1
|
Zhao L, Zhang X, Birmann BM, Danford CJ, Lai M, Simon TG, Chan AT, Giovannucci EL, Ngo L, Libermann TA, Zhang X. Pre-diagnostic plasma inflammatory proteins and risk of hepatocellular carcinoma in three population-based cohort studies from the United States and the United Kingdom. Int J Cancer 2024; 155:1593-1603. [PMID: 38861327 DOI: 10.1002/ijc.35054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 05/09/2024] [Accepted: 05/10/2024] [Indexed: 06/13/2024]
Abstract
Previous studies suggest a role for inflammation in hepatocarcinogenesis. However, no study has comprehensively evaluated associations between circulating inflammatory proteins and risk of hepatocellular carcinoma (HCC) among the general population. We conducted a nested case-control study in the Nurses' Health Study (NHS) and the Health Professionals Follow-up Study (HPFS) with 56 pairs of incident HCC cases and controls. External validation was performed in the UK Biobank (34 HCC cases and 48,471 non-HCC controls). Inflammatory protein levels were measured in pre-diagnostic plasma using the Olink® Inflammation Panel. We used conditional logistic regression to calculate multivariable odds ratios (ORs) with 95% confidence intervals (CIs) for associations between a 1-standard deviation (SD) increase in biomarker levels and HCC risk, considering a statistically significant threshold of false discovery rate (FDR)-adjusted p < .05. In the NHS/HPFS, among 70 analyzed proteins with call rates >80%, 15 proteins had significant associations with HCC risk (pFDR < .05). Two proteins (stem cell factor, OR per SD = 0.31, 95% CI = 0.16-0.58; tumor necrosis factor superfamily member 12, OR per SD = 0.51, 95% CI = 0.31-0.85) were inversely associated whereas 13 proteins were positively associated with risk of HCC; positive ORs per SD ranged from 1.73 for interleukin (IL)-10 to 2.35 for C-C motif chemokine-19. A total of 11 proteins were further replicated in the UK Biobank. Seven of the eight selected positively associated proteins also showed positive associations with HCC risk by enzyme-linked immunosorbent assay, with ORs ranging from 1.56 for IL-10 to 2.72 for hepatocyte growth factor. More studies are warranted to further investigate the roles of these observed inflammatory proteins in HCC etiology, early detection, risk stratification, and disease treatment.
Collapse
Affiliation(s)
- Longgang Zhao
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Xinyuan Zhang
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Brenda M Birmann
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | | | - Michelle Lai
- Division of Gastroenterology and Hepatology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Tracey G Simon
- Division of Gastroenterology, Massachusetts General Hospital, Boston, Massachusetts, USA
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Andrew T Chan
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Division of Gastroenterology, Massachusetts General Hospital, Boston, Massachusetts, USA
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Boston, Massachusetts, USA
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Edward L Giovannucci
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Long Ngo
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Towia A Libermann
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
- Genomics, Proteomics, Bioinformatics and Systems Biology Center, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Xuehong Zhang
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
- Yale University School of Nursing, Orange, Connecticut, USA
| |
Collapse
|
2
|
John Hamilton A, Lane S, Werry EL, Suri A, Bailey AW, Mercé C, Kadolsky U, Payne AD, Kassiou M, Treiger Sredni S, Saxena A, Gunosewoyo H. Synthesis and Antitumour Evaluation of Tricyclic Indole-2-Carboxamides against Paediatric Brain Cancer Cells. ChemMedChem 2024; 19:e202400098. [PMID: 38923350 DOI: 10.1002/cmdc.202400098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 06/18/2024] [Accepted: 06/20/2024] [Indexed: 06/28/2024]
Abstract
Antitumour properties of some cannabinoids (CB) have been reported in the literature as early as 1970s, however there is no clear consensus to date on the exact mechanisms leading to cancer cell death. The indole-based WIN 55,212-2 and SDB-001 are both known as potent agonists at both CB1 and CB2 receptors, yet we demonstrate herein that only the former can exert in vitro antitumour effects when tested against a paediatric brain cancer cell line KNS42. In this report, we describe the synthesis of novel 3,4-fused tricyclic indoles and evaluate their functional potencies at both cannabinoid receptors, as well as their abilities to inhibit the growth or proliferation of KNS42 cells. Compared to our previously reported indole-2-carboxamides, these 3,4-fused tricyclic indoles had either completely lost activities, or, showed moderate-to-weak antagonism at both CB1 and CB2 receptors. Compound 23 displayed the most potent antitumour properties among the series. Our results further support the involvement of non-CB pathways for the observed antitumour activities of amidoalkylindole-based cannabinoids, in line with our previous findings. Transcriptomic analysis comparing cells treated or non-treated with compound 23 suggested the observed antitumour effects of 23 are likely to result mainly from disruption of the FOXM1-regulated cell cycle pathways.
Collapse
Affiliation(s)
| | - Samuel Lane
- School of Chemistry, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Eryn L Werry
- School of Chemistry, The University of Sydney, Sydney, NSW, 2006, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney NSW, 2006, Australia
| | - Amreena Suri
- Division of Pediatric Neurosurgery, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, 60611, USA
| | - Anders W Bailey
- Division of Pediatric Neurosurgery, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, 60611, USA
| | | | | | - Alan D Payne
- School of Molecular and Life Sciences, Curtin University, Bentley, WA, 6102, Australia
| | - Michael Kassiou
- School of Chemistry, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Simone Treiger Sredni
- Division of Pediatric Neurosurgery, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, 60611, USA
- Department of Surgery, Northwestern University, Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Alka Saxena
- Genomics WA, QEII Campus, Nedlands, WA, 6009, Australia
| | - Hendra Gunosewoyo
- Curtin Medical School, Faculty of Health Sciences, Curtin University, Bentley, WA, 6102, Australia
| |
Collapse
|
3
|
Shahraz A, Penney M, Candido J, Opoku‐Ansah G, Neubauer M, Eyles J, Ojo O, Liu N, Luheshi NM, Phipps A, Vishwanathan K. A mechanistic PK/PD model of AZD0171 (anti-LIF) to support Phase II dose selection. CPT Pharmacometrics Syst Pharmacol 2024; 13:1670-1681. [PMID: 39041713 PMCID: PMC11494920 DOI: 10.1002/psp4.13204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 06/04/2024] [Accepted: 07/02/2024] [Indexed: 07/24/2024] Open
Abstract
AZD0171 (INN: Falbikitug) is being developed as a humanized monoclonal antibody (mAb), immunoglobulin G subclass 1 (IgG1), which binds specifically to the immunosuppressive human cytokine leukemia inhibitory factor (LIF) and inhibits downstream signaling by blocking recruitment of glycoprotein 130 (gp130) to the LIF receptor (LIFR) subunit (gp190) and the phosphorylation of signal transducer and activator of transcription 3 (STAT3) and is intended to treat adult participants with advanced solid tumors. LIF is a pleiotropic cytokine (and a member of the IL-6 family of cytokines) involved in many physiological and pathological processes and is highly expressed in a subset of solid tumors, including non-small cell lung cancer (NSCLC), colon, ovarian, prostate, and pancreatic cancer. The aim of this work was to develop a mechanistic PK/PD model to investigate the effect of AZD0171 on tumor LIF levels, predict the level of downstream signaling complex (LIF:LIFR:gp130) inhibition, and examine the dose-response relationship to support dose selection for a Phase II clinical study. Modeling results show that tumor LIF is inhibited in a dose-dependent manner with >90% inhibition for 95% of patients at the Phase II clinical dose of 1500 mg Q2W.
