1
|
Lacey K, Greener MR, Marak TR, Rakha EA, Green AR, Ellis IO, Martin SG, Storr SJ. Protein Tyrosine Kinase 7 (PTK7) in Breast Cancer: A Retrospective Analysis of Tumour Expression and Association with Clinical Outcome. Cancers (Basel) 2024; 16:3206. [PMID: 39335176 PMCID: PMC11430626 DOI: 10.3390/cancers16183206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/29/2024] [Accepted: 09/08/2024] [Indexed: 09/30/2024] Open
Abstract
Protein tyrosine kinase 7 (PTK7), originally known as colon carcinoma kinase (CCK4), is an evolutionary conserved, catalytically defective transmembrane receptor involved in Wnt signalling. PTK7 has been identified as a potential therapeutic target, and a PTK7 antibody drug conjugate (PF-06647020; cofetuzumab pelidotin) has been investigated in phase I clinical trials for triple-negative breast cancer, ovarian cancer, and non-small cell lung cancer. PTK7 protein expression was evaluated in 1136 early-stage invasive breast tumours by immunohistochemistry. In addition, PTK7 mRNA expression in the METABRIC (n = 1980) and the TCGA breast cancer cohorts (n = 1082) was evaluated. Associations between PTK7 expression and clinicopathological criteria and patient outcome were determined. No association between PTK7 protein expression and breast cancer-specific survival was observed; however, PTK7 mRNA expression in the METABRIC cohort was associated with breast cancer-specific survival (p < 0.001). PTK7 protein and mRNA expression were associated with breast cancer-specific survival of patients with a poor prognostic Nottingham Prognostic Index (NPI) and a moderate prognostic NPI, respectively. Taken together, these data indicate that PTK7 expression is associated with patient outcome in subgroups of breast cancer patients.
Collapse
Affiliation(s)
- Kate Lacey
- Nottingham Breast Cancer Research Centre, School of Medicine, University of Nottingham Biodiscovery Institute, University Park, Nottingham NG7 2RD, UK
| | - Megan R Greener
- Nottingham Breast Cancer Research Centre, School of Medicine, University of Nottingham Biodiscovery Institute, University Park, Nottingham NG7 2RD, UK
| | - Tangkam R Marak
- Nottingham Breast Cancer Research Centre, School of Medicine, University of Nottingham Biodiscovery Institute, University Park, Nottingham NG7 2RD, UK
| | - Emad A Rakha
- Nottingham Breast Cancer Research Centre, School of Medicine, University of Nottingham Biodiscovery Institute, University Park, Nottingham NG7 2RD, UK
| | - Andrew R Green
- Nottingham Breast Cancer Research Centre, School of Medicine, University of Nottingham Biodiscovery Institute, University Park, Nottingham NG7 2RD, UK
| | - Ian O Ellis
- Nottingham Breast Cancer Research Centre, School of Medicine, University of Nottingham Biodiscovery Institute, University Park, Nottingham NG7 2RD, UK
| | - Stewart G Martin
- Nottingham Breast Cancer Research Centre, School of Medicine, University of Nottingham Biodiscovery Institute, University Park, Nottingham NG7 2RD, UK
| | - Sarah J Storr
- Nottingham Breast Cancer Research Centre, School of Medicine, University of Nottingham Biodiscovery Institute, University Park, Nottingham NG7 2RD, UK
| |
Collapse
|
2
|
Liu X, Ma L, Li J, Sun L, Yang Y, Liu T, Xing D, Yan S, Zhang M. Trop2-targeted therapies in solid tumors: advances and future directions. Theranostics 2024; 14:3674-3692. [PMID: 38948057 PMCID: PMC11209721 DOI: 10.7150/thno.98178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 06/04/2024] [Indexed: 07/02/2024] Open
Abstract
Trophoblast cell surface antigen 2 (Trop2) is overexpressed in a range of solid tumors and participants in multiple oncogenic signaling pathways, making it an attractive therapeutic target. In the past decade, the rapid development of various Trop2-targeted therapies, notably marked by the advent of the antibody-drug conjugate (ADC), revolutionized the outcome for patients facing Trop2-positive tumors with limited treatment opinions, such as triple-negative breast cancer (TNBC). This review provides a comprehensive summary of advances in Trop2-targeted therapies, including ADCs, antibodies, multispecific agents, immunotherapy, cancer vaccines, and small molecular inhibitors, along with in-depth discussions on their designs, mechanisms of action (MOAs), and limitations. Additionally, we emphasize the clinical research progress of these emerging Trop2-targeted agents, focusing on their clinical application and therapeutic efficacy against tumors. Furthermore, we propose directions for future research, such as enhancing our understanding of Trop2's structure and biology, exploring the best combination strategies, and tailoring precision treatment based on Trop2 testing methodologies.
