BiotechnologiesSapienza UniversityRomeItaly
| | - Francesca Del Bufalo
- Onco‐Hematology, Cell Therapy, Gene Therapies and Hemopoietic Transplant, Bambino Gesù Children's Hospital IRCCSRomeItaly
| | - Evelina Miele
- Onco‐Hematology, Cell Therapy, Gene Therapies and Hemopoietic Transplant, Bambino Gesù Children's Hospital IRCCSRomeItaly
| | - Andrea Carai
- Neurosurgery UnitBambino Gesù Children's Hospital IRCCSRomeItaly
| | - Angela Mastronuzzi
- Onco‐Hematology, Cell Therapy, Gene Therapies and Hemopoietic Transplant, Bambino Gesù Children's Hospital IRCCSRomeItaly
| | - Felice Tirone
- Institute of Biochemistry and Cell Biology (IBBC)National Research Council of Italy (CNR), c/o International Campus “A. Buzzati‐Traverso”RomeItaly
| |
Collapse
|
2
|
Wani AK, Singh R, Akhtar N, Prakash A, Nepovimova E, Oleksak P, Chrienova Z, Alomar S, Chopra C, Kuca K. Targeted Inhibition of the PI3K/Akt/mTOR Signaling Axis: Potential for Sarcoma Therapy. Mini Rev Med Chem 2024; 24:1496-1520. [PMID: 38265369 DOI: 10.2174/0113895575270904231129062137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 10/15/2023] [Accepted: 10/23/2023] [Indexed: 01/25/2024]
Abstract
Sarcoma is a heterogeneous group of malignancies often resistant to conventional chemotherapy and radiation therapy. The phosphatidylinositol-3-kinase/ protein kinase B /mammalian target of rapamycin (PI3K/Akt/mTOR) signaling pathway has emerged as a critical cancer target due to its central role in regulating key cellular processes such as cell growth, proliferation, survival, and metabolism. Dysregulation of this pathway has been implicated in the development and progression of bone sarcomas (BS) and soft tissue sarcomas (STS). PI3K/Akt/mTOR inhibitors have shown promising preclinical and clinical activity in various cancers. These agents can inhibit the activation of PI3K, Akt, and mTOR, thereby reducing the downstream signaling events that promote tumor growth and survival. In addition, PI3K/Akt/mTOR inhibitors have been shown to enhance the efficacy of other anticancer therapies, such as chemotherapy and radiation therapy. The different types of PI3K/Akt/mTOR inhibitors vary in their specificity, potency, and side effect profiles and may be effective depending on the specific sarcoma type and stage. The molecular targeting of PI3K/Akt/mToR pathway using drugs, phytochemicals, nanomaterials (NMs), and microbe-derived molecules as Pan-PI3K inhibitors, selective PI3K inhibitors, and dual PI3K/mTOR inhibitors have been delineated. While there are still challenges to be addressed, the preclinical and clinical evidence suggests that these inhibitors may significantly improve patient outcomes. Further research is needed to understand the potential of these inhibitors as sarcoma therapeutics and to continue developing more selective and effective agents to meet the clinical needs of sarcoma patients.
