1
|
Li M, Li J, Tang Q, Zhu Y. Potential antitumor activity of triptolide and its derivatives: Focused on gynecological and breast cancers. Biomed Pharmacother 2024; 180:117581. [PMID: 39427548 DOI: 10.1016/j.biopha.2024.117581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/01/2024] [Accepted: 10/14/2024] [Indexed: 10/22/2024] Open
Abstract
Cancer remains one of the greatest global health concerns. This is especially true for gynecological cancers, which include cervical, ovarian, and endometrial cancers, and breast cancer. Natural products used for cancer treatment offer some unique advantages. Triptolide (TPL) is a biologically active terpenoid extracted from Tripterygium wilfordii, which exhibits anti-inflammatory, immunosuppressive, antitumor, and other pharmacological activities. However, clinical applications of TPL are restricted because of poor water solubility and severe cytotoxicity; to overcome these limitations, various TPL derivatives and drug delivery systems, especially nanocarriers, have been used. Furthermore, various preclinical and clinical studies have demonstrated that TPL and its derivatives exhibit excellent antitumor effects by targeting proteins involved in multiple signaling pathways. Here, we review the progress regarding novel drug delivery systems, antitumor activities, and molecular mechanisms of action of TPL and its derivatives against gynecological and breast cancers. TPL and its derivatives inhibit tumor growth, suppress tumor metastasis, and enhance the drug sensitization of resistant cancers. In addition, TPL and its derivatives exert synergistic antitumor effects against gynecological and breast cancers when combined with existing antitumor drugs, such as carboplatin, cisplatin, and PI3K inhibitors. Moreover, we highlight the clinical potential of TPL analogs against cancer from bench to bedside and their prospects for future applications in gynecologic and breast cancers.
Collapse
Affiliation(s)
- Mengjie Li
- College of Pharmacy, Qinghai University for Nationalities, Xining, China; Department of Pharmacy, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Jiamiao Li
- Department of Pharmacy, The Affilliated Chengdu 363 Hospital of Southwest Medical University, Chengdu, China
| | - Qing Tang
- Department of Pharmacy, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Yongxia Zhu
- Department of Pharmacy, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China.
| |
Collapse
|
2
|
Cao Y, Yi Y, Han C, Shi B. NF-κB signaling pathway in tumor microenvironment. Front Immunol 2024; 15:1476030. [PMID: 39493763 PMCID: PMC11530992 DOI: 10.3389/fimmu.2024.1476030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 09/30/2024] [Indexed: 11/05/2024] Open
Abstract
The genesis and progression of tumors are multifaceted processes influenced by genetic mutations within the tumor cells and the dynamic interplay with their surrounding milieu, which incessantly impacts the course of cancer. The tumor microenvironment (TME) is a complex and dynamic entity that encompasses not only the tumor cells but also an array of non-cancerous cells, signaling molecules, and the extracellular matrix. This intricate network is crucial in tumor progression, metastasis, and response to treatments. The TME is populated by diverse cell types, including immune cells, fibroblasts, endothelial cells, alongside cytokines and growth factors, all of which play roles in either suppressing or fostering tumor growth. Grasping the nuances of the interactions within the TME is vital for the advancement of targeted cancer therapies. Consequently, a thorough understanding of the alterations of TME and the identification of upstream regulatory targets have emerged as a research priority. NF-κB transcription factors, central to inflammation and innate immunity, are increasingly recognized for their significant role in cancer onset and progression. This review emphasizes the crucial influence of the NF-κB signaling pathway within the TME, underscoring its roles in the development and advancement of cancer. By examining the interactions between NF-κB and various components of the TME, targeting the NF-κB pathway appears as a promising cancer treatment approach.