Collapse
Affiliation(s)
- Azar Shahraz
- Clinical Pharmacology & Quantitative PharmacologyBioPharmaceuticals R&D, AstraZenecaWalthamMassachusettsUSA
| | - Mark Penney
- Early Oncology DMPK, Oncology R&D, AstraZenecaCambridgeUK
| | | | | | | | - Jim Eyles
- Oncology R&D, AstraZenecaCambridgeUK
| | | | | | | | - Alex Phipps
- Clinical Pharmacology & Quantitative PharmacologyBioPharmaceuticals R&D, AstraZenecaCambridgeUK
| | - Karthick Vishwanathan
- Clinical Pharmacology & Quantitative PharmacologyBioPharmaceuticals R&D, AstraZenecaWalthamMassachusettsUSA
| |
Collapse
|
4
|
Kim MC, Borcherding N, Song WJ, Kolb R, Zhang W. Leveraging single-cell transcriptomic data to uncover immune suppressive cancer cell subsets in triple-negative canine breast cancers. Front Vet Sci 2024; 11:1434617. [PMID: 39376916 PMCID: PMC11457229 DOI: 10.3389/fvets.2024.1434617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 08/28/2024] [Indexed: 10/09/2024] Open
Abstract
Introduction Single-cell RNA sequencing (scRNA-seq) has become an essential tool for uncovering the complexities of various physiological and immunopathological conditions in veterinary medicine. However, there is currently limited information on immune-suppressive cancer subsets in canine breast cancers. In this study, we aimed to identify and characterize immune-suppressive subsets of triple-negative canine breast cancer (TNBC) by utilizing integrated scRNA-seq data from published datasets. Methods Published scRNA-seq datasets, including data from six groups of 30 dogs, were subjected to integrated bioinformatic analysis. Results Immune modulatory TNBC subsets were identified through functional enrichment analysis using immune-suppressive gene sets, including those associated with anti-inflammatory and M2-like macrophages. Key immune-suppressive signaling, such as viral infection, angiogenesis, and leukocyte chemotaxis, was found to play a role in enabling TNBC to evade immune surveillance. In addition, interactome analysis revealed significant interactions between distinct subsets of cancer cells and effector T cells, suggesting potential T-cell suppression. Discussion The present study demonstrates a versatile and scalable approach to integrating and analyzing scRNA-seq data, which successfully identified immune-modulatory subsets of canine TNBC. It also revealed potential mechanisms through which TNBC promotes immune evasion in dogs. These findings are crucial for advancing the understanding of the immune pathogenesis of canine TNBC and may aid in the development of new immune-based therapeutic strategies.
Collapse
Affiliation(s)
- Myung-Chul Kim
- Veterinary Laboratory Medicine, Clinical Pathology, College of Veterinary Medicine, Jeju National University, Jeju, Republic of Korea
- Research Institute of Veterinary Medicine, College of Veterinary Medicine, Jeju National University, Jeju, Republic of Korea
| | - Nicholas Borcherding
- Department of Pathology and Immunology, Washington University School of Medicine in St. Louis, St. Louis, MO, United States
| | - Woo-Jin Song
- Research Institute of Veterinary Medicine, College of Veterinary Medicine, Jeju National University, Jeju, Republic of Korea
- Laboratory of Veterinary Internal Medicine, College of Veterinary Medicine, Jeju National University, Jeju, Republic of Korea
| | - Ryan Kolb
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida College of Medicine, Gainesville, FL, United States
- UF Health Cancer Center, University of Florida, Gainesville, FL, United States
| | - Weizhou Zhang
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida College of Medicine, Gainesville, FL, United States
- UF Health Cancer Center, University of Florida, Gainesville, FL, United States
| |
Collapse
|
5
|
Shirani N, Mahdi‐Esferizi R, Eshraghi Samani R, Tahmasebian S, Yaghoobi H. In silico identification and in vitro evaluation of MRPS30-DT lncRNA and MRPS30 gene expression in breast cancer. Cancer Rep (Hoboken) 2024; 7:e2114. [PMID: 38886335 PMCID: PMC11182701 DOI: 10.1002/cnr2.2114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 04/20/2024] [Accepted: 05/07/2024] [Indexed: 06/20/2024] Open
Abstract
BACKGROUND It has been reported that long non-coding RNAs (lncRNAs) can play important roles in a variety of biological processes and cancer regulatory networks, including breast cancer. AIMS This study aimed to identify a novel upregulated lncRNA in breast cancer and its associated gene using bioinformatics analysis, and then evaluate their potential roles in breast cancer. METHODS AND RESULTS Extensive in silico studies were performed using various bioinformatics databases and tools to identify a potential upregulated breast cancer-associated lncRNA and its co-expressed gene, and to predict their potential roles, functions, and interactions. The expression level of MRPS30-DT lncRNA and MRPS30 was assessed in both BC tissues and cell lines using qRT-PCR technology. MRPS30-DT lncRNA and MRPS30 were selected as target genes using bioinformatics analysis. We found that MRPS30-DT and MRPS30 were significantly overexpressed in BC tissues compared with normal tissues. Also, MRPS30 showed upregulation in all three BC cell lines compared with HDF. On the other hand, MRPS30-DT significantly increased in MDA-MB-231 compared with HDF. While the expression of MRPS30-DT was significantly dropped in the resistance cell line MCF/MX compared to HDF and MCF7. Moreover, bioinformatics analysis suggested that MRPS30-DT and MRPS30 may play a potential role in BC through their involvement in some cancer signaling pathways and processes, as well as through their interaction with TFs, genes, miRNAs, and proteins related to carcinogenesis. CONCLUSIONS Overall, our findings showed the dysregulation of MRPS30-DT lncRNA and MRPS30 may provide clues for exploring new therapeutic targets or molecular biomarkers in BC.
Collapse
Affiliation(s)
- Nooshafarin Shirani
- Clinical Biochemistry Research Center, Basic Health Sciences InstituteShahrekord University of Medical SciencesShahrekordIran
| | - Roohallah Mahdi‐Esferizi
- Clinical Biochemistry Research Center, Basic Health Sciences InstituteShahrekord University of Medical SciencesShahrekordIran
- Department of Medical BiotechnologySchool of Advanced Technologies, Shahrekord University of Medical SciencesShahrekordIran
| | - Reza Eshraghi Samani
- Department of General SurgerySchool of Medicine, Isfahan University of Medical SciencesIsfahanIran
| | - Shahram Tahmasebian
- Department of Medical BiotechnologySchool of Advanced Technologies, Shahrekord University of Medical SciencesShahrekordIran
| | - Hajar Yaghoobi
- Clinical Biochemistry Research Center, Basic Health Sciences InstituteShahrekord University of Medical SciencesShahrekordIran
| |
Collapse
|
6
|
Kotliar D, Raju S, Tabrizi S, Odia I, Goba A, Momoh M, Sandi JD, Nair P, Phelan E, Tariyal R, Eromon PE, Mehta S, Robles-Sikisaka R, Siddle KJ, Stremlau M, Jalloh S, Gire SK, Winnicki S, Chak B, Schaffner SF, Pauthner M, Karlsson EK, Chapin SR, Kennedy SG, Branco LM, Kanneh L, Vitti JJ, Broodie N, Gladden-Young A, Omoniwa O, Jiang PP, Yozwiak N, Heuklom S, Moses LM, Akpede GO, Asogun DA, Rubins K, Kales S, Happi AN, Iruolagbe CO, Dic-Ijiewere M, Iraoyah K, Osazuwa OO, Okonkwo AK, Kunz S, McCormick JB, Khan SH, Honko AN, Lander ES, Oldstone MBA, Hensley L, Folarin OA, Okogbenin SA, Günther S, Ollila HM, Tewhey R, Okokhere PO, Schieffelin JS, Andersen KG, Reilly SK, Grant DS, Garry RF, Barnes KG, Happi CT, Sabeti PC. Genome-wide association study identifies human genetic variants associated with fatal outcome from Lassa fever. Nat Microbiol 2024; 9:751-762. [PMID: 38326571 PMCID: PMC10914620 DOI: 10.1038/s41564-023-01589-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 12/14/2023] [Indexed: 02/09/2024]
Abstract
Infection with Lassa virus (LASV) can cause Lassa fever, a haemorrhagic illness with an estimated fatality rate of 29.7%, but causes no or mild symptoms in many individuals. Here, to investigate whether human genetic variation underlies the heterogeneity of LASV infection, we carried out genome-wide association studies (GWAS) as well as seroprevalence surveys, human leukocyte antigen typing and high-throughput variant functional characterization assays. We analysed Lassa fever susceptibility and fatal outcomes in 533 cases of Lassa fever and 1,986 population controls recruited over a 7 year period in Nigeria and Sierra Leone. We detected genome-wide significant variant associations with Lassa fever fatal outcomes near GRM7 and LIF in the Nigerian cohort. We also show that a haplotype bearing signatures of positive selection and overlapping LARGE1, a required LASV entry factor, is associated with decreased risk of Lassa fever in the Nigerian cohort but not in the Sierra Leone cohort. Overall, we identified variants and genes that may impact the risk of severe Lassa fever, demonstrating how GWAS can provide insight into viral pathogenesis.