Collapse
Affiliation(s)
- Xinlin Liu
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China
- Qingdao Cancer Institute, Qingdao, 266071, China
| | - Leina Ma
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China
- Qingdao Cancer Institute, Qingdao, 266071, China
| | - Jiyixuan Li
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China
- Qingdao Cancer Institute, Qingdao, 266071, China
| | - Li Sun
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China
- Qingdao Cancer Institute, Qingdao, 266071, China
| | - Ying Yang
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China
- Qingdao Cancer Institute, Qingdao, 266071, China
| | - Ting Liu
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China
- Qingdao Cancer Institute, Qingdao, 266071, China
| | - Dongming Xing
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China
- Qingdao Cancer Institute, Qingdao, 266071, China
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Saisai Yan
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China
- Qingdao Cancer Institute, Qingdao, 266071, China
| | - Miao Zhang
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China
- Qingdao Cancer Institute, Qingdao, 266071, China
| |
Collapse
|
3
|
Limsakul P, Choochuen P, Jungrungrueang T, Charupanit K. Prognostic Markers in Tyrosine Kinases Specific to Basal-like 2 Subtype of Triple-Negative Breast Cancer. Int J Mol Sci 2024; 25:1405. [PMID: 38338684 PMCID: PMC10855431 DOI: 10.3390/ijms25031405] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/19/2024] [Accepted: 01/21/2024] [Indexed: 02/12/2024] Open
Abstract
Triple-negative breast cancer (TNBC), a heterogeneous and therapeutically challenging subtype, comprises over 50% of patients categorized into basal-like 1 (BL1) and basal-like 2 (BL2) intrinsic molecular subtypes. Despite their shared basal-like classification, BL2 is associated with a poor response to neoadjuvant chemotherapy and reduced relapse-free survival compared to BL1. Here, the study focused on identifying subtype-specific markers for BL2 through transcriptomic analysis of TNBC patients using RNA-seq and clinical integration. Six receptor tyrosine kinase (TK) genes, including EGFR, EPHA4, EPHB2, PDGFRA, PDGFRB, and ROR1, were identified as potential differentiators for BL2. Correlations between TK mRNA expression and TNBC prognosis, particularly EGFR, PDGFRA, and PDGFRB, revealed potential synergistic interactions in pathways related to cell survival and proliferation. Our findings also suggest promising dual markers for predicting disease prognosis. Furthermore, RT-qPCR validation demonstrated that identified BL2-specific TKs were expressed at a higher level in BL2 than in BL1 cell lines, providing insights into unique characteristics. This study advances the understanding of TNBC heterogeneity within the basal-like subtypes, which could lead to novel clinical treatment approaches and the development of targeted therapies.
Collapse
Affiliation(s)
- Praopim Limsakul
- Division of Physical Science, Faculty of Science, Prince of Songkla University, Songkhla 90110, Thailand;
- Center of Excellence for Trace Analysis and Biosensor (TAB-CoE), Faculty of Science, Prince of Songkla University, Songkhla 90110, Thailand
| | - Pongsakorn Choochuen
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand; (P.C.); (T.J.)
| | - Thawirasm Jungrungrueang
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand; (P.C.); (T.J.)
| | - Krit Charupanit
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand; (P.C.); (T.J.)
| |
Collapse
|
4
|
Yamada K, Shioya R, Nishino K, Furihata H, Hijikata A, Kaneko MK, Kato Y, Shirai T, Kosako H, Sawasaki T. Proximity extracellular protein-protein interaction analysis of EGFR using AirID-conjugated fragment of antigen binding. Nat Commun 2023; 14:8301. [PMID: 38097606 PMCID: PMC10721602 DOI: 10.1038/s41467-023-43931-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 11/24/2023] [Indexed: 12/17/2023] Open
Abstract
Receptor proteins, such as epidermal growth factor receptor (EGFR), interact with other proteins in the extracellular region of the cell membrane to drive intracellular signalling. Therefore, analysis of extracellular protein-protein interactions (exPPIs) is important for understanding the biological function of receptor proteins. Here, we present an approach using a proximity biotinylation enzyme (AirID) fusion fragment of antigen binding (FabID) to analyse the proximity exPPIs of EGFR. AirID was C-terminally fused to the Fab fragment against EGFR (EGFR-FabID), which could then biotinylate the extracellular region of EGFR in several cell lines. Liquid Chromatography-Mass Spectrometry (LC-MS/MS) analysis indicated that many known EGFR interactors were identified as proximity exPPIs, along with many unknown candidate interactors, using EGFR-FabID. Interestingly, these proximity exPPIs were influenced by treatment with EGF ligand and its specific kinase inhibitor, gefitinib. These results indicate that FabID provides accurate proximity exPPI analysis of target receptor proteins on cell membranes with ligand and drug responses.
Collapse
Affiliation(s)
- Kohdai Yamada
- Division of Cell-Free Life Science, Proteo-Science Center, Ehime University, 3 Bunkyo-cho, Matsuyama, Ehime, 790-8577, Japan
| | - Ryouhei Shioya
- Division of Cell-Free Life Science, Proteo-Science Center, Ehime University, 3 Bunkyo-cho, Matsuyama, Ehime, 790-8577, Japan
| | - Kohei Nishino
- Division of Cell Signaling, Fujii Memorial Institute of Medical Sciences, Institute of Advanced Medical Sciences, Tokushima University, Tokushima, 770-8503, Japan
| | - Hirotake Furihata
- Division of Cell-Free Life Science, Proteo-Science Center, Ehime University, 3 Bunkyo-cho, Matsuyama, Ehime, 790-8577, Japan
| | - Atsushi Hijikata
- Laboratory of Computational Genomics, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, 192-0392, Japan
| | - Mika K Kaneko
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan
| | - Yukinari Kato
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan
| | - Tsuyoshi Shirai
- Department of Bioscience, Nagahama Institute of BioScience and Technology, 1266 Tamura, Nagahama, 526-0829, Japan
| | - Hidetaka Kosako
- Division of Cell Signaling, Fujii Memorial Institute of Medical Sciences, Institute of Advanced Medical Sciences, Tokushima University, Tokushima, 770-8503, Japan.
