1
|
Wang J, Wang J, Zhang J, Gong H, Li J, Song Y, Huang Y, Ma B, Gu W, Yang R. Association between the methylations of RUNX3 in peripheral blood and lung cancer: a case-control study. Biomarkers 2024; 29:343-351. [PMID: 38923933 DOI: 10.1080/1354750x.2024.2373714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 06/24/2024] [Indexed: 06/28/2024]
Abstract
BACKGROUND RUNX3 is hypermethylated in multiple cancers. TIMP2 also functions as a regulator of tumors. However, there are only very few reports on the association of methylation of RUNX3 and TIMP2 with lung cancer (LC) in peripheral blood. METHODS 426 LC patients and 428 age- and sex-matched healthy controls were recruited. DNA methylation in blood was semi-quantitively assessed by mass spectrometry. For the association analysis, binary logistic regression analysis adjusted covariant was applied, and ORs were presented as per +10% methylation. RESULTS Hypermethylation of CpG_1, CpG_5 and CpG_8 in RUNX3 was significantly associated with LC (ORs = 1.45, 1.35 and 1.35, respectively, adjusted p < 0.05), and even stage I LC. The association between the three RUNX3 CpG sites and LC was enhanced by increased age (> 55 years, ORs ranged from 1.43 to 1.75, adjusted p < 0.05), male gender (ORs ranged from 1.47 to 1.59, adjusted p < 0.05) and tumor stage (stage II&III&IV, ORs ranged from 1.86 to 3.03, adjusted p < 0.05). CONCLUSIONS This study suggests a significant association between blood-based RUNX3 hypermethylation and LC, especially in elder people, in males and in LC patients with advanced stage.
Collapse
Affiliation(s)
- Jun Wang
- Research and Development Department, TANTICA Biotechnology (Shanghai) Co., Ltd, Shanghai, China
| | - Jue Wang
- Research and Development Department, TANTICA Biotechnology (Shanghai) Co., Ltd, Shanghai, China
| | - Jie Zhang
- Department of Clinical Laboratory, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
| | - Haixia Gong
- Department of Respiratory and Sleep Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jinchang Li
- Department of Clinical Laboratory, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
| | - Yakang Song
- Research and Development Department, TANTICA Biotechnology (Shanghai) Co., Ltd, Shanghai, China
| | - Yuyang Huang
- Department of Respiratory and Sleep Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Boyue Ma
- Department of Respiratory and Sleep Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Wanjian Gu
- Department of Clinical Laboratory, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
| | - Rongxi Yang
- Research and Development Department, TANTICA Biotechnology (Shanghai) Co., Ltd, Shanghai, China
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, China
| |
Collapse
|
2
|
Rezkitha YAA, Panenggak NSR, Lusida MI, Rianda RV, Mahmudah I, Pradana AD, Uchida T, Miftahussurur M. Detecting colorectal cancer using genetic and epigenetic biomarkers: screening and diagnosis. J Med Life 2024; 17:4-14. [PMID: 38737656 PMCID: PMC11080499 DOI: 10.25122/jml-2023-0269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 11/01/2023] [Indexed: 05/14/2024] Open
Abstract
Colorectal cancer (CRC) is one of the most frequent types of cancer, with high incidence rates and mortality globally. The extended timeframe for developing CRC allows for the potential screening and early identification of the disease. Furthermore, studies have shown that survival rates for patients with cancer are increased when diagnoses are made at earlier stages. Recent research suggests that the development of CRC, including its precancerous lesion, is influenced not only by genetic factors but also by epigenetic variables. Studies suggest epigenetics plays a significant role in cancer development, particularly CRC. While this approach is still in its early stages and faces challenges due to the variability of CRC, it shows promise as a potential method for understanding and addressing the disease. This review examined the current evidence supporting genetic and epigenetic biomarkers for screening and diagnosis. In addition, we also discussed the feasibility of translating these methodologies into clinical settings. Several markers show promising potential, including the methylation of vimentin (VIM), syndecan-2 (SDC2), and septin 9 (SEPT9). However, their application as screening and diagnostic tools, particularly for early-stage CRC, has not been fully optimized, and their effectiveness needs validation in large, multi-center patient populations. Extensive trials and further investigation are required to translate genetic and epigenetic biomarkers into practical clinical use. biomarkers, diagnostic biomarkers.
Collapse
Affiliation(s)
- Yudith Annisa Ayu Rezkitha
- Doctoral Program of Medical Science, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
- Helicobacter pylori and Microbiota Study Group, Institute of Tropical Disease, Universitas Airlangga, Surabaya, Indonesia
| | - Nur Syahadati Retno Panenggak
- Helicobacter pylori and Microbiota Study Group, Institute of Tropical Disease, Universitas Airlangga, Surabaya, Indonesia
| | - Maria Inge Lusida
- Institute of Tropical Disease, Indonesia-Japan Collaborative Research Center for Emerging and Re-Emerging Infectious Diseases, Universitas Airlangga, Surabaya, Indonesia
| | - Raissa Virgy Rianda
- Department of Child Health, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Isna Mahmudah
- Helicobacter pylori and Microbiota Study Group, Institute of Tropical Disease, Universitas Airlangga, Surabaya, Indonesia
- Department of Internal Medicine, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Aditya Doni Pradana
- Department of Emergency Services, Kendal Islamic Hospital, Kendal, Indonesia
- Department of Cardiology and Vascular Medicine, Faculty of Medicine, Public Health and Nursing, Gadjah Mada University, Yogyakarta, Indonesia
| | - Tomohisa Uchida
- Department of Molecular Pathology, Faculty of Medicine, Oita University, Yufu, Japan
| | - Muhammad Miftahussurur
- Helicobacter pylori and Microbiota Study Group, Institute of Tropical Disease, Universitas Airlangga, Surabaya, Indonesia
- Division of Gastroentero-Hepatology, Department of Internal Medicine, Faculty of Medicine-Dr Soetomo Teaching Hospital, Universitas Airlangga, Surabaya, Indonesia
| |
Collapse
|
3
|
Otálora-Otálora BA, López-Rivera JJ, Aristizábal-Guzmán C, Isaza-Ruget MA, Álvarez-Moreno CA. Host Transcriptional Regulatory Genes and Microbiome Networks Crosstalk through Immune Receptors Establishing Normal and Tumor Multiomics Metafirm of the Oral-Gut-Lung Axis. Int J Mol Sci 2023; 24:16638. [PMID: 38068961 PMCID: PMC10706695 DOI: 10.3390/ijms242316638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/13/2023] [Accepted: 11/18/2023] [Indexed: 12/18/2023] Open
Abstract
The microbiome has shown a correlation with the diet and lifestyle of each population in health and disease, the ability to communicate at the cellular level with the host through innate and adaptative immune receptors, and therefore an important role in modulating inflammatory process related to the establishment and progression of cancer. The oral cavity is one of the most important interaction windows between the human body and the environment, allowing the entry of an important number of microorganisms and their passage across the gastrointestinal tract and lungs. In this review, the contribution of the microbiome network to the establishment of systemic diseases like cancer is analyzed through their synergistic interactions and bidirectional crosstalk in the oral-gut-lung axis as well as its communication with the host cells. Moreover, the impact of the characteristic microbiota of each population in the formation of the multiomics molecular metafirm of the oral-gut-lung axis is also analyzed through state-of-the-art sequencing techniques, which allow a global study of the molecular processes involved of the flow of the microbiota environmental signals through cancer-related cells and its relationship with the establishment of the transcription factor network responsible for the control of regulatory processes involved with tumorigenesis.