Collapse
Affiliation(s)
- Dylan Kotliar
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA.
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA.
- Department of Internal Medicine, Brigham and Women's Hospital, Boston, MA, USA.
| | - Siddharth Raju
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
| | - Shervin Tabrizi
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, MA, USA
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Ikponmwosa Odia
- Institute of Lassa Fever, Research and Control, Irrua Specialist Teaching Hospital, Irrua, Nigeria
| | - Augustine Goba
- College of Medicine and Allied Health Sciences, University of Sierra Leone, Freetown, Sierra Leone
| | - Mambu Momoh
- College of Medicine and Allied Health Sciences, University of Sierra Leone, Freetown, Sierra Leone
- Eastern Polytechnic College, Kenema, Sierra Leone
| | - John Demby Sandi
- College of Medicine and Allied Health Sciences, University of Sierra Leone, Freetown, Sierra Leone
| | - Parvathy Nair
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | | | | | - Philomena E Eromon
- Institute of Lassa Fever, Research and Control, Irrua Specialist Teaching Hospital, Irrua, Nigeria
- African Centre of Excellence for Genomics of Infectious Diseases (ACEGID), Redeemer's University, Ede, Nigeria
| | - Samar Mehta
- Department of Critical Care Medicine, University of Maryland Medical Center, Baltimore, MA, USA
| | - Refugio Robles-Sikisaka
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
| | - Katherine J Siddle
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA
| | | | - Simbirie Jalloh
- College of Medicine and Allied Health Sciences, University of Sierra Leone, Freetown, Sierra Leone
| | | | - Sarah Winnicki
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA
| | - Bridget Chak
- Biological Sciences Division, University of Chicago, Chicago, IL, USA
| | - Stephen F Schaffner
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA, USA
| | | | - Elinor K Karlsson
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA
- Genomics and Computational Biology, UMass Chan Medical School, Worcester, MA, USA
- Program in Molecular Medicine, UMass Chan Medical School, Worcester, MA, USA
| | - Sarah R Chapin
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA
| | - Sharon G Kennedy
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA
- Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | | | - Lansana Kanneh
- Viral Hemorrhagic Fever Program, Kenema Government Hospital, Ministry of Health and Sanitation, Kenema, Sierra Leone
| | - Joseph J Vitti
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA
| | - Nisha Broodie
- New York-Presbyterian Hospital-Columbia and Cornell, New York, NY, USA
| | - Adrianne Gladden-Young
- Molecular Microbiology, Graduate School of Biomedical Sciences, Tufts University, Boston, MA, USA
| | | | | | - Nathan Yozwiak
- Gene and Cell Therapy Institute, Mass General Brigham, Cambridge, MA, USA
| | - Shannon Heuklom
- San Francisco Community Health Center, San Francisco, CA, USA
| | - Lina M Moses
- Tulane University School of Public Health and Tropical Medicine, New Orleans, LA, USA
| | - George O Akpede
- Institute of Lassa Fever, Research and Control, Irrua Specialist Teaching Hospital, Irrua, Nigeria
- Department of Medicine, Ambrose Alli University, Ekpoma, Nigeria
| | - Danny A Asogun
- Department of Community Medicine, Ambrose Alli University, Ekpoma, Nigeria
| | - Kathleen Rubins
- National Aeronautics and Space Administration, Houston, TX, USA
| | | | - Anise N Happi
- African Centre of Excellence for Genomics of Infectious Diseases (ACEGID), Redeemer's University, Ede, Nigeria
| | | | - Mercy Dic-Ijiewere
- Department of Medicine, Irrua Specialist Teaching Hospital, Irrua, Nigeria
| | - Kelly Iraoyah
- Department of Medicine, Irrua Specialist Teaching Hospital, Irrua, Nigeria
| | - Omoregie O Osazuwa
- Department of Medicine, Irrua Specialist Teaching Hospital, Irrua, Nigeria
| | | | - Stefan Kunz
- Institute of Microbiology, University Hospital Center and University of Lausanne, Lausanne, Switzerland
| | - Joseph B McCormick
- UTHealth Houston School of Public Health, Brownsville Campus, Brownsville, TX, USA
| | - S Humarr Khan
- College of Medicine and Allied Health Sciences, University of Sierra Leone, Freetown, Sierra Leone
| | - Anna N Honko
- Boston University School of Medicine, Boston, MA, USA
| | - Eric S Lander
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
- Department of Biology, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
| | - Michael B A Oldstone
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
| | - Lisa Hensley
- National Institutes of Health Integrated Research Facility, Frederick, MA, USA
| | - Onikepe A Folarin
- African Centre of Excellence for Genomics of Infectious Diseases (ACEGID), Redeemer's University, Ede, Nigeria
- Department of Biological Sciences, Redeemer's University, Ede, Nigeria
| | - Sylvanus A Okogbenin
- Institute of Lassa Fever, Research and Control, Irrua Specialist Teaching Hospital, Irrua, Nigeria
| | - Stephan Günther
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Hanna M Ollila
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | | | - Peter O Okokhere
- Institute of Lassa Fever, Research and Control, Irrua Specialist Teaching Hospital, Irrua, Nigeria
- Department of Medicine, Ambrose Alli University, Ekpoma, Nigeria
- Department of Medicine, Irrua Specialist Teaching Hospital, Irrua, Nigeria
| | - John S Schieffelin
- Section of Infectious Disease, Department of Pediatrics, Tulane University School of Medicine, New Orleans, LA, USA
| | - Kristian G Andersen
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
| | - Steven K Reilly
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
| | - Donald S Grant
- College of Medicine and Allied Health Sciences, University of Sierra Leone, Freetown, Sierra Leone
- Viral Hemorrhagic Fever Program, Kenema Government Hospital, Ministry of Health and Sanitation, Kenema, Sierra Leone
| | - Robert F Garry
- Tulane University School of Medicine, New Orleans, LA, USA
| | - Kayla G Barnes
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA, USA
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Kamuzu University of Health Sciences, Blantyre, Malawi
- Department of Vector Biology and Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Christian T Happi
- African Centre of Excellence for Genomics of Infectious Diseases (ACEGID), Redeemer's University, Ede, Nigeria.
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA, USA.
- Department of Biological Sciences, Redeemer's University, Ede, Nigeria.
| | - Pardis C Sabeti
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA.
- Howard Hughes Medical Institute, Chevy Chase, MD, USA.
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA.
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA, USA.
- Department of Medicine, Massachusetts General Hospital, Boston, MA, USA.
- Massachusetts Consortium on Pathogen Readiness, Boston, MA, USA.
| |
Collapse
|
7
|
Choi JW, Kim SW, Kim HS, Kang MJ, Kim SA, Han JY, Kim H, Ku SY. Effects of Melatonin, GM-CSF, IGF-1, and LIF in Culture Media on Embryonic Development: Potential Benefits of Individualization. Int J Mol Sci 2024; 25:751. [PMID: 38255823 PMCID: PMC10815572 DOI: 10.3390/ijms25020751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/02/2024] [Accepted: 01/03/2024] [Indexed: 01/24/2024] Open
Abstract
The implantation of good-quality embryos to the receptive endometrium is essential for successful live birth through in vitro fertilization (IVF). The higher the quality of embryos, the higher the live birth rate per cycle, and so efforts have been made to obtain as many high-quality embryos as possible after fertilization. In addition to an effective controlled ovarian stimulation process to obtain high-quality embryos, the composition of the embryo culture medium in direct contact with embryos in vitro is also important. During embryonic development, under the control of female sex hormones, the fallopian tubes and endometrium create a microenvironment that supplies the nutrients and substances necessary for embryos at each stage. During this process, the development of the embryo is finely regulated by signaling molecules, such as growth factors and cytokines secreted from the epithelial cells of the fallopian tube and uterine endometrium. The development of embryo culture media has continued since the first successful human birth through IVF in 1978. However, there are still limitations to mimicking a microenvironment similar to the reproductive organs of women suitable for embryo development in vitro. Efforts have been made to overcome the harsh in vitro culture environment and obtain high-quality embryos by adding various supplements, such as antioxidants and growth factors, to the embryo culture medium. Recently, there has been an increase in the number of studies on the effect of supplementation in different clinical situations such as old age, recurrent implantation failure (RIF), and unexplained infertility; in addition, anticipation of the potential benefits from individuation is rising. This article reviews the effects of representative supplements in culture media on embryo development.