| | - Tatsuya Sawasaki
- Division of Cell-Free Life Science, Proteo-Science Center, Ehime University, 3 Bunkyo-cho, Matsuyama, Ehime, 790-8577, Japan.
| |
Collapse
|
5
|
Albright S, Cacace M, Tivon Y, Deiters A. Cell Surface Labeling and Detection of Protein Tyrosine Kinase 7 via Covalent Aptamers. J Am Chem Soc 2023; 145:16458-16463. [PMID: 37473438 PMCID: PMC10401710 DOI: 10.1021/jacs.3c02752] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Indexed: 07/22/2023]
Abstract
Covalent aptamers are novel biochemical tools for fast and selective transfer of labels to target proteins. Equipped with cleavable electrophiles, these nucleic acid probes enable the installation of functional handles onto native proteins. The high affinity and specificity with which aptamers bind their selected targets allows for quick, covalent labeling that can compete with nuclease-mediated degradation. Here, we introduce the first application of covalent aptamers to modify a specific cell surface protein through proximity-driven label transfer. We targeted protein tyrosine kinase 7 (PTK7), a prominent cancer marker, and demonstrated aptamer-mediated biotin transfer to specific lysine residues on the extracellular domain of the protein. This allowed for tracking of PTK7 expression, localization, and cellular internalization. These studies validate the programmability of covalent aptamers and highlight their applicability in a cellular context, including protein and small molecule delivery.
Collapse
Affiliation(s)
| | | | - Yaniv Tivon
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Alexander Deiters
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
6
|
Shin WS, Oh SW, Park HN, Kim JH, Lee ST. Knockdown of PTK7 Reduces the Oncogenic Potential of Breast Cancer Cells by Impeding Receptor Tyrosine Kinase Signaling. Int J Mol Sci 2023; 24:12173. [PMID: 37569547 PMCID: PMC10418930 DOI: 10.3390/ijms241512173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/26/2023] [Accepted: 07/27/2023] [Indexed: 08/13/2023] Open
Abstract
Protein tyrosine kinase 7 (PTK7), a catalytically defective receptor tyrosine kinase (RTK), is often upregulated in various cancers. This study aimed to validate PTK7 as a target for breast cancer (BC) and investigate its oncogenic signaling mechanism. BC tissue analysis showed significantly elevated PTK7 mRNA levels, especially in refractory triple-negative breast cancer (TNBC) tissues, compared with normal controls. Similarly, BC cell lines exhibited increased PTK7 expression. Knockdown of PTK7 inhibited the proliferation of T-47D and MCF-7 hormone-receptor-positive BC cell-lines and of HCC1187, MDA-MB-231, MDA-MB-436, and MDA-MB-453 TNBC cells. PTK7 knockdown also inhibited the adhesion, migration, and invasion of MDA-MB-231, MDA-MB-436, and MDA-MB-453 cells, and reduced the phosphorylation levels of crucial oncogenic regulators including extracellular signal-regulated kinase (ERK), Akt, and focal adhesion kinase (FAK). Furthermore, PTK7 interacts with fibroblast growth factor receptor 1 (FGFR1) and epidermal growth factor receptor (EGFR) expressed in MDA-MB-231 cells. Knockdown of PTK7 decreased the growth-factor-induced phosphorylation of FGFR1 and EGFR in MDA-MB-231 cells, indicating its association with RTK activation. In conclusion, PTK7 plays a significant role in oncogenic signal transduction by enhancing FGFR1 and EGFR activation, influencing BC tumorigenesis and metastasis. Hence, PTK7 represents a potential candidate for targeted BC therapy, including TNBC.
Collapse
Affiliation(s)
| | | | | | | | - Seung-Taek Lee
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea; (W.-S.S.); (S.W.O.); (H.N.P.); (J.H.K.)
| |
Collapse
|
7
|
Xu T, Wang C, Wang X, Wang E, Wang B, Sun M. A novel TREM1/DAP12-based multiple chain CAR-T cell targets PTK7 in ovarian cancer therapy. Med Oncol 2023; 40:226. [PMID: 37405498 DOI: 10.1007/s12032-023-02084-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 06/13/2023] [Indexed: 07/06/2023]
Abstract
While CAR-T cell therapy has shown success against hematological tumors, its effectiveness for solid tumors, including ovarian cancer, remains unsatisfactory. This study aimed to develop and evaluate the efficacy of novel chimeric antigen receptor T (CAR-T) cells targeting PTK7 through TREM1/DAP12 signaling against ovarian cancer. The expression of PTK7 in ovarian cancer tissues and cells was evaluated using immunohistochemical staining and flow cytometric analysis. The anti-tumor effects of PTK7 CAR-T cells were assessed in vitro using real-time cell analysis and enzyme-linked immunosorbent assay, and in vivo using a xenograft tumor model. PTK7 was significantly expressed in ovarian cancer tissues and cells. PTK7-targeting CAR-T cells based on TREM1/DAP12 signaling exhibited potent cytotoxicity against ovarian cancer cells expressing PTK7 in vitro, and effectively eradicated tumors in vivo. Our findings suggest that TREM1/DAP12-based PTK7 CAR-T cells have potential as a treatment strategy for ovarian cancer. Further studies are needed to evaluate the safety and efficacy of this approach in clinical trials.