Collapse
Affiliation(s)
| | - Juan Javier López-Rivera
- Grupo de Investigación INPAC, Specialized Laboratory, Clinica Universitaria Colombia, Clínica Colsanitas S.A., Bogotá 111321, Colombia;
| | - Claudia Aristizábal-Guzmán
- Grupo de Investigación INPAC, Unidad de Investigación, Fundación Universitaria Sanitas, Bogotá 110131, Colombia;
| | - Mario Arturo Isaza-Ruget
- Keralty, Sanitas International Organization, Grupo de Investigación INPAC, Fundación Universitaria Sanitas, Bogotá 110131, Colombia;
| | - Carlos Arturo Álvarez-Moreno
- Infectious Diseases Department, Clinica Universitaria Colombia, Clínica Colsanitas S.A., Bogotá 111321, Colombia;
| |
Collapse
|
4
|
Joe S, Kim J, Lee JY, Jeon J, Byeon I, Han SW, Ryoo SB, Park KJ, Song SH, Cho S, Shim H, Chu HBK, Kang J, Lee HS, Kim D, Kim YJ, Kim TY, Kim SY. Epigenetic insights into colorectal cancer: comprehensive genome-wide DNA methylation profiling of 294 patients in Korea. BMB Rep 2023; 56:563-568. [PMID: 37574809 PMCID: PMC10618077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 06/20/2023] [Accepted: 08/14/2023] [Indexed: 08/15/2023] Open
Abstract
DNA methylation regulates gene expression and contributes to tumorigenesis in the early stages of cancer. In colorectal cancer (CRC), CpG island methylator phenotype (CIMP) is recognized as a distinct subset that is associated with specific molecular and clinical features. In this study, we investigated the genomewide DNA methylation patterns among patients with CRC. The methylation data of 1 unmatched normal, 142 adjacent normal, and 294 tumor samples were analyzed. We identified 40,003 differentially methylated positions with 6,933 (79.8%) hypermethylated and 16,145 (51.6%) hypomethylated probes in the genic region. Hypermethylated probes were predominantly found in promoter-like regions, CpG islands, and N shore sites; hypomethylated probes were enriched in open-sea regions. CRC tumors were categorized into three CIMP subgroups, with 90 (30.6%) in the CIMP-high (CIMP-H), 115 (39.1%) in the CIMP-low (CIMP-L), and 89 (30.3%) in the non-CIMP group. The CIMP-H group was associated with microsatellite instabilityhigh tumors, hypermethylation of MLH1, older age, and rightsided tumors. Our results showed that genome-wide methylation analyses classified patients with CRC into three subgroups according to CIMP levels, with clinical and molecular features consistent with previous data. [BMB Reports 2023; 56(10): 563-568].
Collapse
Affiliation(s)
- Soobok Joe
- Korea Bioinformation Center (KOBIC), Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea
| | - Jinyong Kim
- Department of Internal Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Jin-Young Lee
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea
| | - Jongbum Jeon
- Korea Bioinformation Center (KOBIC), Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea
| | - Iksu Byeon
- Korea Bioinformation Center (KOBIC), Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea
| | - Sae-Won Han
- Department of Internal Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul 03080, Korea
- Cancer Research Institute, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Seung-Bum Ryoo
- Department of Surgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Kyu Joo Park
- Department of Surgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Sang-Hyun Song
- Cancer Research Institute, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Sheehyun Cho
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea
| | - Hyeran Shim
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea
| | - Hoang Bao Khanh Chu
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea
| | - Jisun Kang
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea
| | - Hong Seok Lee
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea
| | | | - Young-Joon Kim
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea
- LepiDyne Co., Ltd., Seoul 04779, Korea
| | - Tae-You Kim
- Department of Internal Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul 03080, Korea
- Cancer Research Institute, Seoul National University College of Medicine, Seoul 03080, Korea
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Korea
- IMBdx, Inc., Seoul 08506, Korea
| | - Seon-Young Kim
- Korea Bioinformation Center (KOBIC), Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea
| |
Collapse
|
5
|
Lai C, He N, Zeng J, Long C, Shi M, Li J, Ma S, Xiong Y, Liang X. Highly expressed miR-144-3p promotes the proliferation, migration and invasion of colon carcinoma cells by activating the Wnt/β-catenin signaling pathway through targeting SFRP1. J Cancer 2023; 14:3117-3129. [PMID: 37859826 PMCID: PMC10583587 DOI: 10.7150/jca.87792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 09/04/2023] [Indexed: 10/21/2023] Open
Abstract
Background: To investigate the influence of miR-144-3p on the proliferation, migration and invasion of colon carcinoma by targeting secreted frizzled-related protein 1 (SFRP1) as well as of the Wnt/β-catenin signaling pathway. Methods: Based on the TCGA database, the association between the expression of miR-144-3p and the clinical information and prognosis of patients with colon carcinoma was examined, and SFRP1 was selected as the target gene for further studies based on bioinformatics prediction tools. CCK8 assay, wound healing assay and transwell invasion assay were employed to examine the impact of miR-144-3p on colon carcinoma cells. The regulation of SFRP1 by miR-144-3p was investigated using a dual-luciferase reporter system, and a rescue experiment was conducted to further elucidate whether miR-144-3p promotes the migration of colon carcinoma cells through targeting SFRP1 or not. The Wnt/β-catenin signaling pathway-mediated effect of miR-144-3p in colon carcinoma was finally validated through the targeting of SFRP1. Results: The bioinformatics analysis showed that the miR-144 expression levels were substantially greater in colon carcinoma tissue than in para-carcinoma tissue and were closely with clinical stage and prognosis. The findings obtained from the trial indicated that miR-144-3p substantially expressed in colon carcinoma tissue sample and the colon carcinoma cells, and the overexpressed miR-144-3p boosted the colon carcinoma cells' proliferation, migration and invasion. The results of dual-luciferase reporter gene assay revealed that miR-144-3p targeted SFRP1, and rescue experiment was carried out and its results indicated that miR-144-3p increased colon carcinoma cells' migration through targeting SFRP1. In addition, the molecular axis of miR-144-3p/SFRP1 may over-activate the Wnt/β-catenin signaling pathway. Conclusions: The present study has identified a novel malignant biological behavior, namely the ability of miR-144-3p to enhance the proliferation, migration and invasion of colon carcinoma cells by targeting SFRP1 and activating the Wnt/β-catenin signaling pathway. Consequently, miR-144-3p emerges as a promising diagnostic and therapeutic target for colon carcinoma.