Collapse
Affiliation(s)
- Jung-Won Choi
- Laboratory of In Vitro Fertilization, Department of Obstetrics and Gynecology, Seoul National University Hospital, Seoul 03080, Republic of Korea; (J.-W.C.); (H.-S.K.); (M.-J.K.); (S.-A.K.)
| | - Sung-Woo Kim
- Department of Obstetrics and Gynecology, Seoul National University Hospital, Seoul 03080, Republic of Korea; (S.-W.K.); (J.-Y.H.); (H.K.)
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Hee-Sun Kim
- Laboratory of In Vitro Fertilization, Department of Obstetrics and Gynecology, Seoul National University Hospital, Seoul 03080, Republic of Korea; (J.-W.C.); (H.-S.K.); (M.-J.K.); (S.-A.K.)
| | - Moon-Joo Kang
- Laboratory of In Vitro Fertilization, Department of Obstetrics and Gynecology, Seoul National University Hospital, Seoul 03080, Republic of Korea; (J.-W.C.); (H.-S.K.); (M.-J.K.); (S.-A.K.)
| | - Sung-Ah Kim
- Laboratory of In Vitro Fertilization, Department of Obstetrics and Gynecology, Seoul National University Hospital, Seoul 03080, Republic of Korea; (J.-W.C.); (H.-S.K.); (M.-J.K.); (S.-A.K.)
| | - Ji-Yeon Han
- Department of Obstetrics and Gynecology, Seoul National University Hospital, Seoul 03080, Republic of Korea; (S.-W.K.); (J.-Y.H.); (H.K.)
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Hoon Kim
- Department of Obstetrics and Gynecology, Seoul National University Hospital, Seoul 03080, Republic of Korea; (S.-W.K.); (J.-Y.H.); (H.K.)
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Seung-Yup Ku
- Department of Obstetrics and Gynecology, Seoul National University Hospital, Seoul 03080, Republic of Korea; (S.-W.K.); (J.-Y.H.); (H.K.)
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
- Institute of Reproductive Medicine and Population, Medical Research Center, Seoul National University, Seoul 03080, Republic of Korea
| |
Collapse
|
8
|
Mathieu M, Budhu S, Nepali PR, Russell J, Powell SN, Humm J, Deasy JO, Haimovitz-Friedman A. Activation of STING in Response to Partial-Tumor Radiation Exposure. Int J Radiat Oncol Biol Phys 2023; 117:955-965. [PMID: 37244631 PMCID: PMC11334988 DOI: 10.1016/j.ijrobp.2023.05.032] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/09/2023] [Accepted: 05/18/2023] [Indexed: 05/29/2023]
Abstract
PURPOSE To determine the mechanisms involved in partial volume radiation therapy (RT)-induced tumor response. METHODS AND MATERIALS We investigated 67NR murine orthotopic breast tumors in Balb/c mice and Lewis lung carcinoma (LLC cells; WT, Crispr/Cas9 Sting KO, and Atm KO) injected in the flank of C57Bl/6, cGAS, or STING KO mice. RT was delivered to 50% or 100% of the tumor volume using a 2 × 2 cm collimator on a microirradiator allowing precise irradiation. Tumors and blood were collected at 6, 24, and 48 hours post-RT and assessed for cytokine measurements. RESULTS There is a significant activation of the cGAS/STING pathway in the hemi-irradiated tumors compared with control and to 100% exposed 67NR tumors. In the LLC model, we determined that an ATM-mediated noncanonical activation of STING is involved. We demonstrated that the partial exposure RT-mediated immune response is dependent on ATM activation in the tumor cells and on the STING activation in the host, and cGAS is dispensable. Our results also indicate that partial volume RT stimulates a proinflammatory cytokine response compared with the anti-inflammatory profile induced by 100% tumor volume exposure. CONCLUSIONS Partial volume RT induces an antitumor response by activating STING, which stimulates a specific cytokine signature as part of the immune response. However, the mechanism of this STING activation, via the canonical cGAS/STING pathway or a noncanonical ATM-driven pathway, depends on the tumor type. Identifying the upstream pathways responsible for STING activation in the partial RT-mediated immune response in different tumor types would improve this therapy and its potential combination with immune checkpoint blockade and other antitumor therapies.
Collapse
Affiliation(s)
| | - Sadna Budhu
- Parker Institute for Cancer Immunotherapy at Memorial Sloan Kettering Cancer Center, New York City, NY, USA
| | | | - James Russell
- Department of Medical Physics, New York City, NY, USA
| | | | - John Humm
- Department of Medical Physics, New York City, NY, USA
| | | | | |
Collapse
|
9
|
Pecharromán I, Solé L, Álvarez‐Villanueva D, Lobo‐Jarne T, Alonso‐Marañón J, Bertran J, Guillén Y, Montoto Á, Martínez‐Iniesta M, García‐Hernández V, Giménez G, Salazar R, Santos C, Garrido M, Borràs E, Sabidó E, Bonfill‐Teixidor E, Iurlaro R, Seoane J, Villanueva A, Iglesias M, Bigas A, Espinosa L. IκB kinase-α coordinates BRD4 and JAK/STAT signaling to subvert DNA damage-based anticancer therapy. EMBO J 2023; 42:e114719. [PMID: 37737566 PMCID: PMC10620764 DOI: 10.15252/embj.2023114719] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 07/28/2023] [Accepted: 08/28/2023] [Indexed: 09/23/2023] Open
Abstract
Activation of the IκB kinase (IKK) complex has recurrently been linked to colorectal cancer (CRC) initiation and progression. However, identification of downstream effectors other than NF-κB has remained elusive. Here, analysis of IKK-dependent substrates in CRC cells after UV treatment revealed that phosphorylation of BRD4 by IKK-α is required for its chromatin-binding at target genes upon DNA damage. Moreover, IKK-α induces the NF-κB-dependent transcription of the cytokine LIF, leading to STAT3 activation, association with BRD4 and recruitment to specific target genes. IKK-α abrogation results in defective BRD4 and STAT3 functions and consequently irreparable DNA damage and apoptotic cell death upon different stimuli. Simultaneous inhibition of BRAF-dependent IKK-α activity, BRD4, and the JAK/STAT pathway enhanced the therapeutic potential of 5-fluorouracil combined with irinotecan in CRC cells and is curative in a chemotherapy-resistant xenograft model. Finally, coordinated expression of LIF and IKK-α is a poor prognosis marker for CRC patients. Our data uncover a functional link between IKK-α, BRD4, and JAK/STAT signaling with clinical relevance.