Collapse
Affiliation(s)
- Atif Khurshid Wani
- School of Bioengineering and Biosciences, Lovely Professional University, Jalandhar (144411), Punjab, India
| | - Reena Singh
- School of Bioengineering and Biosciences, Lovely Professional University, Jalandhar (144411), Punjab, India
| | - Nahid Akhtar
- School of Bioengineering and Biosciences, Lovely Professional University, Jalandhar (144411), Punjab, India
| | - Ajit Prakash
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Králové, Hradec Králové, Czechia
| | - Patrik Oleksak
- Department of Chemistry, Faculty of Science, University of Hradec Králové, Hradec Králové, Czechia
| | - Zofia Chrienova
- Department of Chemistry, Faculty of Science, University of Hradec Králové, Hradec Králové, Czechia
| | - Suliman Alomar
- King Saud University, Zoology Department, College of Science, Riyadh, 11451, Saudi Arabia
| | - Chirag Chopra
- School of Bioengineering and Biosciences, Lovely Professional University, Jalandhar (144411), Punjab, India
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Králové, Hradec Králové, Czechia
- Biomedical Research Center, University Hospital Hradec Kralove, Hradec Králové, Czechia
| |
Collapse
|
3
|
Papoff G, Presutti D, Fustaino V, Parente A, Calandriello C, Alemà S, Scavizzi F, Raspa M, Merlino G, Salerno M, Bigioni M, Binaschi M, Ruberti G. The activity of a PI3K δ-sparing inhibitor, MEN1611, in non-small cell lung cancer cells with constitutive activation of the PI3K/AKT/mTOR pathway. Front Oncol 2023; 13:1283951. [PMID: 38033496 PMCID: PMC10682785 DOI: 10.3389/fonc.2023.1283951] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 10/23/2023] [Indexed: 12/02/2023] Open
Abstract
Background Lung cancer remains the leading cause of cancer-related death worldwide. Targeted therapies with tyrosine kinase inhibitors (TKIs) result in improvement in survival for non-small cell lung cancer (NSCLC) with activating mutations of the epidermal growth factor receptor (EGFR). Unfortunately, most patients who initially respond to EGFR-TKI ultimately develop resistance to therapy, resulting in cancer progression and relapse. Combination therapy is today a common strategy for the treatment of tumors to increase the success rate, improve the outcome and survival of patients, and avoid the selection of resistant cancer cells through the activation of compensatory pathways. In NSCLC, the phosphoinositide-3-kinase/protein kinase B (AKT)/mammalian target of rapamycin (mTOR) pathway has been heavily implicated in both tumorigenesis and the progression of disease. Objectives In this study, we investigated the efficacy of a PI3K δ-sparing inhibitor, MEN1611, in models of NSCLC sensitive and resistant to EGFR inhibitors (erlotinib and gefitinib) with a wild-type PIK3CA gene. Methods We performed functional, biochemical, and immunohistochemistry studies. Results We demonstrated good efficacy of MEN1611 in NSCLC devoid of PIK3CA gene mutations but with constitutive activation of the PI3K/AKT pathway and its synergistic effect with gefitinib both in vitro and in vivo. Conclusions Overall, this preclinical study indicates that the inhibitor could be a candidate for the treatment of NSCLC with an erlotinib/gefitinib-resistant phenotype and constitutive activation of the PI3K/AKT pathway, a phenotype mimicked by our model system.
Collapse
Affiliation(s)
- Giuliana Papoff
- Institute of Biochemistry and Cell Biology, National Research Council (IBBC-CNR), Monterotondo, Rome, Italy
| | - Dario Presutti
- Institute of Biochemistry and Cell Biology, National Research Council (IBBC-CNR), Monterotondo, Rome, Italy
| | - Valentina Fustaino
- Institute of Biochemistry and Cell Biology, National Research Council (IBBC-CNR), Monterotondo, Rome, Italy
| | - Andrea Parente
- Institute of Biochemistry and Cell Biology, National Research Council (IBBC-CNR), Monterotondo, Rome, Italy
| | - Clelia Calandriello
- Institute of Biochemistry and Cell Biology, National Research Council (IBBC-CNR), Monterotondo, Rome, Italy
| | - Stefano Alemà
- Institute of Biochemistry and Cell Biology, National Research Council (IBBC-CNR), Monterotondo, Rome, Italy
| | - Ferdinando Scavizzi
- Institute of Biochemistry and Cell Biology, National Research Council (IBBC-CNR), Monterotondo, Rome, Italy
- European Mouse Mutant Archive (EMMA), INFRAFRONTIER, Monterotondo Mouse Clinic, IBBC-CNR, Monterotondo, Rome, Italy
| | - Marcello Raspa
- Institute of Biochemistry and Cell Biology, National Research Council (IBBC-CNR), Monterotondo, Rome, Italy