Collapse
Affiliation(s)
- Chunhui Lai
- Department of Medical Laboratory, The Third Affiliated Hospital of Guangxi Medical University / The Second Nanning People's Hospital, Nanning, Guangxi, China
- Guangxi Key Laboratory of Molecular Immunology Research, Nanning, Guangxi, China
| | - Ningyu He
- Department of administrative office, Nanning maternity and Child Health Hospital/Nanning women and children's hospital, Nanning, Guangxi, China
- Department of neurology, The Third Affiliated Hospital of Guangxi Medical University/The Second Nanning People's Hospital, Nanning, Guangxi, China
| | - Jianghui Zeng
- Department of Medical Laboratory, The Third Affiliated Hospital of Guangxi Medical University / The Second Nanning People's Hospital, Nanning, Guangxi, China
- Guangxi Key Laboratory of Molecular Immunology Research, Nanning, Guangxi, China
| | - Cuizhen Long
- Department of Medical Laboratory, The Third Affiliated Hospital of Guangxi Medical University / The Second Nanning People's Hospital, Nanning, Guangxi, China
- Guangxi Key Laboratory of Molecular Immunology Research, Nanning, Guangxi, China
| | - Mingfang Shi
- Department of Medical Laboratory, The Third Affiliated Hospital of Guangxi Medical University / The Second Nanning People's Hospital, Nanning, Guangxi, China
- Guangxi Key Laboratory of Molecular Immunology Research, Nanning, Guangxi, China
| | - Junguo Li
- Department of Medical Laboratory, The Third Affiliated Hospital of Guangxi Medical University / The Second Nanning People's Hospital, Nanning, Guangxi, China
| | - Shengjun Ma
- Department of Medical Laboratory, The Third Affiliated Hospital of Guangxi Medical University / The Second Nanning People's Hospital, Nanning, Guangxi, China
| | - Yu Xiong
- Department of Medical Laboratory, The Third Affiliated Hospital of Guangxi Medical University / The Second Nanning People's Hospital, Nanning, Guangxi, China
| | - Xiuyun Liang
- Department of Medical Laboratory, The Third Affiliated Hospital of Guangxi Medical University / The Second Nanning People's Hospital, Nanning, Guangxi, China
- Guangxi Key Laboratory of Molecular Immunology Research, Nanning, Guangxi, China
| |
Collapse
|
6
|
Mao F, Baiyin H, Li J, Chen X, Xu Y, Wang C, Li C. Editorial: Biomedical application of DNA modifications. Front Genet 2023; 14:1286185. [PMID: 37745861 PMCID: PMC10515202 DOI: 10.3389/fgene.2023.1286185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 09/04/2023] [Indexed: 09/26/2023] Open
Affiliation(s)
- Fengbiao Mao
- Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, China
- Cancer Center, Peking University Third Hospital, Beijing, China
| | - Husile Baiyin
- Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, China
- Cancer Center, Peking University Third Hospital, Beijing, China
| | - Jinchen Li
- Bioinformatics Center, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Xiao Chen
- Laboratory of Marine Protozoan Biodiversity and Evolution, Marine College, Shandong University, Weihai, China
| | - Yungang Xu
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Chenqi Wang
- Center for Global Health and Infectious Diseases Research, College of Public Health, University of South Florida, Tampa, FL, United States
| | - Chang Li
- Center for Global Health and Infectious Diseases Research, College of Public Health, University of South Florida, Tampa, FL, United States
| |
Collapse
|
7
|
Maqbool M, Khan A, Shahzad A, Sarfraz Z, Sarfraz A, Aftab H, Jaan A. Predictive biomarkers for colorectal cancer: a state-of-the-art systematic review. Biomarkers 2023; 28:562-598. [PMID: 37585692 DOI: 10.1080/1354750x.2023.2247185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 08/06/2023] [Indexed: 08/18/2023]
Abstract
INTRODUCTION Colorectal cancer (CRC) poses a substantial health burden, with early detection paramount for improved prognosis. This study aims to evaluate potential CRC biomarkers and detection techniques. MATERIALS AND METHODS This systematic review, reported in adherence to PRISMA Statement 2020 guidelines, collates the latest research on potential biomarkers and detection/prognosis methods for CRC, spanning the last decade. RESULTS Out of the 38 included studies, diverse biomarkers and detection methods emerged, with DNA methylation markers like SFRP2 and SDC2, microRNAs including miR-1290, miR-506, and miR-4316, and serum and plasma markers such as NTS levels and U2 snRNA fragments standing out. Methylated cfDNA and m5C methylation alteration in immune cells of the blood, along with circular RNA, showed promise as diagnostic markers. Meanwhile, techniques involving extracellular vesicles and lateral flow immunoassays exhibited potential for swift and effective CRC screening. DISCUSSION Our state-of-the-art review identifies potential biomarkers, including SFRP2, SDC2, miR-1290, miR-506, miR-4316, and U2 snRNA fragments, with significant potential in enhancing CRC detection. However, comprehensive validation studies and a rigorous evaluation of clinical utility and cost-effectiveness remain necessary before integration into routine clinical practice. CONCLUSION The findings emphasize the need for continued research into biomarkers and detection methods to improve patient outcomes.
Collapse
Affiliation(s)
- Moeez Maqbool
- Sheikh Zayed Medical College, Rahim Yar Khan, Pakistan
| | - Aden Khan
- Fatima Jinnah Medical University, Lahore, Pakistan
| | | | | | | | - Hinna Aftab
- CMH Lahore Medical and Dental College, Lahore, Pakistan
| | - Ali Jaan
- Rochester General Hospital, Rochester, NY, USA
| |
Collapse
|
8
|
Zhou H, Hou H, Hou S, Zhou T. Transcriptional expression, prognostic value and immune infiltration of SFRP family in colorectal cancer: a study based on comprehensive bioinformatics and in vitro analyses. Transl Cancer Res 2023; 12:1912-1928. [PMID: 37701102 PMCID: PMC10493803 DOI: 10.21037/tcr-23-152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 06/27/2023] [Indexed: 09/14/2023]
Abstract
Background Secreted frizzled-related protein (SFRP) is a crucial regulator of Wnt signaling, involved in multiple biological processes including cell proliferation and metastasis. Despite the accumulation of evidence that indicated that SFRPs are differentially expressed and play a key role in various malignancies, the function of different SFRPs in colorectal cancer (CRC) remains insufficiently studied. Methods Multicenter databases, including GEPIA, cBioPortal, UALCAN, Pathway Commons, STRING, TIMER, CCLE, and LinkedOmics, comprehensively analyzed differential expression, prognostic value, genetic alterations, signaling pathways, immune cell infiltration, and associated genes of the SFRP family in CRC patients. Colony formation, wound healing, and transwell assays were performed to further validate in vitro. Results SFRP family members were differentially expressed in CRC, with each member showing varying degrees of genetic alterations. Except for SFRP5, the remaining members show a significant correlation with immune cells. Interestingly, only SFRP2 significantly correlated with CRC prognosis and stage. Additionally, SFRP2 participated in a number of critical biological processes, including metastasis and cell proliferation. Moreover, cell function assays suggested the elimination of SFRP2 inhibits the proliferation, migration, and invasion of HCT116 cells. Conclusions The differential expression of SFRP2 is closely associated with the prognosis of CRC patients. In addition, abnormal expression of SFRP2 has a significant impact on the progression of CRC, including proliferation, migration, and invasion. SFRP2 may become a novel prognostic factor for CRC.
Collapse
Affiliation(s)
| | | | - Songlin Hou
- The Second Department of Gastrointestinal Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | | |
Collapse
|
9
|
Zhen Y, Pavez M, Li X. The role of Pcdh10 in neurological disease and cancer. J Cancer Res Clin Oncol 2023; 149:8153-8164. [PMID: 37058252 PMCID: PMC10374755 DOI: 10.1007/s00432-023-04743-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 04/03/2023] [Indexed: 04/15/2023]
Abstract
BACKGROUND Protocadherin 10 (PCDH 10), a member of the superfamily of protocadherins, is a Ca2+-dependent homophilic cell-cell adhesion molecule expressed on the surface of cell membranes. Protocadherin 10 plays a critical role in the central nervous system including in cell adhesion, formation and maintenance of neural circuits and synapses, regulation of actin assembly, cognitive function and tumor suppression. Additionally, Pcdh10 can serve as a non-invasive diagnostic and prognostic indicator for various cancers. METHODS This paper collects and reviews relevant literature in Pubmed. CONCLUSION This review describes the latest research understanding the role of Pcdh10 in neurological disease and human cancer, highlighting the importance of scrutinizing its properties for the development of targeted therapies and identifying a need for further research to explore Pcdh10 functions in other pathways, cell types and human pathologies.