Collapse
Affiliation(s)
- Irene Pecharromán
- Cancer Research Program, Institut Mar d'Investigacions Mèdiques, CIBERONCHospital del MarBarcelonaSpain
| | - Laura Solé
- Cancer Research Program, Institut Mar d'Investigacions Mèdiques, CIBERONCHospital del MarBarcelonaSpain
| | - Daniel Álvarez‐Villanueva
- Cancer Research Program, Institut Mar d'Investigacions Mèdiques, CIBERONCHospital del MarBarcelonaSpain
- Chemoresistance and Predictive Factors Group, Program Against Cancer Therapeutic Resistance (ProCURE), Catalan Institute of Oncology (ICO), Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL)L'Hospitalet del LlobregatBarcelonaSpain
| | - Teresa Lobo‐Jarne
- Cancer Research Program, Institut Mar d'Investigacions Mèdiques, CIBERONCHospital del MarBarcelonaSpain
| | - Josune Alonso‐Marañón
- Cancer Research Program, Institut Mar d'Investigacions Mèdiques, CIBERONCHospital del MarBarcelonaSpain
| | - Joan Bertran
- Cancer Research Program, Institut Mar d'Investigacions Mèdiques, CIBERONCHospital del MarBarcelonaSpain
- Faculty of Science and TechnologyUniversity of Vic – Central University of CataloniaVicSpain
| | - Yolanda Guillén
- Cancer Research Program, Institut Mar d'Investigacions Mèdiques, CIBERONCHospital del MarBarcelonaSpain
| | - Ángela Montoto
- Cancer Research Program, Institut Mar d'Investigacions Mèdiques, CIBERONCHospital del MarBarcelonaSpain
| | - María Martínez‐Iniesta
- Chemoresistance and Predictive Factors Group, Program Against Cancer Therapeutic Resistance (ProCURE), Catalan Institute of Oncology (ICO), Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL)L'Hospitalet del LlobregatBarcelonaSpain
| | - Violeta García‐Hernández
- Cancer Research Program, Institut Mar d'Investigacions Mèdiques, CIBERONCHospital del MarBarcelonaSpain
| | - Gemma Giménez
- Cancer Research Program, Institut Mar d'Investigacions Mèdiques, CIBERONCHospital del MarBarcelonaSpain
| | - Ramon Salazar
- Department of Medical Oncology, Catalan Institute of Oncology (ICO), Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL)‐CIBERONCL'Hospitalet de LlobregatBarcelonaSpain
| | - Cristina Santos
- Department of Medical Oncology, Catalan Institute of Oncology (ICO), Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL)‐CIBERONCL'Hospitalet de LlobregatBarcelonaSpain
| | - Marta Garrido
- Cancer Research Program, Institut Mar d'Investigacions Mèdiques, CIBERONCHospital del MarBarcelonaSpain
| | - Eva Borràs
- Proteomics Unit, Centre for Genomic Regulation (CRG)Barcelona Institute of Science and Technology (BIST)BarcelonaSpain
- Proteomics UnitUniversitat Pompeu FabraBarcelonaSpain
| | - Eduard Sabidó
- Proteomics Unit, Centre for Genomic Regulation (CRG)Barcelona Institute of Science and Technology (BIST)BarcelonaSpain
- Proteomics UnitUniversitat Pompeu FabraBarcelonaSpain
| | - Ester Bonfill‐Teixidor
- Vall d'Hebron Institute of Oncology (VHIO), CIBERONCVall d'Hebron University Hospital, Universitat Autònoma de BarcelonaBarcelonaSpain
| | - Raffaella Iurlaro
- Vall d'Hebron Institute of Oncology (VHIO), CIBERONCVall d'Hebron University Hospital, Universitat Autònoma de BarcelonaBarcelonaSpain
| | - Joan Seoane
- Vall d'Hebron Institute of Oncology (VHIO), CIBERONCVall d'Hebron University Hospital, Universitat Autònoma de BarcelonaBarcelonaSpain
- Institució Catalana de Recerca i Estudis Avançats (ICREA)BarcelonaSpain
| | - Alberto Villanueva
- Chemoresistance and Predictive Factors Group, Program Against Cancer Therapeutic Resistance (ProCURE), Catalan Institute of Oncology (ICO), Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL)L'Hospitalet del LlobregatBarcelonaSpain
- Xenopat S.L., Parc Cientific de Barcelona (PCB)BarcelonaSpain
| | - Mar Iglesias
- Department of Pathology, Institut Mar d'Investigacions Mèdiques, CIBERONCUniversitat Autònoma de BarcelonaBarcelonaSpain
| | - Anna Bigas
- Cancer Research Program, Institut Mar d'Investigacions Mèdiques, CIBERONCHospital del MarBarcelonaSpain
- Josep Carreras Leukemia Research InstituteBadalonaSpain
| | - Lluís Espinosa
- Cancer Research Program, Institut Mar d'Investigacions Mèdiques, CIBERONCHospital del MarBarcelonaSpain
| |
Collapse
|
10
|
Liu T, Joshu CE, Lu J, Prizment A, Chatterjee N, Coresh J, Wu L, Platz EA. External validation of genetically predicted protein biomarkers for pancreatic cancer risk using aptamer-based plasma levels: A prospective analysis in the Atherosclerosis Risk in Communities Study. Int J Cancer 2023; 153:1201-1216. [PMID: 37338014 PMCID: PMC11178147 DOI: 10.1002/ijc.34624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/11/2023] [Accepted: 05/03/2023] [Indexed: 06/21/2023]
Abstract
Genetically predicted proteins have been associated with pancreatic cancer risk previously. We aimed to externally validate the associations of 53 candidate proteins with pancreatic cancer risk using directly measured, prediagnostic levels. We conducted a prospective cohort study of 10 355 US Black and White men and women in the Atherosclerosis Risk in Communities (ARIC) study. Aptamer-based plasma proteomic profiling was previously performed using blood collected in 1993 to 1995, from which the proteins were selected. By 2015 (median: 20 years), 93 incident pancreatic cancer cases were ascertained. Cox regression was used to estimate hazard ratios (HRs) and 95% confidence intervals (CIs) for protein tertiles, and adjust for age, race, and known risk factors. Of the 53 proteins, three were statistically significantly, positively associated with risk-GLCE (tertile 3 vs 1: HR = 1.88, 95% CI: 1.12-3.13; P-trend = 0.01), GOLM1 (aptamer 1: HR = 1.98, 95% CI: 1.16-3.37; P-trend = 0.01; aptamer 2: HR = 1.86, 95% CI: 1.07-3.24; P-trend = 0.05), and QSOX2 (HR = 1.96, 95% CI: 1.09-3.58; P-trend = 0.05); two were inversely associated-F177A (HR = 0.59, 95% CI: 0.35-1.00; P-trend = 0.05) and LIFsR (HR = 0.55, 95% CI: 0.32-0.93; P-trend = 0.03); and one showed a statistically significant lower risk in the middle tertile-endoglin (HR = 0.50, 95% CI: 0.29-0.86); by chance, we expected significant associations for 2.65 proteins. FAM3D, IP10, sTie-1 (positive); SEM6A and JAG1 (inverse) were suggestively associated with risk. Of these 11, 10 proteins-endoglin, FAM3D, F177A, GLCE, GOLM1, JAG1, LIFsR, QSOX2, SEM6A and sTie-1-were consistent in direction of association with the discovery studies. This prospective study validated or supports 10 proteins as associated with pancreatic cancer risk.