Collapse
Affiliation(s)
- Tongpeng Xu
- Department of Oncology, First Affiliated Hospital, Nanjing Medical University, Nanjing, People's Republic of China
| | - Chen Wang
- Nanjing CART Medical Technology Co., Ltd, Nanjing, 210032, People's Republic of China
| | - Xiaoyan Wang
- Reproductive Center, Qingdao Women and Children's Hospital, Qingdao Women and Children's Hospital Affiliated to Qingdao University, Qingdao, 266034, China
| | - Enxiu Wang
- Nanjing CART Medical Technology Co., Ltd, Nanjing, 210032, People's Republic of China.
- Department of Pathology, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, 533000, China.
- Clinical Pathological Diagnosis & Research Center, Youjiang Medical University for Nationalities, Baise, 533000, China.
- The Key Laboratory of Molecular Pathology (Hepatobiliary Diseases) of Guangxi, Baise, 533000, China.
| | - Bo Wang
- Department of Medical Oncology, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, People's Republic of China.
| | - Ming Sun
- Suzhou Cancer Center Core Laboratory, Nanjing Medical University Affiliated Suzhou Hospital, Suzhou Municipal Hospital, Gusu School, Baita West Road #16, Suzhou, 215001, People's Republic of China.
| |
Collapse
|
8
|
He Q, Hu H, Yang F, Song D, Zhang X, Dai X. Advances in chimeric antigen receptor T cells therapy in the treatment of breast cancer. Biomed Pharmacother 2023; 162:114609. [PMID: 37001182 DOI: 10.1016/j.biopha.2023.114609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/21/2023] [Accepted: 03/24/2023] [Indexed: 03/31/2023] Open
Abstract
Breast cancer (BC) is the most frequently occurring cancer type seriously threatening the lives of women worldwide. Clinically, the high frequency of diverse resistance to current therapeutic strategies advocates a demand to develop novel and effective approaches for the efficient treatment of BC. The chimeric antigen receptor T (CAR-T) cells therapy, one of the immunotherapies, has displayed powerful capacity to specifically kill and eliminate tumors. Due to the success of CAR-T therapy achieved in treating hematological malignancy, the effect of CAR-T cells therapy has been tested in various human diseases including breast cancer. This review summarized and discussed the landscape of the CAR-T therapy for breast cancer, including the advances, challenge and countermeasure of CAR-T therapy in research and clinical application. The roles of potential antigen targets, tumor microenvironment, immune escape in regulating CAR-T therapy, the combination of CAR-T therapy with other therapeutic strategies to further enhance therapeutic efficacy of CAR-T treatment were also highlighted. Therefore, our review provided a comprehensive understanding of CAR-T cell therapy in breast cancer which will awake huge interests for future in-depth investigation of CAR-T based therapy in cancer treatment.
Collapse
|
9
|
Kang H, Yang S, Lee J. Tauroursodeoxycholic Acid Enhances Osteogenic Differentiation through EGFR/p-Akt/CREB1 Pathway in Mesenchymal Stem Cells. Cells 2023; 12:1463. [PMID: 37296585 PMCID: PMC10252885 DOI: 10.3390/cells12111463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/12/2023] [Accepted: 05/22/2023] [Indexed: 06/12/2023] Open
Abstract
BACKGROUND Mesenchymal stem cells (MSCs) are pluripotent stromal cells that are among the most appealing candidates for regenerative medicine and may aid in the repair and regeneration of skeletal disorders through multiple mechanisms, including angiogenesis, differentiation, and response to inflammatory conditions. Tauroursodeoxycholic acid (TUDCA) has recently been used in various cell types as one of these drugs. The mechanism of osteogenic differentiation by TUDCA in hMSCs remains unknown. METHODS Cell proliferation was performed by the WST-1 method, and alkaline phosphatase activity and alizarin red-sulfate staining were used to confirm the osteogenic differentiation indicator. Expression of genes related to bone differentiation and specific genes related to signaling pathways was confirmed by quantitative real-time polymerase chain reaction. RESULTS We found that cell proliferation was higher as the concentration increased, and showed that the induction of osteogenic differentiation was significantly enhanced. We also show that osteogenic differentiation genes were upregulated, with the expression of the epidermal growth factor receptor (EGFR) and cAMP responsive element binding protein 1 (CREB1) being specifically high. To confirm the participation of the EGFR signaling pathway, the osteogenic differentiation index and expression of osteogenic differentiation genes were determined after using an EGFR inhibitor. As a result, EGFR expression was remarkably low, and that of CREB1, cyclin D1, and cyclin E1 was also significantly low. CONCLUSIONS Therefore, we suggest that TUDCA-induced osteogenic differentiation of human MSCs is enhanced through the EGFR/p-Akt/CREB1 pathway.