Collapse
Affiliation(s)
- Yilan Zhen
- Menzies Institute for Medical Research, University of Tasmania, Liverpool street, Hobart, 7000, Australia
| | - Macarena Pavez
- Department of Anatomy, University of Otago, Dunedin, Otago, New Zealand.
| | - Xinying Li
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, People's Republic of China.
- School of Life Sciences, Anhui Medical University, Hefei, People's Republic of China.
| |
Collapse
|
10
|
Meyer C, Larghero P, Almeida Lopes B, Burmeister T, Gröger D, Sutton R, Venn NC, Cazzaniga G, Corral Abascal L, Tsaur G, Fechina L, Emerenciano M, Pombo-de-Oliveira MS, Lund-Aho T, Lundán T, Montonen M, Juvonen V, Zuna J, Trka J, Ballerini P, Lapillonne H, Van der Velden VHJ, Sonneveld E, Delabesse E, de Matos RRC, Silva MLM, Bomken S, Katsibardi K, Keernik M, Grardel N, Mason J, Price R, Kim J, Eckert C, Lo Nigro L, Bueno C, Menendez P, Zur Stadt U, Gameiro P, Sedék L, Szczepański T, Bidet A, Marcu V, Shichrur K, Izraeli S, Madsen HO, Schäfer BW, Kubetzko S, Kim R, Clappier E, Trautmann H, Brüggemann M, Archer P, Hancock J, Alten J, Möricke A, Stanulla M, Lentes J, Bergmann AK, Strehl S, Köhrer S, Nebral K, Dworzak MN, Haas OA, Arfeuille C, Caye-Eude A, Cavé H, Marschalek R. The KMT2A recombinome of acute leukemias in 2023. Leukemia 2023; 37:988-1005. [PMID: 37019990 PMCID: PMC10169636 DOI: 10.1038/s41375-023-01877-1] [Citation(s) in RCA: 55] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/09/2023] [Accepted: 03/15/2023] [Indexed: 04/07/2023]
Abstract
Chromosomal rearrangements of the human KMT2A/MLL gene are associated with de novo as well as therapy-induced infant, pediatric, and adult acute leukemias. Here, we present the data obtained from 3401 acute leukemia patients that have been analyzed between 2003 and 2022. Genomic breakpoints within the KMT2A gene and the involved translocation partner genes (TPGs) and KMT2A-partial tandem duplications (PTDs) were determined. Including the published data from the literature, a total of 107 in-frame KMT2A gene fusions have been identified so far. Further 16 rearrangements were out-of-frame fusions, 18 patients had no partner gene fused to 5'-KMT2A, two patients had a 5'-KMT2A deletion, and one ETV6::RUNX1 patient had an KMT2A insertion at the breakpoint. The seven most frequent TPGs and PTDs account for more than 90% of all recombinations of the KMT2A, 37 occur recurrently and 63 were identified so far only once. This study provides a comprehensive analysis of the KMT2A recombinome in acute leukemia patients. Besides the scientific gain of information, genomic breakpoint sequences of these patients were used to monitor minimal residual disease (MRD). Thus, this work may be directly translated from the bench to the bedside of patients and meet the clinical needs to improve patient survival.
Collapse
Affiliation(s)
- C Meyer
- DCAL/Institute of Pharm. Biology, Goethe-University, Frankfurt/Main, Germany
| | - P Larghero
- DCAL/Institute of Pharm. Biology, Goethe-University, Frankfurt/Main, Germany
| | - B Almeida Lopes
- DCAL/Institute of Pharm. Biology, Goethe-University, Frankfurt/Main, Germany
- Instituto Nacional de Câncer (INCA), Rio de Janeiro, RJ, Brazil
| | - T Burmeister
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Dept. of Hematology, Oncology and Tumor Immunology, Berlin, Germany
| | - D Gröger
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Dept. of Hematology, Oncology and Tumor Immunology, Berlin, Germany
| | - R Sutton
- Molecular Diagnostics, Children's Cancer Institute, Lowy Cancer Research Centre, UNSW, Sydney, NSW, Australia
| | - N C Venn
- Molecular Diagnostics, Children's Cancer Institute, Lowy Cancer Research Centre, UNSW, Sydney, NSW, Australia
| | - G Cazzaniga
- Tettamanti Research Center, Pediatrics, University of Milano-Bicocca/Fondazione Tettamanti, Monza, Italy
| | - L Corral Abascal
- Tettamanti Research Center, Pediatrics, University of Milano-Bicocca/Fondazione Tettamanti, Monza, Italy
| | - G Tsaur
- Regional Children's Hospital, Ekaterinburg, Russian Federation; Research Institute of Medical Cell Technologies, Ekaterinburg, Russian Federation
| | - L Fechina
- Regional Children's Hospital, Ekaterinburg, Russian Federation; Research Institute of Medical Cell Technologies, Ekaterinburg, Russian Federation
| | - M Emerenciano
- Instituto Nacional de Câncer (INCA), Rio de Janeiro, RJ, Brazil
| | | | - T Lund-Aho
- Laboratory of Clinical Genetics, Fimlab Laboratories, Tampere, Finland
| | - T Lundán
- Department of Clinical Chemistry and Laboratory Division, University of Turku and Turku University Hospital, Turku, Finland
| | - M Montonen
- Department of Clinical Chemistry and Laboratory Division, University of Turku and Turku University Hospital, Turku, Finland
| | - V Juvonen
- Department of Clinical Chemistry and Laboratory Division, University of Turku and Turku University Hospital, Turku, Finland
| | - J Zuna
- CLIP, Department of Paediatric Haematology and Oncology, Second Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic
| | - J Trka
- CLIP, Department of Paediatric Haematology and Oncology, Second Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic
| | - P Ballerini
- Biological Hematology, AP-HP A. Trousseau, Pierre et Marie Curie University, Paris, France
| | - H Lapillonne
- Biological Hematology, AP-HP A. Trousseau, Pierre et Marie Curie University, Paris, France
| | - V H J Van der Velden
- Department of Immunology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - E Sonneveld
- Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
| | - E Delabesse
- Institut Universitaire du Cancer de Toulouse, Toulouse Cedex 9, France
| | - R R C de Matos
- Cytogenetics Department, Bone Marrow Transplantation Unit, National Cancer Institute (INCA), Rio de Janeiro, Brazil
| | - M L M Silva
- Cytogenetics Department, Bone Marrow Transplantation Unit, National Cancer Institute (INCA), Rio de Janeiro, Brazil
| | - S Bomken
- Wolfson Childhood Cancer Research Centre, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - K Katsibardi
- Division of Pediatric Hematology-Oncology, First Department of Pediatrics, National and Kapodistrian University of Athens, "Aghia Sophia" Children's Hospital, Athens, Greece
| | - M Keernik
- Genetics and Personalized Medicine Clinic, Tartu University Hospital, Tartu, Estonia
| | - N Grardel
- Department of Hematology, CHU Lille, France
| | - J Mason
- Northern Institute for Cancer Research, Newcastle University and the Great North Children's West Midlands Regional Genetics Laboratory, Birmingham Women's and Children's NHS Foundation Trust, Mindelsohn Way, Birmingham, United Kingdom
| | - R Price
- Northern Institute for Cancer Research, Newcastle University and the Great North Children's West Midlands Regional Genetics Laboratory, Birmingham Women's and Children's NHS Foundation Trust, Mindelsohn Way, Birmingham, United Kingdom
| | - J Kim