Collapse
Affiliation(s)
- Yaning Cao
- Department of Blood Transfusion, Changzhou Hospital of Traditional Chinese Medicine, Changzhou, Jiangsu, China
| | - Yanan Yi
- Department of Laboratory Medicine, Northern Jiangsu People’s Hospital Affiliated to Yangzhou University, Yangzhou, Jiangsu, China
| | - Chongxu Han
- Department of Laboratory Medicine, Northern Jiangsu People’s Hospital Affiliated to Yangzhou University, Yangzhou, Jiangsu, China
| | - Bingwei Shi
- Department of Blood Transfusion, Changzhou Hospital of Traditional Chinese Medicine, Changzhou, Jiangsu, China
| |
Collapse
|
3
|
Huo R, Zhao R, Li Z, Li M, Bin Y, Wang D, Xue G, Wu J, Lin X. APOE expression in papillary thyroid carcinoma: Influencing tumor progression and macrophage polarization. Immunobiology 2024; 229:152821. [PMID: 38935988 DOI: 10.1016/j.imbio.2024.152821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 05/16/2024] [Accepted: 06/03/2024] [Indexed: 06/29/2024]
Abstract
BACKGROUND As metastatic papillary thyroid carcinoma becomes increasingly challenging to treat, immunotherapy has emerged as a new research direction. Tumor-associated macrophages (TAMs) influence the occurrence, invasion, and metastasis of tumors. Apolipoprotein E (APOE) can regulate the polarization changes of macrophages and participate in the remodeling of the tumor microenvironment. However, the role of APOE in regulating the polarization and biological functions of TAMs in papillary thyroid carcinoma (PTC) remains unclear, as it acts as a dual biomarker. METHODS We probed APOE expression in PTC tissues using immunohistochemical staining. A cell co-culture model was established where different APOE-expressing K1 cells were co-cultured with THP-1-derived M0 macrophages. An in-depth analysis of macrophage polarization behavior was performed using real-time quantitative polymerase chain reaction, enzyme-linked immunosorbent assay, and western blotting. Subsequently, the impact of APOE-regulated macrophages on tumor cell behavior, especially proliferation, migration, and invasion, was evaluated utilizing IncuCyte ZOOM system, flow cytometry, colony formation, and scratch experiments. Finally, we used a xenograft model to confirm the effects of APOE on PTC tumorigenesis. RESULTS Tumor dimensions, stage, and lymphatic metastases were significantly associated with increased APOE expression in PTC tissues. K1 cells were markedly limited in their proliferation, migration, and invasion abilities when APOE expression was silenced, a process mediated by the PI3K/Akt/NF-κB signaling axis. Moreover, APOE is a key facilitator of the enhancement of the anti-inflammatory cytokines IL-10 and TGF-β1. In PTC cellular models, APOE contributed to the phenotypic shift of THP-1 derived macrophages towards an M2 phenotypic polarization, predominantly through the modulation of IL-10. Furthermore, in vivo studies involving athymic nude mice have demonstrated pivotal role of APOE in tumor progression and the induction of M2-like TAM polarization. CONCLUSION Our results elucidated that APOE could promote the shift of TAMs from M0-type to M2-type polarization by regulating inflammatory factors expressions in K1 cell through the PI3K/Akt/NF-κB pathway. These findings are crucial for understanding the molecular mechanisms underlying PTC pathogenesis and for developing immunological drugs to treat this disease.
Collapse
Affiliation(s)
- Ronghua Huo
- Department of Morphology Laboratory, Hebei North University, Zhangjiakou 075000, China
| | - Ruhua Zhao
- Department of Morphology Laboratory, Hebei North University, Zhangjiakou 075000, China
| | - Ziwen Li
- Department of Morphology Laboratory, Hebei North University, Zhangjiakou 075000, China
| | - Min Li
- Department of Morphology Laboratory, Hebei North University, Zhangjiakou 075000, China; Department of Otorhinolaryngology Head and Neck Surgery, The First Afliated Hospital of Hebei North University, Zhangjiakou 075000, China
| | - Yu Bin
- Department of Morphology Laboratory, Hebei North University, Zhangjiakou 075000, China
| | - Dongmei Wang
- Department of Morphology Laboratory, Hebei North University, Zhangjiakou 075000, China
| | - Gang Xue
- Department of Morphology Laboratory, Hebei North University, Zhangjiakou 075000, China; Department of Otorhinolaryngology Head and Neck Surgery, The First Afliated Hospital of Hebei North University, Zhangjiakou 075000, China.
| | - Jingfang Wu
- Department of Morphology Laboratory, Hebei North University, Zhangjiakou 075000, China.
| | - Xu Lin
- Department of Morphology Laboratory, Hebei North University, Zhangjiakou 075000, China.