- European Mouse Mutant Archive (EMMA), INFRAFRONTIER, Monterotondo Mouse Clinic, IBBC-CNR, Monterotondo, Rome, Italy
| | | | | | | | | | - Giovina Ruberti
- Institute of Biochemistry and Cell Biology, National Research Council (IBBC-CNR), Monterotondo, Rome, Italy
| |
Collapse
|
4
|
Zhang Q, Zou W, He L, Zhang C, Wang Y. The Sonic hedgehog pathway inhibitor GDC0449 induces autophagic death in human Medulloblastoma Daoy cells. Ultrastruct Pathol 2023; 47:529-539. [PMID: 37953603 DOI: 10.1080/01913123.2023.2270676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 10/10/2023] [Indexed: 11/14/2023]
Abstract
Medulloblastoma (MB) is a frequently occurring malignant brain tumor in children, and many of these tumors are identified by the abnormal activation of the Sonic Hedgehog (SHH) pathway. Although the Shh inhibitor GDC0449 initially shows some effectiveness in certain tumors, they eventually recur due to drug resistance mechanisms, highlighting the need for new treatment options. In this study, we explore whether GDC0449 induces autophagy in the human MB cell lines. To investigate the ultrastructural pathology changes of GDC0449-treated Daoy and D283 cells, we employed Transmission Electron Microscopy (TEM) technology to identify the expression of autophagic vacuoles. Our results indicate that GDC0449 only increases autophagy in Daoy cells by increasing the LC3-II/LC3-I ratio and autophagosome formation.We also analyzed Beclin1, LC3, Bax, and Cleaved-caspase3 protein and mRNA expression levels of autophagic and apoptotic markers using fluorescence confocal microscopy, RT-PCR, and Western blot. We found that cell autophagy and apoptosis increased in a dose-dependent manner with GDC0449 treatment. Additionally, we observed increased mammalian target of rapamycin (mTOR) phosphorylation and decreased protein kinase B (AKT/PKB), Ribosomal Protein S6, eIF4E-binding protein (4EBP1) phosphorylation in GDC0449-treated Daoy cells. It was observed that inhibiting autophagy using Beclin1 siRNA significantly blocked the apoptosis-inducing effects of GDC0449, suggesting that GDC0449 mediates its apoptotic effects by inducing autophagy.Our data suggests that GDC0449 inhibits the growth of human MB Daoy cells by autophagy-mediated apoptosis. The mechanism of GDC0449-induced autophagy in Daoy cells may be related to the inhibition of the PI3K/AKT/mTOR signaling pathway.
Collapse
Affiliation(s)
- Qi Zhang
- Ultrastructural Pathology, Beijing Neurosurgical Institute, Beijing, China
| | - Wanjing Zou
- Neuropathology, Beijing Neurosurgical Institute, Beijing, China
| | - Longtao He
- Ultrastructural Pathology, Beijing Neurosurgical Institute, Beijing, China
| | - Cuiping Zhang
- Ultrastructural Pathology, Beijing Neurosurgical Institute, Beijing, China
| | - Ying Wang
- Neural Reconstructional Department, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| |
Collapse
|
5
|
Guarnaccia M, Guarnaccia L, La Cognata V, Navone SE, Campanella R, Ampollini A, Locatelli M, Miozzo M, Marfia G, Cavallaro S. A Targeted Next-Generation Sequencing Panel to Genotype Gliomas. LIFE (BASEL, SWITZERLAND) 2022; 12:life12070956. [PMID: 35888045 PMCID: PMC9320073 DOI: 10.3390/life12070956] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/20/2022] [Accepted: 06/22/2022] [Indexed: 12/12/2022]
Abstract
Gliomas account for the majority of primary brain tumors. Glioblastoma is the most common and malignant type. Based on their extreme molecular heterogeneity, molecular markers can be used to classify gliomas and stratify patients into diagnostic, prognostic, and therapeutic clusters. In this work, we developed and validated a targeted next-generation sequencing (NGS) approach to analyze variants or chromosomal aberrations correlated with tumorigenesis and response to treatment in gliomas. Our targeted NGS analysis covered 13 glioma-related genes (ACVR1, ATRX, BRAF, CDKN2A, EGFR, H3F3A, HIST1H3B, HIST1H3C, IDH1, IDH2, P53, PDGFRA, PTEN), a 125 bp region of the TERT promoter, and 54 single nucleotide polymorphisms (SNPs) along chromosomes 1 and 19 for reliable assessment of their copy number alterations (CNAs). Our targeted NGS approach provided a portrait of gliomas’ molecular heterogeneity with high accuracy, specificity, and sensitivity in a single workflow, enabling the detection of variants associated with unfavorable outcomes, disease progression, and drug resistance. These preliminary results support its use in routine diagnostic neuropathology.