- DCAL/Institute of Pharm. Biology, Goethe-University, Frankfurt/Main, Germany
- Department of Laboratory Medicine, Wonju Severance Christian Hospital, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - C Eckert
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Pediatric Oncology/Hematology, Berlin, Germany
| | - L Lo Nigro
- Centro di Riferimento Regionale di Ematologia ed Oncologia Pediatrica, Azienda Policlinico "G. Rodolico", Catania, Italy
| | - C Bueno
- Josep Carreras Leukemia Research Institute. Barcelona, Spanish Network for Advanced Therapies (RICORS-TERAV, ISCIII); Spanish Collaborative Cancer Network (CIBERONC. ISCIII); University of Barcelona, Barcelona, Spain
- Josep Carreras Leukemia Research Institute. Barcelona, Spanish Network for Advanced Therapies (RICORS-TERAV, ISCIII); Spanish Collaborative Cancer Network (CIBERONC. ISCIII); Department of Biomedicine. University of Barcelona; and Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - P Menendez
- Centro di Riferimento Regionale di Ematologia ed Oncologia Pediatrica, Azienda Policlinico "G. Rodolico", Catania, Italy
| | - U Zur Stadt
- Pediatric Hematology and Oncology and CoALL Study Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - P Gameiro
- Instituto Português de Oncologia, Departament of Hematology, Lisbon, Portugal
| | - L Sedék
- Department of Pediatric Hematology and Oncology, Medical University of Silesia, Zabrze, Poland
| | - T Szczepański
- Department of Pediatric Hematology and Oncology, Medical University of Silesia, Zabrze, Poland
| | - A Bidet
- Laboratoire d'Hématologie Biologique, CHU Bordeaux, Bordeaux, France
| | - V Marcu
- Hematology Laboratory, Sheba Medical Center, Tel-Hashomer, Israel
| | - K Shichrur
- Molecular Oncology Laboratory, Schneider Children's Medical Center of Israel, Petah Tikva, Israel
| | - S Izraeli
- Pediatric Hematology-Oncology, Schneider Children's Medical Center, Petah Tikva, and Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - H O Madsen
- Department of Clinical Immunology, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - B W Schäfer
- Division of Oncology and Children's Research Centre, University Children's Hospital Zurich, Zurich, Switzerland
| | - S Kubetzko
- Division of Oncology and Children's Research Centre, University Children's Hospital Zurich, Zurich, Switzerland
| | - R Kim
- Hematology Laboratory, Saint Louis Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
- Université Paris Cité, INSERM/CNRS U944/UMR7212, Institut de recherche Saint-Louis, Paris, France
| | - E Clappier
- Hematology Laboratory, Saint Louis Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
- Université Paris Cité, INSERM/CNRS U944/UMR7212, Institut de recherche Saint-Louis, Paris, France
| | - H Trautmann
- Laboratory for Specialized Hematological Diagnostics, Medical Department II, University Hospital Schleswig-Holstein, Kiel, Germany
| | - M Brüggemann
- Laboratory for Specialized Hematological Diagnostics, Medical Department II, University Hospital Schleswig-Holstein, Kiel, Germany
| | - P Archer
- Bristol Genetics Laboratory, North Bristol NHS Trust, Bristol, United Kingdom
| | - J Hancock
- Bristol Genetics Laboratory, North Bristol NHS Trust, Bristol, United Kingdom
| | - J Alten
- Department of Pediatrics, University Hospital Schleswig-Holstein, Kiel, Germany
| | - A Möricke
- Department of Pediatrics, University Hospital Schleswig-Holstein, Kiel, Germany
| | - M Stanulla
- Department of Pediatrics, MHH, Hanover, Germany
| | - J Lentes
- Institute of Human Genetics, Medical School Hannover, Hannover, Germany
| | - A K Bergmann
- Institute of Human Genetics, Medical School Hannover, Hannover, Germany
| | - S Strehl
- St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria
| | - S Köhrer
- St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria
- Labdia Labordiagnostik, Vienna, Austria
| | - K Nebral
- St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria
- Labdia Labordiagnostik, Vienna, Austria
| | - M N Dworzak
- St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria
- Labdia Labordiagnostik, Vienna, Austria
- St. Anna Children's Hospital, Medical University of Vienna, Vienna, Austria
| | - O A Haas
- St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria
- Labdia Labordiagnostik, Vienna, Austria
- St. Anna Children's Hospital, Medical University of Vienna, Vienna, Austria
| | - C Arfeuille
- Genetics Department, AP-HP, Hopital Robert Debré, Paris, France
| | - A Caye-Eude
- Genetics Department, AP-HP, Hopital Robert Debré, Paris, France
- Université Paris Cité, Inserm U1131, Institut de recherche Saint-Louis, Paris, France
| | - H Cavé
- Genetics Department, AP-HP, Hopital Robert Debré, Paris, France
- Université Paris Cité, Inserm U1131, Institut de recherche Saint-Louis, Paris, France
| | - R Marschalek
- DCAL/Institute of Pharm. Biology, Goethe-University, Frankfurt/Main, Germany.
| |
Collapse
|
11
|
Jia F, Li Y, Gao Y, Wang X, Lu J, Cui X, Pan Z, Xu C, Deng X, Wu Y. Long-acting anti-colorectal cancer by nanocomplex co-regulating Bmi1 through miR-218 and siCCAT1. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
|
12
|
Zhou H, Li L, Chen J, Hou S, Zhou T, Xiong Y. Expression and prognostic value of PRDX family in colon adenocarcinoma by integrating comprehensive analysis and in vitro and in vivo validation. Front Oncol 2023; 13:1136738. [PMID: 36969053 PMCID: PMC10035177 DOI: 10.3389/fonc.2023.1136738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 02/27/2023] [Indexed: 03/11/2023] Open
Abstract
BackgroundThe peroxiredoxin family, a crucial regulator of redox reactions, is strongly associated with various tumorigenesis. However, the role of peroxiredoxin4 (PRDX4) in colon adenocarcinoma (COAD) remains poorly understood.MethodsMulticenter databases, including GEPIA, HPA, UALCAN, cBioPortal, cancerSEA, STRING, CCLE, and LinkedOmics, comprehensively analyzed transcriptional expression, prognostic value, genetic alterations, signaling pathways, and associated genes of the PRDXs in COAD patients. Colony formation, transwell, flow cytometry, sphere formation, and xenograft assays were performed to validate further in vitro and in vivo.ResultsMembers of the PRDX family were differentially expressed in COAD, with each member showing varying degrees of genetic alterations. Intriguingly, only PRDX4 significantly correlated with COAD prognosis and stage. The single-cell sequencing suggested that PRDX4 is positively correlated with proliferation, apoptosis, and invasion, whereas negatively correlated with stemness. Moreover, PRDX4 involved in a series of critical biological processes, such as cell growth. Furthermore, in vivo and in vitro analyses indicated that knocking down PRDX4 inhibits the proliferation and invasion of HCT116 cells while promoting apoptosis and stemness.ConclusionsWe identified PRDX4 expression as a novel potential prognostic marker in COAD.