| |
Collapse
|
4
|
Saadh MJ, Pallathadka H, Abed HS, Menon SV, Sivaprasad GV, Hjazi A, Rizaev J, Suri S, Jawad MA, Husseen B. Detailed role of SR-A1 and SR-E3 in tumor biology, progression, and therapy. Cell Biochem Biophys 2024; 82:1735-1750. [PMID: 38884861 DOI: 10.1007/s12013-024-01350-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/04/2024] [Indexed: 06/18/2024]
Abstract
The first host defense systems are the innate immune response and the inflammatory response. Among innate immune cells, macrophages, are crucial because they preserve tissue homeostasis and eradicate infections by phagocytosis, or the ingestion of particles. Macrophages exhibit phenotypic variability contingent on their stimulation state and tissue environment and may be detected in several tissues. Meanwhile, critical inflammatory functions are played by macrophage scavenger receptors, in particular, SR-A1 (CD204) and SR-E3 (CD206), in a variety of pathophysiologic events. Such receptors, which are mainly found on the surface of multiple types of macrophages, have different effects on processes, including atherosclerosis, innate and adaptive immunity, liver and lung diseases, and, more recently, cancer. Although macrophage scavenger receptors have been demonstrated to be active across the disease spectrum, conflicting experimental findings and insufficient signaling pathways have hindered our comprehension of the molecular processes underlying its array of roles. Herein, as SR-A1 and SR-E3 functions are often binary, either protecting the host or impairing the pathophysiology of cancers has been reviewed. We will look into their function in malignancies, with an emphasis on their recently discovered function in macrophages and the possible therapeutic benefits of SR-A1 and SR-E3 targeting.
Collapse
Affiliation(s)
- Mohamed J Saadh
- Faculty of Pharmacy, Middle East University, Amman, 11831, Jordan
| | | | - Hussein Salim Abed
- Department of Medical Laboratory Techniques, Al-Maarif University College, Al-Anbar, Ramadi, Iraq.
| | - Soumya V Menon
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | - G V Sivaprasad
- Department of Basic Science & Humanities, Raghu Engineering College, Visakhapatnam, India
| | - Ahmed Hjazi
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia
| | - Jasur Rizaev
- Department of Public health and Healthcare management, Rector, Samarkand State Medical University, 18, Amir Temur Street, Samarkand, Uzbekistan
| | - Sahil Suri
- Centre of Research Impact and Outcome, Chitkara University, Rajpura, 140417, Punjab, India
| | | | - Beneen Husseen
- Medical Laboratory Technique College, The Islamic University, Najaf, Iraq
- Medical Laboratory Technique College, The Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- Medical Laboratory Technique College, The Islamic University of Babylon, Babylon, Iraq
| |
Collapse
|
5
|
Fu Q, Wu X, Lu Z, Chang Y, Jin Q, Jin T, Zhang M. TMEM205 induces TAM/M2 polarization to promote cisplatin resistance in gastric cancer. Gastric Cancer 2024; 27:998-1015. [PMID: 38850316 PMCID: PMC11335886 DOI: 10.1007/s10120-024-01517-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 05/26/2024] [Indexed: 06/10/2024]
Abstract
Cisplatin (DDP) is a basic chemotherapy drug for gastric cancer (GC). With the increase of DDP drug concentration in clinical treatment, cancer cells gradually became resistant. Therefore, it is necessary to find effective therapeutic targets to enhance the sensitivity of GC to DDP. Studies have shown that Transmembrane protein 205 (TMEM205) is overexpressed in DDP-resistant human epidermoid carcinoma cells and correlates with drug resistance, and database analyses show that TMEM 205 is also overexpressed in GC, but its role in cisplatin-resistant gastric cancer remains unclear. In this study, we chose a variety of experiments in vivo and vitro, aiming to investigate the role of TMEM 205 in cisplatin resistance in gastric cancer. The results showed that TMEM 205 promoted proliferation, stemness, epithelial-mesenchymal transition (EMT), migration and angiogenesis of gastric cancer cells through activation of the Wnt/β-catenin signaling pathway. In addition, TMEM205 promotes GC progression by inducing M2 polarization of tumor-associated macrophages (TAMs). These results suggest that TMEM205 may be an effective target to regulate the sensitivity of GC to DDP, providing a new therapeutic direction for clinical treatment.