Collapse
Affiliation(s)
- Maria Guarnaccia
- Institute for Biomedical Research and Innovation, National Research Council, Via P. Gaifami 18, 95126 Catania, Italy; (M.G.); (V.L.C.)
| | - Laura Guarnaccia
- Laboratory of Experimental Neurosurgery and Cell Therapy, Neurosurgery Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122 Milan, Italy; (L.G.); (S.E.N.); (R.C.); (A.A.); (M.L.); (G.M.)
- Department of Clinical Sciences and Community Health, University of Milan, Via Festa del Perdono 7, 20122 Milan, Italy
| | - Valentina La Cognata
- Institute for Biomedical Research and Innovation, National Research Council, Via P. Gaifami 18, 95126 Catania, Italy; (M.G.); (V.L.C.)
| | - Stefania Elena Navone
- Laboratory of Experimental Neurosurgery and Cell Therapy, Neurosurgery Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122 Milan, Italy; (L.G.); (S.E.N.); (R.C.); (A.A.); (M.L.); (G.M.)
| | - Rolando Campanella
- Laboratory of Experimental Neurosurgery and Cell Therapy, Neurosurgery Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122 Milan, Italy; (L.G.); (S.E.N.); (R.C.); (A.A.); (M.L.); (G.M.)
| | - Antonella Ampollini
- Laboratory of Experimental Neurosurgery and Cell Therapy, Neurosurgery Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122 Milan, Italy; (L.G.); (S.E.N.); (R.C.); (A.A.); (M.L.); (G.M.)
| | - Marco Locatelli
- Laboratory of Experimental Neurosurgery and Cell Therapy, Neurosurgery Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122 Milan, Italy; (L.G.); (S.E.N.); (R.C.); (A.A.); (M.L.); (G.M.)
- “Aldo Ravelli” Research Center, Via Antonio di Rudinì 8, 20142 Milan, Italy
- Department of Medical-Surgical Physiopathology and Transplantation, University of Milan, Via Francesco Sforza 35, 20122 Milan, Italy
| | - Monica Miozzo
- Department of Health Sciences, University of Milan, 20122 Milan, Italy;
- Unit of Medical Genetics, ASST Santi Paolo e Carlo, 20142 Milan, Italy
| | - Giovanni Marfia
- Laboratory of Experimental Neurosurgery and Cell Therapy, Neurosurgery Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122 Milan, Italy; (L.G.); (S.E.N.); (R.C.); (A.A.); (M.L.); (G.M.)
- Clinical Pathology Unit, Aerospace Medicine Institute “A. Mosso”, Italian Air Force, Viale dell’Aviazione 1, 20138 Milan, Italy
| | - Sebastiano Cavallaro
- Institute for Biomedical Research and Innovation, National Research Council, Via P. Gaifami 18, 95126 Catania, Italy; (M.G.); (V.L.C.)
- Correspondence: ; Tel.: +39-09-57338128
| |
Collapse
|
6
|
Xu Z, Chu M. Advances in Immunosuppressive Agents Based on Signal Pathway. Front Pharmacol 2022; 13:917162. [PMID: 35694243 PMCID: PMC9178660 DOI: 10.3389/fphar.2022.917162] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 05/02/2022] [Indexed: 12/13/2022] Open
Abstract
Immune abnormality involves in various diseases, such as infection, allergic diseases, autoimmune diseases, as well as transplantation. Several signal pathways have been demonstrated to play a central role in the immune response, including JAK/STAT, NF-κB, PI3K/AKT-mTOR, MAPK, and Keap1/Nrf2/ARE pathway, in which multiple targets have been used to develop immunosuppressive agents. In recent years, varieties of immunosuppressive agents have been approved for clinical use, such as the JAK inhibitor tofacitinib and the mTOR inhibitor everolimus, which have shown good therapeutic effects. Additionally, many immunosuppressive agents are still in clinical trials or preclinical studies. In this review, we classified the immunosuppressive agents according to the immunopharmacological mechanisms, and summarized the phase of immunosuppressive agents.
Collapse
Affiliation(s)
- Zhiqing Xu
- Department of Immunology, National Health Commission (NHC) Key Laboratory of Medical Immunology (Peking University), School of Basic Medical Sciences, Peking University, Beijing, China
- Department of Pharmacology, Jilin University, Changchun, China
| | - Ming Chu
- Department of Immunology, National Health Commission (NHC) Key Laboratory of Medical Immunology (Peking University), School of Basic Medical Sciences, Peking University, Beijing, China
| |
Collapse
|