Collapse
Affiliation(s)
- He Zhou
- The Second Department of Gastrointestinal Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
- Institute of Hepatobiliary, Pancreatic and Intestinal Disease, North Sichuan Medical College, Nanchong, China
- Laboratory of Cancer Biology Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Lifa Li
- The Second Department of Gastrointestinal Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
- Institute of Hepatobiliary, Pancreatic and Intestinal Disease, North Sichuan Medical College, Nanchong, China
| | - Jia Chen
- The Second Department of Gastrointestinal Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
- Institute of Hepatobiliary, Pancreatic and Intestinal Disease, North Sichuan Medical College, Nanchong, China
| | - Songlin Hou
- The Second Department of Gastrointestinal Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
- Institute of Hepatobiliary, Pancreatic and Intestinal Disease, North Sichuan Medical College, Nanchong, China
| | - Tong Zhou
- The Second Department of Gastrointestinal Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
- Institute of Hepatobiliary, Pancreatic and Intestinal Disease, North Sichuan Medical College, Nanchong, China
| | - Yongfu Xiong
- Institute of Hepatobiliary, Pancreatic and Intestinal Disease, North Sichuan Medical College, Nanchong, China
- The Department of Hepatobiliary Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
- *Correspondence: Yongfu Xiong,
| |
Collapse
|
13
|
Gogoi P, Kaur G, Singh NK. Nanotechnology for colorectal cancer detection and treatment. World J Gastroenterol 2022; 28:6497-6511. [PMID: 36569271 PMCID: PMC9782835 DOI: 10.3748/wjg.v28.i46.6497] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/28/2022] [Accepted: 11/18/2022] [Indexed: 12/08/2022] Open
Abstract
Colorectal cancer (CRC) is the third most diagnosed cancer and the second leading cause of cancer-related mortality in the United States. Across the globe, people in the age group older than 50 are at a higher risk of CRC. Genetic and environmental risk factors play a significant role in the development of CRC. If detected early, CRC is preventable and treatable. Currently, available screening methods and therapies for CRC treatment reduce the incidence rate among the population, but the micrometastasis of cancer may lead to recurrence. Therefore, the challenge is to develop an alternative therapy to overcome this complication. Nanotechnology plays a vital role in cancer treatment and offers targeted chemotherapies directly and selectively to cancer cells, with enhanced therapeutic efficacy. Additionally, nanotechnology elevates the chances of patient survival in comparison to traditional chemotherapies. The potential of nanoparticles includes that they may be used simultaneously for diagnosis and treatment. These exciting properties of nanoparticles have enticed researchers worldwide to unveil their use in early CRC detection and as effective treatment. This review discusses contemporary methods of CRC screening and therapies for CRC treatment, while the primary focus is on the theranostic approach of nanotechnology in CRC treatment and its prospects. In addition, this review aims to provide knowledge on the advancement of nanotechnology in CRC and as a starting point for researchers to think about new therapeutic approaches using nanotechnology.
Collapse
Affiliation(s)
- Purnima Gogoi
- Integrative Biosciences Center, OVAS, Wayne State University School of Medicine, Detroit, MI 48202, United States
| | - Geetika Kaur
- Integrative Biosciences Center, OVAS, Wayne State University School of Medicine, Detroit, MI 48202, United States
| | - Nikhlesh K Singh
- Integrative Biosciences Center, OVAS, Wayne State University School of Medicine, Detroit, MI 48202, United States
| |
Collapse
|
14
|
Dobre M, Trandafir B, Milanesi E, Salvi A, Bucuroiu I, Vasilescu C, Niculae AM, Herlea V, Hinescu ME, Constantinescu G. Molecular profile of the NF-κB signalling pathway in human colorectal cancer. J Cell Mol Med 2022; 26:5966-5975. [PMID: 36433652 PMCID: PMC9753446 DOI: 10.1111/jcmm.17545] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 07/06/2022] [Accepted: 07/23/2022] [Indexed: 11/27/2022] Open
Abstract
The development and progression of colorectal cancer (CRC) have been associated with inflammation processes that involve the overactivation of the NF-κB signalling pathway. The characterization of the NF-κB expression profile in CRC is an important topic since the suppression of NF-κB represents a potential therapeutic approach. In this study, we assessed the expression levels of 84 NF-κB-related genes in paired tumoral (T) and peritumoral (PT) tissues from 18 CRC patients and 18 normal colonic mucosae, and the expression levels of three miRNAs targeting the most dysregulated genes revealed by the case-control analysis. Comparing the gene expression profile of T and controls, 60 genes were dysregulated. The comparison of T and PT revealed 17 dysregulated genes in the tumoral tissues, with IL1B, CXCL8, IL1A, and CSF2 being the most upregulated. Notably, through a bioinformatics analysis, the differential gene expression of 11 out of the 17 genes was validated on a larger cohort of 308 CRC patients compared with 41 controls. Moreover, a decrease in the levels of RELA, NOD1, CASP8, BCL2L1, ELK1, and IKBKB was identified in poorly differentiated tumours compared to moderately differentiated tumours. The analysis of the three miRNAs targeting IL1B, CXCL8, IL1A, and CSF2 showed that miR-182-5p was upregulated in T compared with PT, whereas miR-10b-5p was downregulated in T compared with PT and control tissues. Our results may contribute to the design of new experimental therapeutic strategies based on endogenous molecules, such as miRNAs, to target the genetic key players of the NF- κB pathway.
Collapse
Affiliation(s)
- Maria Dobre
- Victor Babes National Institute of PathologyBucharestRomania
| | - Bogdan Trandafir
- Faculty of MedicineCarol Davila University of Medicine and PharmacyBucharestRomania,Fundeni Clinical InstituteBucharestRomania
| | - Elena Milanesi
- Victor Babes National Institute of PathologyBucharestRomania
| | - Alessandro Salvi
- Division of Biology and Genetics, Department of Molecular and Translational MedicineUniversity of BresciaBresciaItaly
| | - Ioana Alina Bucuroiu
- Faculty of MedicineCarol Davila University of Medicine and PharmacyBucharestRomania
| | - Catalin Vasilescu
- Faculty of MedicineCarol Davila University of Medicine and PharmacyBucharestRomania,Fundeni Clinical InstituteBucharestRomania
| | - Andrei Marian Niculae
- Victor Babes National Institute of PathologyBucharestRomania,Faculty of MedicineCarol Davila University of Medicine and PharmacyBucharestRomania
| | | | - Mihail Eugen Hinescu
- Victor Babes National Institute of PathologyBucharestRomania,Faculty of MedicineCarol Davila University of Medicine and PharmacyBucharestRomania
| | - Gabriel Constantinescu
- Faculty of MedicineCarol Davila University of Medicine and PharmacyBucharestRomania,Clinical Emergency Hospital BucharestBucharestRomania
| |
Collapse
|
15
|
Zhang Y, Ren H, Zhang C, Li H, Guo Q, Xu H, Cui L. Development and validation of four ferroptosis-related gene signatures and their correlations with immune implication in hepatocellular carcinoma. Front Immunol 2022; 13:1028054. [PMID: 36304446 PMCID: PMC9592986 DOI: 10.3389/fimmu.2022.1028054] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 09/26/2022] [Indexed: 11/13/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common malignant tumors. This tumor presents with an insidious onset, rapid progression, and frequent recurrence. Ferroptosis is a newly discovered mode of programmed cell death that may play a key role in the progression of HCC. This study aimed to investigate the prognostic value of ferroptosis-related genes (FRGs) in HCC and their impact on tumor immune function, thereby providing new insights into targeted therapy for HCC. First, 43 differentially expressed FRGs were identified using the TCGA database, and four prognostically relevant methylation-driven FRGs (G6PD, HELLS, RRM2, and STMN1) were screened via survival and methylation analyses. Gene co-expression, mutation, and clinicopathological characterization indicated that these four pivotal FRGs play essential roles in tumor progression. We also validated these four genes using transcriptomic and proteomic data as well as cohort samples from our patients. Moreover, receiver operator characteristic (ROC) curves confirmed that the signatures of the four FRGs were independent prognostic factors in HCC. Gene set enrichment analysis of the four FRGs showed statistically significant associations with pathways related to HCC proliferation. Finally, the TIMER and TISIDB databases indicated that the four FRGs were statistically significantly correlated with tumor-infiltrating immune cells and immune checkpoint expression. Taken together, this study provides information guiding a novel therapeutic strategy targeting FRGs for HCC treatment.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - He Ren
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, China
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin, China
| | - Chunting Zhang
- Department of Nursing, Air Force Medical Center, People’s Liberation Army (PLA), Beijing, China
| | - Haihua Li
- Pediatric Nursing Station of Qitaihe Maternal and Child Health Hospital, Qitaihe, Heilongjiang Qitaihe Province, China
| | - Qingzhi Guo
- Department of Renal Sixth, Heilongjiang Academy of Traditional Chinese Medicine, Harbin, Heilongjiang Harbin Province, China
| | - Haitao Xu
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Cancer Hospital of Harbin Medical University, Harbin, China
- *Correspondence: Lina Cui, ; Haitao Xu,
| | - Lina Cui
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, China
- *Correspondence: Lina Cui, ; Haitao Xu,
| |
Collapse
|
16
|
Zhan L, Sun C, Zhang Y, Zhang Y, Jia Y, Wang X, Li F, Li D, Wang S, Yu T, Zhang J, Li D. Four methylation-driven genes detected by linear discriminant analysis model from early-stage colorectal cancer and their methylation levels in cell-free DNA. Front Oncol 2022; 12:949244. [PMID: 36158666 PMCID: PMC9491101 DOI: 10.3389/fonc.2022.949244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 08/12/2022] [Indexed: 12/24/2022] Open
Abstract
The process of colorectal cancer (CRC) formation is considered a typical model of multistage carcinogenesis in which aberrant DNA methylation plays an important role. In this study, 752 methylation-driven genes (MDGs) were identified by the MethylMix package based on methylation and gene expression data of CRC in The Cancer Genome Atlas (TCGA). Iterative recursive feature elimination (iRFE) based on linear discriminant analysis (LDA) was used to determine the minimum MDGs (iRFE MDGs), which could distinguish between cancer and cancer-adjacent tissues. Further analysis indicated that the changes in methylation levels of the four iRFE MDGs, ADHFE1-Cluster1, CNRIP1-Cluster1, MAFB, and TNS4, occurred in adenoma tissues, while changes did not occur until stage IV in cell-free DNA. Furthermore, the methylation levels of iRFE MDGs were correlated with the genes involved in the reprogramming process of somatic cells to pluripotent stem cells, which is considered the common signature of cancer cells and embryonic stem cells. The above results indicated that the four iRFE MDGs may play roles in the early stage of colorectal carcinogenesis and highlighted the complicated relationship between tissue DNA and cell-free DNA (cfDNA).