Collapse
Affiliation(s)
- Tanxin Liu
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Corinne E. Joshu
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
- Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland, USA
| | - Jiayun Lu
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Anna Prizment
- Division of Hematology, Oncology and Transplantation, University of Minnesota, Minneapolis, Minnesota, USA
- University of Minnesota Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
| | - Nilanjan Chatterjee
- Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland, USA
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Josef Coresh
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
- Welch Center for Prevention, Epidemiology and Clinical Research, Johns Hopkins Medicine, Baltimore, Maryland, USA
| | - Lang Wu
- University of Hawaii Cancer Center, University of Hawaii at Manoa, Honolulu, Hawaii, USA
| | - Elizabeth A. Platz
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
- Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland, USA
| |
Collapse
|
11
|
Ferrari A, Cangini D, Ghelli Luserna di Rorà A, Condorelli A, Pugliese M, Schininà G, Cosentino S, Fonzi E, Domizio C, Simonetti G, Leotta S, Milone G, Martinelli G. Venetoclax durable response in adult relapsed/refractory Philadelphia-negative acute lymphoblastic leukemia with JAK/STAT pathway alterations. Front Cell Dev Biol 2023; 11:1165308. [PMID: 37287455 PMCID: PMC10242111 DOI: 10.3389/fcell.2023.1165308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 05/03/2023] [Indexed: 06/09/2023] Open
Abstract
High-risk relapsed/refractory adult Philadelphia-negative (Ph-) B-cell acute lymphoblastic leukemia (B-ALL) is a great challenge due to limited possibilities to achieve and maintain a complete response. This also applies to cases with extramedullary (EM) involvement that have poor outcomes and no accepted standard therapeutic approaches. The incidence of EM localization in relapsed/refractory B-ALL is poorly investigated: data on patients treated with blinatumomab reported a 40% rate. Some responses were reported in EM patients with relapsed/refractory B-ALL treated with inotuzumab ozogamicin or CAR-T. However, molecular mechanisms of response or refractoriness are usually investigated neither at the medullary nor at EM sites. In the complex scenario of pluri-relapsed/refractory B-ALL patients, new target therapies are needed. Our analysis started with the case of an adult pluri-relapsed Ph- B-ALL patient, poorly sensitive to inotuzumab ozogamicin, donor lymphocyte infusions, and blinatumomab in EM disease, who achieved a durable/complete response after treatment with the BCL2-inhibitor venetoclax. The molecular characterization of medullary and EM samples revealed a tyrosine kinase domain JAK1 mutation in the bone marrow and EM samples at relapse. By comparing the expression level of BCL2- and JAK/STAT pathway-related genes between the patient samples, 136 adult JAK1 wt B-ALL, and 15 healthy controls, we identified differentially expressed genes, including LIFR, MTOR, SOCS1/2, and BCL2/BCL2L1, that are variably modulated at diverse time points and might explain the prolonged response to venetoclax (particularly in the EM site, which was only partially affected by previous therapies). Our results suggest that the deep molecular characterization of both medullary and EM samples is fundamental to identifying effective and personalized targeted therapies.
Collapse
Affiliation(s)
- Anna Ferrari
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Delia Cangini
- Hematology Unit, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Andrea Ghelli Luserna di Rorà
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
- Fondazione Pisana per Scienza ONLUS, Pisa, Italy
| | - Annalisa Condorelli
- Divisione di Ematologia con Trapianto Emopoietico—Azienda Ospedaliera Universitaria Policlinico “G. Rodolico- San Marco”, Catania, Italy
| | - Marta Pugliese
- Divisione di Ematologia con Trapianto Emopoietico—Azienda Ospedaliera Universitaria Policlinico “G. Rodolico- San Marco”, Catania, Italy
| | - Giovanni Schininà
- Divisione di Ematologia con Trapianto Emopoietico—Azienda Ospedaliera Universitaria Policlinico “G. Rodolico- San Marco”, Catania, Italy
| | | | - Eugenio Fonzi
- Unit of Biostatistics and Clinical Trials, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Chiara Domizio
- Department of Life Sciences and Biotechnology, Ferrara University, Ferrara, Italy
| | - Giorgia Simonetti
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Salvatore Leotta
- Divisione di Ematologia con Trapianto Emopoietico—Azienda Ospedaliera Universitaria Policlinico “G. Rodolico- San Marco”, Catania, Italy
| | - Giuseppe Milone
- Divisione di Ematologia con Trapianto Emopoietico—Azienda Ospedaliera Universitaria Policlinico “G. Rodolico- San Marco”, Catania, Italy
| | - Giovanni Martinelli
- Scientific Directorate, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| |
Collapse
|
12
|
Ahmadzada T, Vijayan A, Vafaee F, Azimi A, Reid G, Clarke S, Kao S, Grau GE, Hosseini-Beheshti E. Small and Large Extracellular Vesicles Derived from Pleural Mesothelioma Cell Lines Offer Biomarker Potential. Cancers (Basel) 2023; 15:cancers15082364. [PMID: 37190292 DOI: 10.3390/cancers15082364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/21/2023] [Accepted: 03/27/2023] [Indexed: 05/17/2023] Open
Abstract
Pleural mesothelioma, previously known as malignant pleural mesothelioma, is an aggressive and fatal cancer of the pleura, with one of the poorest survival rates. Pleural mesothelioma is in urgent clinical need for biomarkers to aid early diagnosis, improve prognostication, and stratify patients for treatment. Extracellular vesicles (EVs) have great potential as biomarkers; however, there are limited studies to date on their role in pleural mesothelioma. We conducted a comprehensive proteomic analysis on different EV populations derived from five pleural mesothelioma cell lines and an immortalized control cell line. We characterized three subtypes of EVs (10 K, 18 K, and 100 K), and identified a total of 4054 unique proteins. Major differences were found in the cargo between the three EV subtypes. We show that 10 K EVs were enriched in mitochondrial components and metabolic processes, while 18 K and 100 K EVs were enriched in endoplasmic reticulum stress. We found 46 new cancer-associated proteins for pleural mesothelioma, and the presence of mesothelin and PD-L1/PD-L2 enriched in 100 K and 10 K EV, respectively. We demonstrate that different EV populations derived from pleural mesothelioma cells have unique cancer-specific proteomes and carry oncogenic cargo, which could offer a novel means to extract biomarkers of interest for pleural mesothelioma from liquid biopsies.
Collapse
Affiliation(s)
- Tamkin Ahmadzada
- School of Medical Sciences, The University of Sydney, Camperdown, NSW 2006, Australia
| | - Abhishek Vijayan
- School of Biotechnology and Biomolecular Sciences, Faculty of Science, University of New South Wales, Sydney, NSW 2052, Australia
| | - Fatemeh Vafaee
- School of Biotechnology and Biomolecular Sciences, Faculty of Science, University of New South Wales, Sydney, NSW 2052, Australia
- UNSW Data Science Hub, University of New South Wales, Sydney, NSW 2052, Australia
| | - Ali Azimi
- Westmead Clinical School, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW 2145, Australia
- Centre for Cancer Research, The Westmead Institute for Medical Research, The University of Sydney, Westmead, NSW 2145, Australia
- Department of Dermatology, Westmead Hospital, Westmead, NSW 2145, Australia
| | - Glen Reid
- Department of Pathology, University of Otago, Dunedin 9016, New Zealand
| | - Stephen Clarke
- School of Medical Sciences, The University of Sydney, Camperdown, NSW 2006, Australia
- Department of Medical Oncology, Royal North Shore Hospital, Sydney, NSW 2065, Australia
| | - Steven Kao
- School of Medical Sciences, The University of Sydney, Camperdown, NSW 2006, Australia
- Department of Medical Oncology, Chris O'Brien Lifehouse, Sydney, NSW 2050, Australia
- Asbestos Diseases Research Institute, Sydney, NSW 2139, Australia
| | - Georges E Grau
- School of Medical Sciences, The University of Sydney, Camperdown, NSW 2006, Australia
- The Sydney Nano Institute, The University of Sydney, Camperdown, NSW 2006, Australia
| | - Elham Hosseini-Beheshti
- School of Medical Sciences, The University of Sydney, Camperdown, NSW 2006, Australia
- The Sydney Nano Institute, The University of Sydney, Camperdown, NSW 2006, Australia
| |
Collapse
|
13
|
Wang J, Chang CY, Yang X, Zhou F, Liu J, Feng Z, Hu W. Leukemia inhibitory factor, a double-edged sword with therapeutic implications in human diseases. Mol Ther 2023; 31:331-343. [PMID: 36575793 PMCID: PMC9931620 DOI: 10.1016/j.ymthe.2022.12.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/01/2022] [Accepted: 12/22/2022] [Indexed: 12/27/2022] Open
Abstract
Leukemia inhibitory factor (LIF) is a pleiotropic cytokine of the interleukin-6 (IL-6) superfamily. LIF was initially discovered as a factor to induce the differentiation of myeloid leukemia cells and thus inhibit their proliferation. Subsequent studies have highlighted the multi-functions of LIF under a wide variety of physiological and pathological conditions in a highly cell-, tissue-, and context-dependent manner. Emerging evidence has demonstrated that LIF plays an essential role in the stem cell niche, where it maintains the homeostasis and regeneration of multiple somatic tissues, including intestine, neuron, and muscle. Further, LIF exerts a crucial regulatory role in immunity and functions as a protective factor against many immunopathological diseases, such as infection, inflammatory bowel disease (IBD), and graft-verse-host disease (GVHD). It is worth noting that while LIF displays a tumor-suppressive function in leukemia, recent studies have highlighted the oncogenic role of LIF in many types of solid tumors, further demonstrating the complexities and context-dependent effects of LIF. In this review, we summarize the recent insights into the roles and mechanisms of LIF in stem cell homeostasis and regeneration, immunity, and cancer, and discuss the potential therapeutic options for human diseases by modulating LIF levels and functions.