Collapse
Affiliation(s)
- Hyojin Kang
- Department of Oral and Maxillofacial Surgery, College of Dentistry, Wonkwang University, 77 Dunsan-ro, Seo-gu, Daejeon 35233, Republic of Korea;
| | - Sunsik Yang
- Bonecell Biotech Inc., 77 Dunsan-dong, Seo-gu, Daejeon 35233, Republic of Korea;
| | - Jun Lee
- Department of Oral and Maxillofacial Surgery, College of Dentistry, Wonkwang University, 77 Dunsan-ro, Seo-gu, Daejeon 35233, Republic of Korea;
| |
Collapse
|
10
|
Yu L, Ma Z, He Q. Dynamic DNA Nanostructures for Cell Manipulation. ACS Biomater Sci Eng 2023; 9:562-576. [PMID: 36592368 DOI: 10.1021/acsbiomaterials.2c01204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Dynamic DNA nanostructures are DNA nanostructures with reconfigurable elements that can undergo structural transformations in response to specific stimuli. Thus, anchoring dynamic DNA nanostructures on cell membranes is an attractive and promising strategy for well-controlled cell manipulation. Here, we review the latest progress in dynamic DNA nanostructures for cell manipulation. Commonly used mechanisms for dynamic DNA nanostructures are first introduced. Subsequently, we summarize the anchoring strategies for dynamic DNA nanostructures on cell membranes and list possible applications (including programming cell membrane receptors, controlling ligand activity and drug delivery, capturing and releasing cells, and assembling cells into clusters). Finally, insights into the remaining challenges are presented.
Collapse
Affiliation(s)
- Lu Yu
- Department of Endocrinology and Metabolism, The First People's Hospital of Changde City, Renmin Middle Road 818, Changde, Hunan 415000, P. R. China
| | - Zongrui Ma
- Department of Ophthalmology, The First People's Hospital of Changde City, Renmin Middle Road 818, Changde, Hunan 415000, P. R. China
| | - Qunye He
- School of Pharmacy, Shanghai Jiao Tong University, Dongchuan Road 800, Shanghai 200000, P. R. China
| |
Collapse
|
11
|
Transcriptomic Analysis of Subtype-Specific Tyrosine Kinases as Triple Negative Breast Cancer Biomarkers. Cancers (Basel) 2023; 15:cancers15020403. [PMID: 36672350 PMCID: PMC9856281 DOI: 10.3390/cancers15020403] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/22/2022] [Accepted: 01/05/2023] [Indexed: 01/11/2023] Open
Abstract
Triple negative breast cancer (TNBC) shows impediment to the development of targeted therapies due to the absence of specific molecular targets. The high heterogeneity across TNBC subtypes, which can be classified to be at least four subtypes, including two basal-like (BL1, BL2), a mesenchymal (M), and a luminal androgen receptor (LAR) subtype, limits the response to cancer therapies. Despite many attempts to identify TNBC biomarkers, there are currently no effective targeted therapies against this malignancy. In this study, thus, we identified the potential tyrosine kinase (TK) genes that are uniquely expressed in each TNBC subtype, since TKs have been typically used as drug targets. Differentially expressed TK genes were analyzed from The Cancer Genome Atlas (TCGA) database and were confirmed with the other datasets of both TNBC patients and cell lines. The results revealed that each TNBC subtype expressed distinct TK genes that were specific to the TNBC subtype. The identified subtype-specific TK genes of BL1, BL2, M, and LAR are LYN, CSF1R, FGRF2, and SRMS, respectively. These findings could serve as a potential biomarker of specific TNBC subtypes, which could lead to an effective treatment for TNBC patients.
Collapse
|
12
|
Wang Z, Lei P, Li Z, Han X, Yang F, Su T, Meng C, Hou Z, Liu H. Proteomic and Phosphoproteomic Analyses Reveal the Oncogenic Role of PTK7-NDRG1 Axis in Non-small-cell Lung Cancer Cell Resistance to AZD9291. ACS Chem Biol 2022; 17:2849-2862. [PMID: 36205702 DOI: 10.1021/acschembio.2c00479] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs) are the most important chemotherapeutics for non-small-cell lung cancer (NSCLC) therapy. The resistance to EGFR-TKIs is one of the biggest obstacles to NSCLC outcome. In this study, taking advantage of phospho- and proximal proteomic techniques, we analyzed the network rearrangement in cell lines responding to AZD9291 treatment and found that cell-cell adhesion was dramatically enhanced in AZD9291-resistant cells. Further analysis revealed that protein tyrosine kinase 7 (PTK7) expression was significantly elevated. Knockdown or overexpression assays showed that PTK7 played a critical role in improving cell adhesion, which enhanced drug resistance. Because PTK7 is a membrane-localized pseudokinase, the proximal labeling probe BirA* was fused to reveal PTK7-interacting proteins. We found that PTK7 interacted with and stabilized NDRG1, which is located predominantly adjacent to adherens junctions. Downregulation of PTK7 or NDRG1 eliminated the resistance of H1975-resistant (H1975-R) and PC9-resistant (PC9-R) cells to AZD9291, suggesting that the PTK7-NDRG1 axis might be a potential target to eliminate the EGFR-TKI resistance during NSCLC therapy.