Collapse
Affiliation(s)
- Lei Zhan
- Medical Oncology Department of Gastrointestinal Cancer, Liaoning Cancer Hospital and Institute, Cancer Hospital of China Medical University, Shenyang, China
| | - Changjian Sun
- Clinical Laboratory, Air Force Hospital of Northern Theater, PLA, Shenyang, China
| | - Yu Zhang
- Clinical Laboratory, Air Force Hospital of Northern Theater, PLA, Shenyang, China
| | - Yue Zhang
- Clinical Laboratory, Air Force Hospital of Northern Theater, PLA, Shenyang, China
| | - Yuzhe Jia
- Clinical Laboratory, Air Force Hospital of Northern Theater, PLA, Shenyang, China
| | - Xiaoyan Wang
- Clinical Laboratory, Air Force Hospital of Northern Theater, PLA, Shenyang, China
| | - Feifei Li
- Medical Oncology Department of Gastrointestinal Cancer, Liaoning Cancer Hospital and Institute, Cancer Hospital of China Medical University, Shenyang, China
| | - Donglin Li
- Orthopedics Department, Air Force Hospital of Northern Theater, PLA, Shenyang, China
| | - Shen Wang
- Department of Ultrasound and Special Diagnosis, Air Force Hospital of Northern Theater, PLA, Shenyang, China
| | - Tao Yu
- Nursing Department, Air Force Medical Center, PLA, Beijing, China
| | - Jingdong Zhang
- Medical Oncology Department of Gastrointestinal Cancer, Liaoning Cancer Hospital and Institute, Cancer Hospital of China Medical University, Shenyang, China
| | - Deyang Li
- Clinical Laboratory, Air Force Hospital of Northern Theater, PLA, Shenyang, China
- *Correspondence: Deyang Li,
| |
Collapse
|
17
|
Zhang X, Li A, Wu J, Wu Y, Ma X, Liu Y, Chen Q, Zhang Y. Promoter methylation analysis of DKK2 may be a potential biomarker for early detection of cervical cancer. ASIAN BIOMED 2022; 16:181-189. [PMID: 37551167 PMCID: PMC10321177 DOI: 10.2478/abm-2022-0022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Background Dickkopf 2 (DKK2) plays an important role in multiple cancers. Its potential value in the clinical diagnosis of cervical cancer has remained unclear. Objectives To investigate the expression and promoter methylation levels of DKK2 in cervical cancer and their clinicopathological associations. Methods We used the Gene Expression Omnibus, Oncomine, Cancer Genome Atlas, and University of ALabama at Birmingham CANcer data analysis databases, reverse transcription-PCR, and methylation-specific PCR analysis to predict and examine the expression of DKK2 mRNA and DKK2 methylation levels in cell lines and cervical cancer tissues from 79 patients with cervical cancer and 63 with cervical precancerous lesions including 25 with low-grade squamous intraepithelial lesions (LSIL) and 38 patients with high-grade squamous intraepithelial lesions (HSIL). Results DKK2 mRNA expression was downregulated in all cancer cell lines and cervical cancer tissues, whereas hypermethylation of DKK2 was higher in cervical cancer tissue samples. DKK2 methylation in cervical cancer was significantly higher than that in HSIL (χ2 = 8.346, P = 0.004), whereas DKK2 methylation in HSIL was significantly higher than that in normal cervical samples (χ2 = 7.934, P = 0.005) and in LSIL samples (χ2 = 4.375, P = 0.037). DKK2 silencing caused by its promoter hypermethylation was confirmed by treatment with the methyltransferase inhibitor 5-Aza-dC in cell lines. Patients with lymph node metastasis exhibited increased promoter methylation frequency (χ2 = 5.239, P = 0.022) and low DKK2 mRNA expression (χ2 = 3.958, P = 0.047) compared with patients with no lymph node metastasis. Patients with high-risk human papillomavirus infection exhibited increased promoter methylation frequency (χ2 = 6.279, P = 0.015). Conclusions DKK2 epigenetic changes of DKK2 may play a key role in the development of cervical cancer, suggesting that DKK2 hypermethylation could be used as a triage test for screening, early diagnosis, or risk prediction of cervical cancer.