Collapse
Affiliation(s)
- Jianming Wang
- Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ 08903, USA
| | - Chun-Yuan Chang
- Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ 08903, USA
| | - Xue Yang
- Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ 08903, USA
| | - Fan Zhou
- Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ 08903, USA
| | - Juan Liu
- Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ 08903, USA
| | - Zhaohui Feng
- Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ 08903, USA.
| | - Wenwei Hu
- Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ 08903, USA.
| |
Collapse
|
14
|
Zhang F, Wang Y, Li H, Li L, Yang X, You X, Tang L. Pan-cancer analysis identifies LIFR as a prognostic and immunological biomarker for uterine corpus endometrial carcinoma. Front Oncol 2023; 13:1118906. [PMID: 36925915 PMCID: PMC10011451 DOI: 10.3389/fonc.2023.1118906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 02/17/2023] [Indexed: 03/08/2023] Open
Abstract
Background Leukemia inhibitory factor (LIF) exhibits significant tumor-promoting function, while its cognate receptor (LIFR) is considered to act as either a tumor promoter or suppressor. Dysregulation of LIF and LIFR is associated with the initiation, progression and metastasis of multiple cancer entities. Although increasing numbers of studies are revealing an indispensable critical role of LIFR in tumorigenesis for various different cancers, no systematic analysis of LIFR has appeared thus far. Methods Here, we comprehensively analyzed the expression profile and prognostic value of LIFR, and correlations between LIFR and the infiltration of immune cells and clinicopathological parameters across different tumor types using several bioinformatic tools. The expression profile of LIFR in various tumor types and clinical stages was investigated using the TIMER2 and GEPIA2 databases. Genetic alternations of LIFR were extracted from cBioPortal. The prognostic value of LIFR was assessed using GEPIA2 and Sanger box databases, and correlations between LIFR expression and immune infiltration were analyzed using the CIBERSORT method and TIMER2 database. The correlations between LIFR expression and immune and stromal scores were assessed using ESTIMATE. We also analyzed correlations between LIFR and immunoregulators. Finally, we detected an effect of LIFR on Uterine Corpus Endometrial Carcinoma (UCEC) and evaluated the expression level of LIFR in clinical UCEC samples. Results Aberrant expression of LIFR in cancers and its prognosis ability, especially in UCEC was documented. Significantly lower levels of LIFR expression level correlated with better prognosis in multiple tumor types. LIFR expression was positively correlated with the abundance of cancer-associated fibroblasts (CAFs) and endothelial cells in the tumor microenvironment. Additionally, LIFR expression was strongly associated with the presence of immune modulators and checkpoint genes. Overexpression of LIFR suppressed the migration and invasion of UCEC cells in vitro. Conclusion Our pan-cancer detection data provided a novel understanding of the roles of LIFR in oncogenesis.
Collapse
Affiliation(s)
- Fang Zhang
- Department of Obstetrics and Gynecology, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Yali Wang
- Department of Obstetrics and Gynecology, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Hongjuan Li
- Department of Obstetrics and Gynecology, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Li Li
- Department of Obstetrics and Gynecology, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Xiaofeng Yang
- Department of Obstetrics and Gynecology, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Xiaoyan You
- Department of Obstetrics and Gynecology, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Lina Tang
- Metabolic Disease Research Center, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| |
Collapse
|
15
|
Sengupta S, Ghufran SM, Khan A, Biswas S, Roychoudhury S. Transition of amyloid/mutant p53 from tumor suppressor to an oncogene and therapeutic approaches to ameliorate metastasis and cancer stemness. Cancer Cell Int 2022; 22:416. [PMID: 36567312 PMCID: PMC9791775 DOI: 10.1186/s12935-022-02831-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 12/11/2022] [Indexed: 12/27/2022] Open
Abstract
The tumor suppressor p53 when undergoes amyloid formation confers several gain-of-function (GOF) activities that affect molecular pathways crucial for tumorigenesis and progression like some of the p53 mutants. Even after successful cancer treatment, metastasis and recurrence can result in poor survival rates. The major cause of recurrence is mainly the remnant cancer cells with stem cell-like properties, which are resistant to any chemotherapy treatment. Several studies have demonstrated the role of p53 mutants in exacerbating cancer stemness properties and epithelial-mesenchymal transition in these remnant cancer cells. Analyzing the amyloid/mutant p53-mediated signaling pathways that trigger metastasis, relapse or chemoresistance may be helpful for the development of novel or improved individualized treatment plans. In this review, we discuss the changes in the metabolic pathways such as mevalonate pathway and different signaling pathways such as TGF-β, PI3K/AKT/mTOR, NF-κB and Wnt due to p53 amyloid formation, or mutation. In addition to this, we have discussed the role of the regulatory microRNAs and lncRNAs linked with the mutant or amyloid p53 in human malignancies. Such changes promote tumor spread, potential recurrence, and stemness. Importantly, this review discusses the cancer therapies that target either mutant or amyloid p53, restore wild-type functions, and exploit the synthetic lethal interactions with mutant p53.
Collapse
Affiliation(s)
- Shinjinee Sengupta
- grid.444644.20000 0004 1805 0217Amity Institute of Molecular Medicine and Stem Cell Research (AIMMSCR), Amity University, Sector-125, Noida, Uttar Pradesh, 201313 India
| | - Shaikh Maryam Ghufran
- grid.444644.20000 0004 1805 0217Amity Institute of Molecular Medicine and Stem Cell Research (AIMMSCR), Amity University, Sector-125, Noida, Uttar Pradesh, 201313 India
| | - Aqsa Khan
- grid.444644.20000 0004 1805 0217Amity Institute of Molecular Medicine and Stem Cell Research (AIMMSCR), Amity University, Sector-125, Noida, Uttar Pradesh, 201313 India
| | - Subhrajit Biswas
- grid.444644.20000 0004 1805 0217Amity Institute of Molecular Medicine and Stem Cell Research (AIMMSCR), Amity University, Sector-125, Noida, Uttar Pradesh, 201313 India
| | - Susanta Roychoudhury
- grid.489176.50000 0004 1803 6730Division of Research, Saroj Gupta Cancer Centre and Research Institute, Kolkata, 700063 India ,grid.417635.20000 0001 2216 5074Molecular Genetics Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| |
Collapse
|
16
|
Giving alloHSCT a needed LIF(t). Blood 2022; 140:2008-2009. [PMID: 36355467 DOI: 10.1182/blood.2022018006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
17
|
Wang J, Wang K. New insights into Chlamydia pathogenesis: Role of leukemia inhibitory factor. Front Cell Infect Microbiol 2022; 12:1029178. [PMID: 36329823 PMCID: PMC9623337 DOI: 10.3389/fcimb.2022.1029178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 09/27/2022] [Indexed: 11/13/2022] Open
Abstract
Chlamydia trachomatis (Ct) is the leading cause of bacterial sexually transmitted infections worldwide. Since the symptoms of Ct infection are often subtle or absent, most people are unaware of their infection until they are tested or develop severe complications such as infertility. It is believed that the primary culprit of Ct-associated tissue damage is unresolved chronic inflammation, resulting in aberrant production of cytokines, chemokines, and growth factors, as well as dysregulated tissue influx of innate and adaptive immune cells. A member of the IL-6 cytokine family, leukemia inhibitory factor (LIF), is one of the cytokines induced by Ct infection but its role in Ct pathogenesis is unclear. In this article, we review the biology of LIF and LIF receptor (LIFR)-mediated signaling pathways, summarize the physiological role of LIF in the reproductive system, and discuss the impact of LIF in chronic inflammatory conditions and its implication in Ct pathogenesis. Under normal circumstances, LIF is produced to maintain epithelial homeostasis and tissue repair, including the aftermath of Ct infection. However, LIF/LIFR-mediated signaling – particularly prolonged strong signaling – can gradually transform the microenvironment of the fallopian tube by altering the fate of epithelial cells and the cellular composition of epithelium. This harmful transformation of epithelium may be a key process that leads to an enhanced risk of infertility, ectopic pregnancy and cancer following Ct infection.