Collapse
Affiliation(s)
- Zhen Wang
- Center for Mitochondrial Biology and Medicine & Douglas C. Wallace Institute for Mitochondrial and Epigenetic Information Sciences, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China
| | - Panpan Lei
- Center for Mitochondrial Biology and Medicine & Douglas C. Wallace Institute for Mitochondrial and Epigenetic Information Sciences, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China
| | - Ziyang Li
- Center for Mitochondrial Biology and Medicine & Douglas C. Wallace Institute for Mitochondrial and Epigenetic Information Sciences, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China
| | - Xiao Han
- Center for Mitochondrial Biology and Medicine & Douglas C. Wallace Institute for Mitochondrial and Epigenetic Information Sciences, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China
| | - Fei Yang
- Center for Mitochondrial Biology and Medicine & Douglas C. Wallace Institute for Mitochondrial and Epigenetic Information Sciences, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China
| | - Tian Su
- Center for Mitochondrial Biology and Medicine & Douglas C. Wallace Institute for Mitochondrial and Epigenetic Information Sciences, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China
| | - Caiting Meng
- Center for Mitochondrial Biology and Medicine & Douglas C. Wallace Institute for Mitochondrial and Epigenetic Information Sciences, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China
| | - Zhanwu Hou
- Center for Mitochondrial Biology and Medicine & Douglas C. Wallace Institute for Mitochondrial and Epigenetic Information Sciences, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China
| | - Huadong Liu
- Center for Mitochondrial Biology and Medicine & Douglas C. Wallace Institute for Mitochondrial and Epigenetic Information Sciences, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China.,University of Health and Rehabilitation Sciences, Qingdao 266071, China
| |
Collapse
|
13
|
Anti-PTK7 Monoclonal Antibodies Exhibit Anti-Tumor Activity at the Cellular Level and in Mouse Xenograft Models of Esophageal Squamous Cell Carcinoma. Int J Mol Sci 2022; 23:ijms232012195. [PMID: 36293051 PMCID: PMC9603586 DOI: 10.3390/ijms232012195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/24/2022] [Accepted: 10/11/2022] [Indexed: 11/17/2022] Open
Abstract
PTK7 is a catalytically defective receptor protein tyrosine kinase upregulated in various cancers, including esophageal squamous cell carcinoma (ESCC). In previous studies, we observed a positive correlation between PTK7 expression levels and tumorigenicity in various ESCC cell lines and xenograft mice with ESCC KYSE-30 cells. In this study, we analyzed the effects of anti-PTK7 monoclonal antibodies (mAbs) on the tumorigenic activity in KYSE-30 cells and in mouse xenograft models. PTK7 mAb-32 and mAb-43 bind with a high affinity to the extracellular domain of PTK7. PTK7 mAbs significantly reduced three-dimensional cell proliferation, adhesion, wound healing, and migration. PTK7 mAbs also reduce chemotactic invasiveness by decreasing MMP-9 secretion. PTK7 mAbs decreased actin cytoskeleton levels in the cortical region of KYSE-30 cells. PTK7 mAbs reduced the phosphorylation of ERK, SRC, and FAK. In a mouse xenograft model of ESCC using KYSE-30 cells, PTK7 mAbs reduced tumor growth in terms of volume, weight, and the number of Ki-67-positive cells. These results demonstrated that PTK7 mAbs can inhibit the tumorigenicity of ESCC at the cellular level and in vivo by blocking the function of PTK7. Considering the anticancer activities of PTK7 mAbs, we propose that PTK7 mAbs can be used in an effective treatment strategy for PTK7-positive malignancies, such as ESCC.