Collapse
Affiliation(s)
- Qiang Fu
- Department of Ultrasound Medicine, Affiliated Hospital of Yanbian University, Yanji, 133000, Jilin, China
- Department of Pathology and Cancer Research Center, Yanbian University Medical College, Yanji, 133002, China
- Key Laboratory of the Science and Technology Department of Jilin Province, Yanji, China
| | - Xuwei Wu
- Department of Pathology and Cancer Research Center, Yanbian University Medical College, Yanji, 133002, China
- Key Laboratory of the Science and Technology Department of Jilin Province, Yanji, China
- Department of Pathology, Chifeng Municipal Hospital, Chifeng, 024000, China
| | - Zhongqi Lu
- Department of Ultrasound Medicine, Affiliated Hospital of Yanbian University, Yanji, 133000, Jilin, China
- Department of Pathology and Cancer Research Center, Yanbian University Medical College, Yanji, 133002, China
- Key Laboratory of the Science and Technology Department of Jilin Province, Yanji, China
| | - Ying Chang
- Department of Ultrasound Medicine, Affiliated Hospital of Yanbian University, Yanji, 133000, Jilin, China
- Department of Pathology and Cancer Research Center, Yanbian University Medical College, Yanji, 133002, China
- Key Laboratory of the Science and Technology Department of Jilin Province, Yanji, China
| | - Quanxin Jin
- Department of Immunology and Pathogenic Biology, Yanbian University Medical College, Yanji, China
| | - Tiefeng Jin
- Department of Pathology and Cancer Research Center, Yanbian University Medical College, Yanji, 133002, China
- Key Laboratory of the Science and Technology Department of Jilin Province, Yanji, China
| | - Meihua Zhang
- Department of Health Examination Centre, Yanbian University Hospital, Yanji, 133002, China.
- Department of Ultrasound Medicine, Affiliated Hospital of Yanbian University, Yanji, 133000, Jilin, China.
- Department of Pathology and Cancer Research Center, Yanbian University Medical College, Yanji, 133002, China.
| |
Collapse
|
6
|
Li D, Shao F, Yu Q, Wu R, Tuo Z, Wang J, Ye L, Guo Y, Yoo KH, Ke M, Okoli UA, Premkamon C, Yang Y, Wei W, Heavey S, Cho WC, Feng D. The complex interplay of tumor-infiltrating cells in driving therapeutic resistance pathways. Cell Commun Signal 2024; 22:405. [PMID: 39160622 PMCID: PMC11331645 DOI: 10.1186/s12964-024-01776-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 08/01/2024] [Indexed: 08/21/2024] Open
Abstract
Drug resistance remains a significant challenge in cancer treatment. Recently, the interactions among various cell types within the tumor microenvironment (TME) have deepened our understanding of the mechanisms behind treatment resistance. Therefore, this review aims to synthesize current research focusing on infiltrating cells and drug resistance suggesting that targeting the TME could be a viable strategy to combat this issue. Numerous factors, including inflammation, metabolism, senescence, hypoxia, and angiogenesis, contribute to drug resistance could be a viable strategy to combat this issue. Overexpression of STAT3 is commonly associated with drug-resistant cancer cells or stromal cells. Current research often generalizes the impact of stromal cells on resistance, lacking specificity and statistical robustness. Thus, future research should take notice of this issue and aim to provide high-quality evidence. Despite the existing limitations, targeting the TME to overcome therapy resistance hold promising and valuable potential.
