1
|
Lu MJ, Busquets J, Impedovo V, Wilson CN, Chan HR, Chang YT, Matsui W, Tiziani S, Cambronne XA. SLC25A51 decouples the mitochondrial NAD +/NADH ratio to control proliferation of AML cells. Cell Metab 2024; 36:808-821.e6. [PMID: 38354740 PMCID: PMC10990793 DOI: 10.1016/j.cmet.2024.01.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 11/30/2023] [Accepted: 01/23/2024] [Indexed: 02/16/2024]
Abstract
SLC25A51 selectively imports oxidized NAD+ into the mitochondrial matrix and is required for sustaining cell respiration. We observed elevated expression of SLC25A51 that correlated with poorer outcomes in patients with acute myeloid leukemia (AML), and we sought to determine the role SLC25A51 may serve in this disease. We found that lowering SLC25A51 levels led to increased apoptosis and prolonged survival in orthotopic xenograft models. Metabolic flux analyses indicated that depletion of SLC25A51 shunted flux away from mitochondrial oxidative pathways, notably without increased glycolytic flux. Depletion of SLC25A51 combined with 5-azacytidine treatment limits expansion of AML cells in vivo. Together, the data indicate that AML cells upregulate SLC25A51 to decouple mitochondrial NAD+/NADH for a proliferative advantage by supporting oxidative reactions from a variety of fuels. Thus, SLC25A51 represents a critical regulator that can be exploited by cancer cells and may be a vulnerability for refractory AML.
Collapse
Affiliation(s)
- Mu-Jie Lu
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA
| | - Jonathan Busquets
- Department of Nutritional Sciences, College of Natural Sciences, University of Texas at Austin, Austin, TX, USA
| | - Valeria Impedovo
- Department of Nutritional Sciences, College of Natural Sciences, University of Texas at Austin, Austin, TX, USA
| | - Crystal N Wilson
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA
| | - Hsin-Ru Chan
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA
| | - Yu-Tai Chang
- Department of Oncology, Dell Medical School, University of Texas at Austin, Austin, TX, USA; LIVESTRONG Cancer Institutes, University of Texas at Austin, Austin, TX, USA
| | - William Matsui
- Department of Oncology, Dell Medical School, University of Texas at Austin, Austin, TX, USA; LIVESTRONG Cancer Institutes, University of Texas at Austin, Austin, TX, USA
| | - Stefano Tiziani
- Department of Nutritional Sciences, College of Natural Sciences, University of Texas at Austin, Austin, TX, USA; Department of Pediatrics, Dell Medical School, University of Texas at Austin, Austin, TX, USA; Department of Oncology, Dell Medical School, University of Texas at Austin, Austin, TX, USA; LIVESTRONG Cancer Institutes, University of Texas at Austin, Austin, TX, USA
| | - Xiaolu A Cambronne
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA; LIVESTRONG Cancer Institutes, University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
2
|
Chen Y, Chen J, Zou Z, Xu L, Li J. Crosstalk between autophagy and metabolism: implications for cell survival in acute myeloid leukemia. Cell Death Discov 2024; 10:46. [PMID: 38267416 PMCID: PMC10808206 DOI: 10.1038/s41420-024-01823-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 01/12/2024] [Accepted: 01/16/2024] [Indexed: 01/26/2024] Open
Abstract
Acute myeloid leukemia (AML), a prevalent form of leukemia in adults, is often characterized by low response rates to chemotherapy, high recurrence rates, and unfavorable prognosis. A critical barrier in managing refractory or recurrent AML is the resistance to chemotherapy. Increasing evidence indicates that tumor cell metabolism plays a crucial role in AML progression, survival, metastasis, and treatment resistance. Autophagy, an essential regulator of cellular energy metabolism, is increasingly recognized for its role in the metabolic reprogramming of AML. Autophagy sustains leukemia cells during chemotherapy by not only providing energy but also facilitating rapid proliferation through the supply of essential components such as amino acids and nucleotides. Conversely, the metabolic state of AML cells can influence the activity of autophagy. Their mutual coordination helps maintain intrinsic cellular homeostasis, which is a significant contributor to chemotherapy resistance in leukemia cells. This review explores the recent advancements in understanding the interaction between autophagy and metabolism in AML cells, emphasizing their roles in cell survival and drug resistance. A comprehensive understanding of the interplay between autophagy and leukemia cell metabolism can shed light on leukemia cell survival strategies, particularly under adverse conditions such as chemotherapy. This insight may also pave the way for innovative targeted treatment strategies.