Collapse
|
14
|
Anti-PTK7 Monoclonal Antibodies Inhibit Angiogenesis by Suppressing PTK7 Function. Cancers (Basel) 2022; 14:cancers14184463. [PMID: 36139622 PMCID: PMC9496920 DOI: 10.3390/cancers14184463] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/06/2022] [Accepted: 09/12/2022] [Indexed: 11/21/2022] Open
Abstract
Simple Summary PTK7 is a catalytically defective receptor protein tyrosine kinase. We previously demonstrated that PTK7 enhances angiogenesis by interacting with KDR, a vascular endothelial growth factor (VEGF) receptor important for angiogenesis, and activating it through oligomerization. To control angiogenesis by inhibiting PTK7 function, we developed anti-PTK7 monoclonal antibodies (mAbs). The selected PTK7 mAbs reduced VEGF-induced angiogenic phenotypes of endothelial cells and angiogenesis ex vivo and in vivo. The PTK7 mAbs also inhibited VEGF-induced KDR activation in endothelial cells and its downstream signaling and PTK7–KDR interaction. Our results show that the PTK7 mAbs inhibit angiogenesis by blocking PTK7 function. Therefore, PTK7 mAbs could be applied as therapeutics to control angiogenesis-associated diseases such as metastatic cancers. Abstract PTK7, a catalytically defective receptor protein tyrosine kinase, promotes angiogenesis by activating KDR through direct interaction and induction of KDR oligomerization. This study developed anti-PTK7 monoclonal antibodies (mAbs) to regulate angiogenesis by inhibiting PTK7 function. The effect of anti-PTK7 mAbs on vascular endothelial growth factor (VEGF)-induced angiogenic phenotypes in human umbilical vascular endothelial cells (HUVECs) was examined. Analysis of mAb binding with PTK7 deletion mutants revealed that mAb-43 and mAb-52 recognize immunoglobulin (Ig) domain 2 of PTK7, whereas mAb-32 and mAb-50 recognize Ig domains 6–7. Anti-PTK7 mAbs inhibited VEGF-induced adhesion and wound healing in HUVECs. mAb-32, mAb-43, and mAb-52 dose-dependently mitigated VEGF-induced migration and invasion in HUVECs without exerting cytotoxic effects. Additionally, mAb-32, mAb-43, and mAb-52 inhibited capillary-like tube formation in HUVECs, and mAb-32 and mAb-43 suppressed angiogenesis ex vivo (aortic ring assay) and in vivo (Matrigel plug assay). Furthermore, mAb-32 and mAb-43 downregulated VEGF-induced KDR activation and downstream signaling and inhibited PTK7–KDR interaction in PTK7-overexpressing and KDR-overexpressing HEK293 cells. Thus, anti-PTK7 mAbs inhibit angiogenic phenotypes by blocking PTK7–KDR interaction. These findings indicate that anti-PTK7 mAbs that neutralize PTK7 function can alleviate impaired angiogenesis-associated pathological conditions, such as cancer metastasis.
Collapse
|
15
|
Zhang H, Zhu S, Deng W, Li R, Zhou H, Xiong H. The landscape of chimeric antigen receptor T cell therapy in breast cancer: Perspectives and outlook. Front Immunol 2022; 13:887471. [PMID: 35935930 PMCID: PMC9354605 DOI: 10.3389/fimmu.2022.887471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 07/01/2022] [Indexed: 11/25/2022] Open
Abstract
Chimeric antigen receptor-T (CAR-T) cell therapy is a revolutionary adoptive cell therapy, which could modify and redirect T cells to specific tumor cells. Since CAR-T cell therapy was first approved for B cell-derived malignancies in 2017, it has yielded unprecedented progress in hematological tumors and has dramatically reshaped the landscape of cancer therapy in recent years. Currently, cumulative evidence has demonstrated that CAR-T cell therapy could be a viable therapeutic strategy for solid cancers. However, owing to the immunosuppressive tumor microenvironment (TME) and heterogenous tumor antigens, the application of CAR-T cell therapy against solid cancers requires circumventing more challenging obstacles. Breast cancer is characterized by a high degree of invasiveness, malignancy, and poor prognosis. The review highlights the underlying targets of CAR-T cell therapy in breast cancer, summarizes the challenges associated with CAR-T cell therapy, and proposes the strategies to overcome these challenges, which provides a novel approach to breast cancer treatment.
Collapse
|
16
|
Xie X, Lee J, Iwase T, Kai M, Ueno NT. Emerging drug targets for triple-negative breast cancer: A guided tour of the preclinical landscape. Expert Opin Ther Targets 2022; 26:405-425. [PMID: 35574694 DOI: 10.1080/14728222.2022.2077188] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Triple-negative breast cancer (TNBC) is the most fatal molecular subtype of breast cancer because of its aggressiveness and resistance to chemotherapy. FDA-approved therapies for TNBC are limited to poly(ADP-ribose) polymerase inhibitors, immune checkpoint inhibitors, and trophoblast cell surface antigen 2-targeted antibody-drug conjugate. Therefore, developing a novel effective targeted therapy for TNBC is an urgent unmet need. AREAS COVERED In this narrative review, we discuss emerging targets for TNBC treatment discovered in early translational studies. We focus on cancer cell membrane molecules, hyperactive intracellular signaling pathways, and the tumor microenvironment (TME) based on their druggability, therapeutic potency, specificity to TNBC, and application in immunotherapy. EXPERT OPINION The significant challenges in the identification and validation of TNBC-associated targets are 1) application of appropriate genetic, molecular, and immunological approaches for modulating the target, 2) establishment of a proper mouse model that accurately represents the human immune TME, 3) TNBC molecular heterogeneity, and 4) failure translation of preclinical findings to clinical practice. To overcome those difficulties, future research needs to apply novel technology, such as single-cell RNA sequencing, thermostable group II intron reverse transcriptase sequencing, and humanized mouse models. Further, combination treatment targeting multiple pathways in both the TNBC tumor and its TME is essential for effective disease control.