Collapse
Affiliation(s)
- Dengxiong Li
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Fanglin Shao
- Department of Rehabilitation, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Qingxin Yu
- Department of Pathology, Ningbo Clinical Pathology Diagnosis Center, Ningbo, 315211, China
- Department of Pathology, Ningbo Medical Centre Lihuili Hospital, Ningbo, China
| | - Ruicheng Wu
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zhouting Tuo
- Department of Urology, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Jie Wang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Luxia Ye
- Department of Public Research Platform, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, 317000, China
| | - Yiqing Guo
- Department of Public Research Platform, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, 317000, China
| | - Koo Han Yoo
- Department of Urology, Kyung Hee University, Seoul, Republic of Korea
| | - Mang Ke
- Department of Public Research Platform, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, 317000, China
- Department of Urology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Taizhou, China
| | - Uzoamaka Adaobi Okoli
- Division of Surgery & Interventional Science, University College London, London, W1W 7TS, UK
- Basic and Translational Cancer Research Group, Department of Pharmacology and Therapeutics, College of Medicine, University of Nigeria, Eastern part of Nigeria, Nsukka, Enugu State, Nigeria
| | - Chaipanichkul Premkamon
- Division of Surgery & Interventional Science, University College London, London, W1W 7TS, UK
| | - Yubo Yang
- Department of Urology, Three Gorges Hospital, Chongqing University, Wanzhou, Chongqing, 404000, China
| | - Wuran Wei
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Susan Heavey
- Division of Surgery & Interventional Science, University College London, London, W1W 7TS, UK.
| | - William C Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Birmingham, Hong Kong SAR, China.
| | - Dechao Feng
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China.
- Division of Surgery & Interventional Science, University College London, London, W1W 7TS, UK.
| |
Collapse
|
7
|
Chen J, Yang L, Ma Y, Zhang Y. Recent advances in understanding the immune microenvironment in ovarian cancer. Front Immunol 2024; 15:1412328. [PMID: 38903506 PMCID: PMC11188340 DOI: 10.3389/fimmu.2024.1412328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 05/22/2024] [Indexed: 06/22/2024] Open
Abstract
The occurrence of ovarian cancer (OC) is a major factor in women's mortality rates. Despite progress in medical treatments, like new drugs targeting homologous recombination deficiency, survival rates for OC patients are still not ideal. The tumor microenvironment (TME) includes cancer cells, fibroblasts linked to cancer (CAFs), immune-inflammatory cells, and the substances these cells secrete, along with non-cellular components in the extracellular matrix (ECM). First, the TME mainly plays a role in inhibiting tumor growth and protecting normal cell survival. As tumors progress, the TME gradually becomes a place to promote tumor cell progression. Immune cells in the TME have attracted much attention as targets for immunotherapy. Immune checkpoint inhibitor (ICI) therapy has the potential to regulate the TME, suppressing factors that facilitate tumor advancement, reactivating immune cells, managing tumor growth, and extending the survival of patients with advanced cancer. This review presents an outline of current studies on the distinct cellular elements within the OC TME, detailing their main functions and possible signaling pathways. Additionally, we examine immunotherapy rechallenge in OC, with a specific emphasis on the biological reasons behind resistance to ICIs.
Collapse
Affiliation(s)
- Jinxin Chen
- Department of Gynecology, Cancer Hospital of Dalian University of Technology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, China
| | - Lu Yang
- Department of Internal Medicine, Cancer Hospital of Dalian University of Technology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, China
| | - Yiming Ma
- Department of Medical Oncology, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning, China
- Liaoning Key Laboratory of Gastrointestinal Cancer Translational Research, Shenyang, Liaoning, China
| | - Ye Zhang
- Department of Radiation Oncology, Cancer Hospital of Dalian University of Technology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, China
| |
Collapse
|
8
|
Tzenaki N, Xenou L, Goulielmaki E, Tsapara A, Voudouri I, Antoniou A, Valianatos G, Tzardi M, De Bree E, Berdiaki A, Makrigiannakis A, Papakonstanti EA. A combined opposite targeting of p110δ PI3K and RhoA abrogates skin cancer. Commun Biol 2024; 7:26. [PMID: 38182748 PMCID: PMC10770346 DOI: 10.1038/s42003-023-05639-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 11/27/2023] [Indexed: 01/07/2024] Open
Abstract
Malignant melanoma is the most aggressive and deadly skin cancer with an increasing incidence worldwide whereas SCC is the second most common non-melanoma human skin cancer with limited treatment options. Here we show that the development and metastasis of melanoma and SCC cancers can be blocked by a combined opposite targeting of RhoA and p110δ PI3K. We found that a targeted induction of RhoA activity into tumours by deletion of p190RhoGAP-a potent inhibitor of RhoA GTPase-in tumour cells together with adoptive macrophages transfer from δD910A/D910A mice in mice bearing tumours with active RhoA abrogated growth progression of melanoma and SCC tumours. Τhe efficacy of this combined treatment is the same in tumours lacking activating mutations in BRAF and in tumours harbouring the most frequent BRAF(V600E) mutation. Furthermore, the efficiency of this combined treatment is associated with decreased ATX expression in tumour cells and tumour stroma bypassing a positive feedback expression of ATX induced by direct ATX pharmacological inactivation. Together, our findings highlight the importance of targeting cancer cells and macrophages for skin cancer therapy, emerge a reverse link between ATX and RhoA and illustrate the benefit of p110δ PI3K inhibition as a combinatorial regimen for the treatment of skin cancers.