Collapse
Affiliation(s)
- Yongfeng Chen
- Department of Basic Medical Sciences, Medical College of Taizhou University, 318000, Taizhou, Zhejiang, China.
| | - Jia Chen
- School of Medicine, Zhejiang University, 310058, Hangzhou, Zhejiang, China
| | - Zhenyou Zou
- Brain Hospital of Guangxi Zhuang Autonomous Region, 542005, Liuzhou, Guangxi, China.
| | - Linglong Xu
- Department of Hematology, Taizhou Central Hospital (Taizhou University Hospital), 318000, Taizhou, Zhejiang, China
| | - Jing Li
- Department of Histology and Embryology, North Sichuan Medical College, 637000, Nanchong, Sichuan, China
| |
Collapse
|
3
|
Jurkowska H, Wróbel M, Jasek-Gajda E, Rydz L. Sulfurtransferases and Cystathionine Beta-Synthase Expression in Different Human Leukemia Cell Lines. Biomolecules 2022; 12:148. [PMID: 35204649 PMCID: PMC8961552 DOI: 10.3390/biom12020148] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/14/2022] [Accepted: 01/16/2022] [Indexed: 12/17/2022] Open
Abstract
The studies concerned the expression of sulfurtransferases and cystathionine beta-synthase in six human leukemia cell lines: B cell acute lymphoblastic leukemia-B-ALL (REH cells), T cell acute lymphoblastic leukemia-T-ALL (DND-41 and MOLT-4 cells), acute myeloid leukemia-AML (MV4-11 and MOLM-14 cells), and chronic myeloid leukemia-CML (K562 cells). Reverse transcription-polymerase chain reaction (RT-PCR) and Western blot analysis were performed to determine the expression of thiosulfate sulfurtransferase, 3-mercaptopyruvate sulfurtransferase, gamma-cystathionase, and cystathionine beta-synthase on the mRNA and protein level. Interestingly, we found significant differences in the mRNA and protein levels of sulfurtransferases and cystathionine beta-synthase in the studied leukemia cells. The obtained results may contribute to elucidating the significance of the differences between the studied cells in the field of sulfur compound metabolism and finding new promising ways to inhibit the proliferation of various types of leukemic cells by modulating the activity of sulfurtransferases, cystathionine beta-synthase, and, consequently, the change of intracellular level of sulfane sulfur as well as H2S and reactive oxygen species production.
Collapse
Affiliation(s)
- Halina Jurkowska
- Chair of Medical Biochemistry, Faculty of Medicine, Jagiellonian University Medical College, 7 Kopernika St., 31-034 Kraków, Poland; (M.W.); (L.R.)
| | - Maria Wróbel
- Chair of Medical Biochemistry, Faculty of Medicine, Jagiellonian University Medical College, 7 Kopernika St., 31-034 Kraków, Poland; (M.W.); (L.R.)
| | - Ewa Jasek-Gajda
- Department of Histology, Faculty of Medicine, Jagiellonian University Medical College, 7 Kopernika St., 31-034 Kraków, Poland;
| | - Leszek Rydz
- Chair of Medical Biochemistry, Faculty of Medicine, Jagiellonian University Medical College, 7 Kopernika St., 31-034 Kraków, Poland; (M.W.); (L.R.)
| |
Collapse
|
4
|
Thangadurai S, Bajgiran M, Manickam S, Mohana-Kumaran N, Azzam G. CTP synthase: the hissing of the cellular serpent. Histochem Cell Biol 2022; 158:517-534. [PMID: 35881195 PMCID: PMC9314535 DOI: 10.1007/s00418-022-02133-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/26/2022] [Indexed: 12/24/2022]
Abstract
CTP biosynthesis is carried out by two pathways: salvage and de novo. CTPsyn catalyzes the latter. The study of CTPsyn activity in mammalian cells began in the 1970s, and various fascinating discoveries were made regarding the role of CTPsyn in cancer and development. However, its ability to fit into a cellular serpent-like structure, termed 'cytoophidia,' was only discovered a decade ago by three independent groups of scientists. Although the self-assembly of CTPsyn into a filamentous structure is evolutionarily conserved, the enzyme activity upon this self-assembly varies in different species. CTPsyn is required for cellular development and homeostasis. Changes in the expression of CTPsyn cause developmental changes in Drosophila melanogaster. A high level of CTPsyn activity and formation of cytoophidia are often observed in rapidly proliferating cells such as in stem and cancer cells. Meanwhile, the deficiency of CTPsyn causes severe immunodeficiency leading to immunocompromised diseases caused by bacteria, viruses, and parasites, making CTPsyn an attractive therapeutic target. Here, we provide an overview of the role of CTPsyn in cellular and disease perspectives along with its potential as a drug target.
Collapse
Affiliation(s)
- Shallinie Thangadurai
- grid.11875.3a0000 0001 2294 3534School of Biological Sciences, Universiti Sains Malaysia, 11800 Penang, Malaysia
| | - Morteza Bajgiran
- grid.11875.3a0000 0001 2294 3534School of Biological Sciences, Universiti Sains Malaysia, 11800 Penang, Malaysia
| | - Sharvin Manickam
- grid.11875.3a0000 0001 2294 3534School of Biological Sciences, Universiti Sains Malaysia, 11800 Penang, Malaysia
| | - Nethia Mohana-Kumaran
- grid.11875.3a0000 0001 2294 3534School of Biological Sciences, Universiti Sains Malaysia, 11800 Penang, Malaysia
| | - Ghows Azzam
- grid.11875.3a0000 0001 2294 3534School of Biological Sciences, Universiti Sains Malaysia, 11800 Penang, Malaysia ,grid.454125.3Malaysia Genome and Vaccine Institute, National Institutes of Biotechnology Malaysia, Jalan Bangi, 43000 Kajang, Selangor Malaysia
| |
Collapse
|