Collapse
Affiliation(s)
- Jun Wang
- Canadian Center for Vaccinology, Halifax, NS, Canada
- Department of Microbiology & Immunology, Halifax, NS, Canada
- Department of Pediatrics, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
- Izaak Walton Killam (IWK) Health Centre, Halifax, NS, Canada
- *Correspondence: Jun Wang,
| | - Katherine Wang
- Canadian Center for Vaccinology, Halifax, NS, Canada
- Department of Microbiology & Immunology, Halifax, NS, Canada
| |
Collapse
|
18
|
Halder S, Parte S, Kshirsagar P, Muniyan S, Nair HB, Batra SK, Seshacharyulu P. The Pleiotropic role, functions and targeted therapies of LIF/LIFR axis in cancer: Old spectacles with new insights. Biochim Biophys Acta Rev Cancer 2022; 1877:188737. [PMID: 35680099 PMCID: PMC9793423 DOI: 10.1016/j.bbcan.2022.188737] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 05/09/2022] [Accepted: 05/28/2022] [Indexed: 12/30/2022]
Abstract
The dysregulation of leukemia inhibitory factor (LIF) and its cognate receptor (LIFR) has been associated with multiple cancer initiation, progression, and metastasis. LIF plays a significant tumor-promoting role in cancer, while LIFR functions as a tumor promoter and suppressor. Epithelial and stromal cells secrete LIF via autocrine and paracrine signaling mechanism(s) that bind with LIFR and subsequently with co-receptor glycoprotein 130 (gp130) to activate JAK/STAT1/3, PI3K/AKT, mTORC1/p70s6K, Hippo/YAP, and MAPK signaling pathways. Clinically, activating the LIF/LIFR axis is associated with poor survival and anti-cancer therapy resistance. This review article provides an overview of the structure and ligands of LIFR, LIF/LIFR signaling in developmental biology, stem cells, cancer stem cells, genetics and epigenetics of LIFR, LIFR regulation by long non-coding RNAs and miRNAs, and LIF/LIFR signaling in cancers. Finally, neutralizing antibodies and small molecule inhibitors preferentially blocking LIF interaction with LIFR and antagonists against LIFR under pre-clinical and early-phase pre-clinical trials were discussed.
Collapse
Affiliation(s)
- Sushanta Halder
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA
| | - Seema Parte
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA
| | - Prakash Kshirsagar
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA
| | - Sakthivel Muniyan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA
| | | | - Surinder K. Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA,Eppley Institute for Research in Cancer and Allied Diseases, USA,Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA,Corresponding authors at: Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA. (S.K. Batra), (P. Seshacharyulu)
| | - Parthasarathy Seshacharyulu
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA,Eppley Institute for Research in Cancer and Allied Diseases, USA,Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA,Corresponding authors at: Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA. (S.K. Batra), (P. Seshacharyulu)
| |
Collapse
|
19
|
Curley M, Darbey A, O'Donnell L, Kilcoyne KR, Wilson K, Mungall W, Rebourcet D, Guo J, Mitchell RT, Smith LB. Leukemia inhibitory factor-receptor signalling negatively regulates gonadotrophin-stimulated testosterone production in mouse Leydig Cells. Mol Cell Endocrinol 2022; 544:111556. [PMID: 35031431 DOI: 10.1016/j.mce.2022.111556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/14/2021] [Accepted: 01/07/2022] [Indexed: 11/26/2022]
Abstract
Testicular Leydig cells (LCs) are the principal source of circulating testosterone in males. LC steroidogenesis maintains sexual function, fertility and general health, and is influenced by various paracrine factors. The leukemia inhibitory factor receptor (LIFR) is expressed in the testis and activated by different ligands, including leukemia inhibitory factor (LIF), produced by peritubular myoid cells. LIF can modulate LC testosterone production in vitro under certain circumstances, but the role of consolidated signalling through LIFR in adult LC function in vivo has not been established. We used a conditional Lifr allele in combination with adenoviral vectors expressing Cre-recombinase to generate an acute model of LC Lifr-KO in the adult mouse testis, and showed that LC Lifr is not required for short term LC survival or basal steroidogenesis. However, LIFR-signalling negatively regulates steroidogenic enzyme expression and maximal gonadotrophin-stimulated testosterone biosynthesis, expanding our understanding of the intricate regulation of LC steroidogenic function.
Collapse
Affiliation(s)
- Michael Curley
- MRC Centre for Reproductive Health, University of Edinburgh, The Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh, EH16 4TJ, United Kingdom
| | - Annalucia Darbey
- MRC Centre for Reproductive Health, University of Edinburgh, The Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh, EH16 4TJ, United Kingdom
| | - Liza O'Donnell
- College of Engineering, Science and Environment, University of Newcastle, Callaghan, NSW, 2308, Australia; Hudson Institute of Medical Research, Clayton, Victoria, 3168, Australia
| | - Karen R Kilcoyne
- MRC Centre for Reproductive Health, University of Edinburgh, The Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh, EH16 4TJ, United Kingdom
| | - Kirsten Wilson
- MRC Centre for Reproductive Health, University of Edinburgh, The Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh, EH16 4TJ, United Kingdom
| | - Will Mungall
- Bioresearch and Veterinary Services, University of Edinburgh, the Chancellor's Building, 49 Little France Crescent, Edinburgh, EH16 4SB, United Kingdom
| | - Diane Rebourcet
- College of Engineering, Science and Environment, University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Jingtao Guo
- Division of Urology, Department of Surgery, University of Utah School of Medicine, Salt Lake City, UT, 84132, USA
| | - Rod T Mitchell
- MRC Centre for Reproductive Health, University of Edinburgh, The Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh, EH16 4TJ, United Kingdom; Royal Hospital for Children and Young People, Edinburgh, EH91LF, United Kingdom
| | - Lee B Smith
- MRC Centre for Reproductive Health, University of Edinburgh, The Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh, EH16 4TJ, United Kingdom; College of Engineering, Science and Environment, University of Newcastle, Callaghan, NSW, 2308, Australia.
| |
Collapse
|
20
|
Ropa J, Cooper S, Broxmeyer HE. Leukemia Inhibitory Factor Promotes Survival of Hematopoietic Progenitors Ex Vivo and Is Post-Translationally Regulated by DPP4. Stem Cells 2022; 40:346-357. [PMID: 35293568 PMCID: PMC9199847 DOI: 10.1093/stmcls/sxac004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 01/06/2022] [Indexed: 01/30/2023]
Abstract
Hematopoietic cells are regulated in part by extracellular cues from cytokines. Leukemia inhibitory factor (LIF) promotes survival, self-renewal, and pluripotency of mouse embryonic stem cells (mESC). While genetic deletion of LIF affects hematopoietic progenitor cells (HPCs), the direct effect of LIF protein exposure on HPC survival is not known. Furthermore, post-translational modifications (PTM) of LIF and their effects on its function have not been evaluated. We demonstrate that treatment with recombinant LIF preserves mouse and human HPC numbers in stressed conditions when growth factor addition is delayed ex vivo. We show that Lif is upregulated in response to irradiation-induced stress. We reveal novel PTM of LIF where it is cleaved twice by dipeptidyl peptidase 4 (DPP4) protease so that it loses its 4 N-terminal amino acids. This truncation of LIF down-modulates LIF's ability to preserve functional HPC numbers ex vivo following delayed growth factor addition. DPP4-truncated LIF blocks the ability of full-length LIF to preserve functional HPC numbers. This LIF role and its novel regulation by DPP4 have important implications for normal and stress hematopoiesis, as well as for other cellular contexts in which LIF and DPP4 are implicated.
Collapse
Affiliation(s)
- James Ropa
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202, USA,Corresponding author: James Ropa, PhD, Department of Microbiology and Immunology, Indiana University School of Medicine, 950 West Walnut Street, Bldg. R2, Room 302, Indianapolis, IN 46202, USA. Tel: 317-274-7553;
| | - Scott Cooper
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Hal E Broxmeyer
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|