Collapse
Affiliation(s)
- Niki Tzenaki
- Department of Biochemistry, School of Medicine, University of Crete, Heraklion, Greece
| | - Lydia Xenou
- Department of Biochemistry, School of Medicine, University of Crete, Heraklion, Greece
| | - Evangelia Goulielmaki
- Department of Biochemistry, School of Medicine, University of Crete, Heraklion, Greece
| | - Anna Tsapara
- Department of Biochemistry, School of Medicine, University of Crete, Heraklion, Greece
| | - Irene Voudouri
- Department of Biochemistry, School of Medicine, University of Crete, Heraklion, Greece
| | - Angelika Antoniou
- Department of Biochemistry, School of Medicine, University of Crete, Heraklion, Greece
| | - George Valianatos
- Department of Biochemistry, School of Medicine, University of Crete, Heraklion, Greece
| | - Maria Tzardi
- Department of Pathology, School of Medicine, University of Crete, University Hospital, Heraklion, Greece
| | - Eelco De Bree
- Department of Surgical Oncology, School of Medicine, University of Crete, University Hospital, Heraklion, Greece
| | - Aikaterini Berdiaki
- Department of Obstetrics and Gynaecology, School of Medicine, University of Crete, University Hospital, Heraklion, Greece
| | - Antonios Makrigiannakis
- Department of Obstetrics and Gynaecology, School of Medicine, University of Crete, University Hospital, Heraklion, Greece
| | | |
Collapse
|
9
|
Zhang Z, Bai L, Lu C, Li X, Wu Y, Zhang X, Shen Y. Lapachol inhibits the growth of lung cancer by reversing M2-like macrophage polarization via activating NF-κB signaling pathway. Cell Signal 2023; 112:110902. [PMID: 37751828 DOI: 10.1016/j.cellsig.2023.110902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 09/03/2023] [Accepted: 09/21/2023] [Indexed: 09/28/2023]
Abstract
Resetting tumor-associated macrophages (TAMs) is a promising strategy to ameliorate the immunosuppressive tumor microenvironment (TME) and improve innate and adaptive antitumor immunity. Lapachol, a naturally occurring 1,4-naphthoquinone, exhibits various pharmacological activities including antitumor, anti-leishmanial, antimalarial and antiseptic. In this study, we investigated the relevance of macrophage polarization and the antitumor effect of lapachol in Lewis lung cancer (LLC) both in vitro and in vivo. This study demonstrated that lapachol significantly reversed the polarization of M2-like macrophages thus that were endowed with the ability to kill LLC cells by activating NF-κB signaling pathway. Furthermore, lapachol effectively suppressed tumor growth in C57BL/6 mice bearing lung tumors by reducing the proportion of M2-like macrophages. Overall, our findings clearly illustrated that lapachol could reverse the polarization of M2-like macrophages to improve the immunosuppressive tumor microenvironment, and had the potential to be developed as an immunomodulatory antitumor agent.
Collapse
Affiliation(s)
- Zhengzheng Zhang
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Luyao Bai
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Chunhua Lu
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China.
| | - Xintong Li
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Yang Wu
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Xiaochun Zhang
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Yuemao Shen
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China.