Collapse
Affiliation(s)
- Xuemei Xie
- Section of Translational Breast Cancer Research, Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jangsoon Lee
- Section of Translational Breast Cancer Research, Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Toshiaki Iwase
- Section of Translational Breast Cancer Research, Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Megumi Kai
- Section of Translational Breast Cancer Research, Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Naoto T Ueno
- Section of Translational Breast Cancer Research, Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
17
|
Raivola J, Dini A, Salokas K, Karvonen H, Niininen W, Piki E, Varjosalo M, Ungureanu D. New insights into the molecular mechanisms of ROR1, ROR2, and PTK7 signaling from the proteomics and pharmacological modulation of ROR1 interactome. Cell Mol Life Sci 2022; 79:276. [PMID: 35504983 PMCID: PMC9064840 DOI: 10.1007/s00018-022-04301-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 04/06/2022] [Accepted: 04/11/2022] [Indexed: 11/29/2022]
Abstract
ROR1, ROR2, and PTK7 are Wnt ligand-binding members of the receptor tyrosine kinase family. Despite their lack of catalytic activity, these receptors regulate skeletal, cardiorespiratory, and neurological development during embryonic and fetal stages. However, their overexpression in adult tissue is strongly connected to tumor development and metastasis, suggesting a strong pharmacological potential for these molecules. Wnt5a ligand can activate these receptors, but lead to divergent signaling and functional outcomes through mechanisms that remain largely unknown. Here, we developed a cellular model by stably expressing ROR1, ROR2, and PTK7 in BaF3 cells that allowed us to readily investigate side-by-side their signaling capability and functional outcome. We applied proteomic profiling to BaF3 clones and identified distinctive roles for ROR1, ROR2, and PTK7 pseudokinases in modulating the expression of proteins involved in cytoskeleton dynamics, apoptotic, and metabolic signaling. Functionally, we show that ROR1 expression enhances cell survival and Wnt-mediated cell proliferation, while ROR2 and PTK7 expression is linked to cell migration. We also demonstrate that the distal C-terminal regions of ROR1 and ROR2 are required for receptors stability and downstream signaling. To probe the pharmacological modulation of ROR1 oncogenic signaling, we used affinity purification coupled to mass spectrometry (AP-MS) and proximity-dependent biotin identification (BioID) to map its interactome before and after binding of GZD824, a small molecule inhibitor previously shown to bind to the ROR1 pseudokinase domain. Our findings bring new insight into the molecular mechanisms of ROR1, ROR2, and PTK7, and highlight the therapeutic potential of targeting ROR1 with small molecule inhibitors binding to its vestigial ATP-binding site.
Collapse
Affiliation(s)
- Juuli Raivola
- Applied Tumor Genomics Research Program, Faculty of Medicine, University of Helsinki, 00014, Helsinki, Finland
| | - Alice Dini
- Applied Tumor Genomics Research Program, Faculty of Medicine, University of Helsinki, 00014, Helsinki, Finland
| | - Kari Salokas
- Institute of Biotechnology, HiLife, University of Helsinki, 00014, Helsinki, Finland
| | - Hanna Karvonen
- Faculty of Medicine and Health Technology, Tampere University, 33014, Tampere, Finland
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Wilhelmiina Niininen
- Faculty of Medicine and Health Technology, Tampere University, 33014, Tampere, Finland
| | - Emilia Piki
- Applied Tumor Genomics Research Program, Faculty of Medicine, University of Helsinki, 00014, Helsinki, Finland
| | - Markku Varjosalo
- Institute of Biotechnology, HiLife, University of Helsinki, 00014, Helsinki, Finland
| | - Daniela Ungureanu
- Applied Tumor Genomics Research Program, Faculty of Medicine, University of Helsinki, 00014, Helsinki, Finland.
- Faculty of Medicine and Health Technology, Tampere University, 33014, Tampere, Finland.
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, 90014, Oulu, Finland.
| |
Collapse
|
18
|
PTK7, a Catalytically Inactive Receptor Tyrosine Kinase, Increases Oncogenic Phenotypes in Xenograft Tumors of Esophageal Squamous Cell Carcinoma KYSE-30 Cells. Int J Mol Sci 2022; 23:ijms23042391. [PMID: 35216506 PMCID: PMC8876147 DOI: 10.3390/ijms23042391] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/16/2022] [Accepted: 02/19/2022] [Indexed: 12/24/2022] Open
Abstract
Protein tyrosine kinase 7 (PTK7), a catalytically defective receptor protein tyrosine kinase, is upregulated in tumor tissues and cell lines of esophageal squamous cell carcinoma (ESCC). We showed that PTK7 plays an oncogenic role in various ESCC cell lines. However, its role as an oncogene has not been demonstrated in vivo. Here, we examined the influence of PTK7 on the tumorigenic potential of ESCC KYSE-30 cells, which are known to establish xenograft tumors. Overexpression of PTK7 enhanced the proliferation, adhesion, wound healing, and migration of KYSE-30 cells, and these effects were reversed by the knockdown of PTK7. PTK7 overexpression and knockdown, respectively, increased and decreased the tyrosine phosphorylation of cellular proteins and the phosphorylation of ERK, AKT, and FAK, which are important for cell proliferation, survival, adhesion, and migration. Additionally, PTK7 overexpression and silencing, respectively, increased and decreased the weight, volume, and number of Ki-67-positive proliferating cells in xenograft tumors of KYSE-30 cells. Therefore, we propose that PTK7 plays an important role in the tumorigenesis of ESCC cells in vivo and is a potential therapeutic target for ESCC.
Collapse
|