Collapse
Affiliation(s)
- Xian Zhang
- Department of Gynecology and Obstetrics, Liaocheng People's Hospital and Liaocheng Clinical School of Shandong First Medical University, Liaocheng, Shandong252000, China
| | - Aihua Li
- Department of Gynecology and Obstetrics, Liaocheng People's Hospital and Liaocheng Clinical School of Shandong First Medical University, Liaocheng, Shandong252000, China
| | - Jie Wu
- Department of Pathology, Affiliated Hospital of Qingdao University, Qingdao, Shandong266000, China
| | - Yu Wu
- Department of Gynecology and Obstetrics, Liaocheng People's Hospital and Liaocheng Clinical School of Shandong First Medical University, Liaocheng, Shandong252000, China
| | - Xiaoping Ma
- Department of Gynecology and Obstetrics, Liaocheng People's Hospital and Liaocheng Clinical School of Shandong First Medical University, Liaocheng, Shandong252000, China
| | - Yanjun Liu
- Department of Gynecology and Obstetrics, Liaocheng People's Hospital and Liaocheng Clinical School of Shandong First Medical University, Liaocheng, Shandong252000, China
| | - Qingfa Chen
- Institute of Tissue Engineering and Regenerative Medicine, Liaocheng People's Hospital and Liaocheng Clinical School of Shandong First Medical University, Liaocheng, Shandong252000, China
| | - Yan Zhang
- Department of Gynecology and Obstetrics, Liaocheng People's Hospital and Liaocheng Clinical School of Shandong First Medical University, Liaocheng, Shandong252000, China
| |
Collapse
|
18
|
Fatemi N, Tierling S, Es HA, Varkiani M, Nazemalhosseini Mojarad E, Asadzadeh Aghdaei H, Walter J, Totonchi M. DNA Methylation Biomarkers in Colorectal Cancer: Clinical Applications for Precision Medicine. Int J Cancer 2022; 151:2068-2081. [PMID: 35730647 DOI: 10.1002/ijc.34186] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 04/29/2022] [Accepted: 06/08/2022] [Indexed: 11/06/2022]
Abstract
Colorectal cancer (CRC) is the second leading cause of cancer death worldwide that is attributed to gradual long-term accumulation of both genetic and epigenetic changes. To reduce the mortality rate of CRC and to improve treatment efficacy, it will be important to develop accurate noninvasive diagnostic tests for screening, acute, and personalized diagnosis. Epigenetic changes such as DNA methylation play an important role in the development and progression of CRC. Over the last decade, a panel of DNA methylation markers has been reported showing a high accuracy and reproducibility in various semi-invasive or noninvasive biosamples. Research to obtain comprehensive panels of markers allowing a highly sensitive and differentiating diagnosis of CRC is ongoing. Moreover, the epigenetic alterations for cancer therapy, as a precision medicine strategy will increase their therapeutic potential over time. Here, we discuss the current state of DNA methylation-based biomarkers and their impact on CRC diagnosis. We emphasize the need to further identify and stratify methylation-biomarkers and to develop robust and effective detection methods that are applicable for a routine clinical setting of CRC diagnostics particularly at the early stage of the disease.
Collapse
Affiliation(s)
- Nayeralsadat Fatemi
- Basic & Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology & Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sascha Tierling
- Department of Genetics/Epigenetics, Faculty NT, Life Sciences, Saarland University, Saarbrücken, Germany
| | | | - Maryam Varkiani
- Department of Molecular Genetics, Faculty of Basic Sciences and Advanced Technologies in Biology, University of Science and Culture, Tehran, Iran
| | - Ehsan Nazemalhosseini Mojarad
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamid Asadzadeh Aghdaei
- Basic & Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology & Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Jörn Walter
- Department of Genetics/Epigenetics, Faculty NT, Life Sciences, Saarland University, Saarbrücken, Germany
| | - Mehdi Totonchi
- Basic & Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology & Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| |
Collapse
|
19
|
The Contrasting Delayed Effects of Transient Exposure of Colorectal Cancer Cells to Decitabine or Azacitidine. Cancers (Basel) 2022; 14:cancers14061530. [PMID: 35326680 PMCID: PMC8945888 DOI: 10.3390/cancers14061530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 03/02/2022] [Accepted: 03/11/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Decitabine and azacitidine are cytosine analogs representing the class of drugs interfering with DNA methylation. Due to their molecular homology and similar clinical application these drugs are viewed as interchangeable. Despite their unique epigenetic mechanism of action, the studies of the prolonged activity of decitabine and azacitidine are rare. Our head-to-head comparison revealed profound differences in the activities of decitabine and azacitidine important in their anti-cancer potential and clinical application. We show that azacitidine, despite significant immediate toxicity, has negligible long-term effects. Contrary, decitabine, which does not exert initial toxicity, profoundly worsened the condition of the cancer cells over time. The effects of decitabine need a relatively long time to develop. This property is crucial for the proper design of studies or therapy involving decitabine. It undermines opinion about the similar therapeutic mechanism and interchangeability of decitabine and azacitidine. Abstract (1) Background: Decitabine and azacitidine are cytosine analogues representing the class of drugs interfering with DNA methylation. Due to their molecular homology and similar clinical application, both drugs are often regarded as interchangeable. Despite their unique mechanism of action the studies designed for observation and comparison of the prolonged activity of these drugs are rare. (2) Methods: The short-time (20–72 h) and long-term (up to 20 days) anti-cancer activity of decitabine and azacitidine has been studied in colorectal cancer cells. We observe the impact on cell culture’s viability, clonogenicity, proliferation, and expression of CDKN1A, CCND1, MDM2, MYC, CDKN2A, GLB1 genes, and activity of SA-β-galactosidase. (3) Results: Decitabine has much stronger anti-clonogenic activity than azacitidine. We show that azacitidine, despite significant immediate toxicity, has negligible long-term effects. Contrary, decitabine, which does not exert initial toxicity, profoundly worsened the condition of the cells over time. On the 13th day after treatment, the viability of cells was decreased and proliferation inhibited. These functional changes were accompanied by up-regulation of expression CDKN1A, CCND1, and CDKN2A genes and increased activation of SA-β-galactosidase, indicating cellular senescence. (4) Conclusions: Our head-to-head comparison revealed profound differences in the activities of decitabine and azacitidine important in their anti-cancer potential and clinical application. The effects of decitabine need relatively long time to develop. This property is crucial for proper design of studies and therapy concerning decitabine and undermines opinion about the similar therapeutic mechanism and interchangeability of these drugs.
Collapse
|
20
|
Wang H, Wang J, Li D, Zhu Z, Pei D. A functional polymorphism within the distal promoter of RUNX3 confers risk of colorectal cancer. Int J Biol Markers 2022; 37:40-46. [DOI: 10.1177/17246008211073342] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
Background Accumulating evidence has indicated that runt-related transcription factor 3 ( RUNX3) gene polymorphism (rs7528484) is associated with an alimentary system cancer risk. However, the role of rs7528484 in colorectal cancer is still unclear. The present study aimed to explore the association between rs7528484 and colorectal cancer susceptibility in a Chinese Han population. Material and methods We firstly investigated the effect of the polymorphism rs7528484 in distal promoter of RUNX3 polymorphism on colorectal cancer risk in a Chinese Han population comprising 427 colorectal cancer patients and 503 controls. We then carried out a phenotype–genotype association analysis to validate its influence on the adjacent gene RUNX3. Results Logistic regression analysis demonstrated that the T allele of rs7528484 was significantly associated with an increased risk for colorectal cancer occurrence in our case-control study (odds ratio = 1.33; 95% confidence interval = 1.09–1.65; P = 0.005). In stratified analysis, the susceptibility of colorectal cancer in the T allele carriers increased among the smokers, III and IV tumor stage, and at the rectum. Furthermore, the T allele was significantly correlated with lower expression of RUNX3 in vitro. Conclusion In summary, the current case-control and genotype–phenotype study provides convincing evidence that functional RUNX3 polymorphism (rs7528484) is related to colorectal cancer risk and is a plausible marker for the prediction of colorectal cancer.
Collapse
Affiliation(s)
- Huiping Wang
- Xuzhou Engineering Research Center of Medical Genetics and Transformation, Laboratory of Genetic Foundation and Clinical Application, Department of Genetics, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, China
| | - Jin Wang
- Laboratory of Experimental and Clinical Pathology, Departments of Pathology, School of Basic Medical Sciences, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, China
| | - Danhua Li
- Laboratory of Experimental and Clinical Pathology, Departments of Pathology, School of Basic Medical Sciences, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, China
| | - Zhansheng Zhu
- Laboratory of Experimental and Clinical Pathology, Departments of Pathology, School of Basic Medical Sciences, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, China
| | - Dongsheng Pei
- Laboratory of Experimental and Clinical Pathology, Departments of Pathology, School of Basic Medical Sciences, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, China
| |
Collapse
|