| |
Collapse
|
10
|
Xu M, Zhang L, Lin L, Qiang Z, Liu W, Yang J. Cisplatin increases carboxylesterases through increasing PXR mediated by the decrease of DEC1. J Biomed Res 2023; 37:431-447. [PMID: 37990879 PMCID: PMC10687532 DOI: 10.7555/jbr.37.20230047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 05/17/2023] [Accepted: 05/23/2023] [Indexed: 11/23/2023] Open
Abstract
cis-Diamminedichloroplatinum (CDDP) is widely used for the treatment of various solid cancers. Here we reported that CDDP increased the expression and enzymatic activities of carboxylesterase 1 (CES1) and carboxylesterase 2 (CES2), along with the upregulation of pregnane X receptor (PXR) and the downregulation of differentiated embryonic chondrocyte-expressed gene 1 (DEC1) in human hepatoma cells, primary mouse hepatocytes, mouse liver and intestine. The overexpression or knockdown of PXR alone upregulated or downregulated the CES1 and CES2 expression, respectively. The increases in CES1 and CES2 expression levels induced by CDDP abolished or enhanced by PXR knockdown or overexpression, implying that CDDP induces carboxylesterases through the activation of PXR. Likewise, the overexpression or knockdown of DEC1 alone significantly decreased or increased PXR and its targets. Moreover, the increases of PXR and its targets induced by CDDP were abolished or alleviated by the overexpression or knockdown of DEC1. The overexpression or knockdown of DEC1 affected the response of PXR to CDDP, but not vice versa, suggesting that CDDP increases carboxylesterases by upregulating PXR mediated by the decrease of DEC1. In addition, CDDP did not increase DEC1 mRNA degradation but suppressed DEC1 promoter reporter activity, indicating that it suppresses DEC1 transcriptionally. The combined use of CDDP and irinotecan had a synergistic effect on two cell lines, especially when CDDP was used first.
Collapse
Affiliation(s)
- Minqin Xu
- Department of Pharmacology, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Lihua Zhang
- Department of Pharmacology, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Lan Lin
- Department of Pharmacology, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Zhiyi Qiang
- Department of Pharmacology, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Wei Liu
- Department of Pharmacology, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Jian Yang
- Department of Pharmacology, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| |
Collapse
|
11
|
Hu L, Gao M, Jiang H, Zhuang L, Jiang Y, Xie S, Zhang H, Wang Q, Chen Q. Triptolide inhibits epithelial ovarian tumor growth by blocking the hedgehog/Gli pathway. Aging (Albany NY) 2023; 15:11131-11151. [PMID: 37851362 PMCID: PMC10637820 DOI: 10.18632/aging.205110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 09/18/2023] [Indexed: 10/19/2023]
Abstract
Epithelial ovarian cancer (EOC), the most predominant subtype of ovarian cancer (OC), involves poor prognosis and exhibits high aggression. Triptolide (TPL), like other Chinese herbs, has historically played a significant role in modern medicine. The screening system based on Gli-dependent luciferase reporter activity assessed the effects of over 800 natural medicinal materials on hedgehog (Hh) signaling pathway activity and discovered that TPL had an excellent inhibitory effect on Hh signaling pathway activity. However, the significance and mechanism of TPL involvement in regulating the Hh pathway have not been well explored. Thus, this work aimed to understand better how TPL affects the Hh pathway activity, which, in turn, influences the biological behavior of EOC. Our findings observed that Smo agonist SAG-induced EOC cell proliferation, migration, and invasion were drastically reversed by TPL in a concentration-dependent pattern. Further evidence suggested that TPL promotes the degradation of Gli1 and Gli2 to inhibit the activity of the Hh signaling pathway by relying on Gli1 and Gli2 ubiquitination. Our in vivo studies also confirmed that TPL could significantly inhibit the tumor growth of EOC. Taken together, our results revealed that one of the antitumor mechanisms of TPL was the targeted inhibition of the Hh/Gli pathway.
Collapse
Affiliation(s)
- Lanyan Hu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, P.R. China
| | - Mai Gao
- Huankui Academy of Nanchang University, Nanchang 330036, Jiangxi, P.R. China
| | - Huifu Jiang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, P.R. China
| | - Lingling Zhuang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, P.R. China
| | - Ying Jiang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, P.R. China
| | - Siqi Xie
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, P.R. China
| | - Hong Zhang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, P.R. China
| | - Qian Wang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, P.R. China
| | - Qi Chen
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, P.R. China
| |
Collapse
|
12
|
He R, He Y, Du R, Liu C, Chen Z, Zeng A, Song L. Revisiting of TAMs in tumor immune microenvironment: Insight from NF-κB signaling pathway. Biomed Pharmacother 2023; 165:115090. [PMID: 37390708 DOI: 10.1016/j.biopha.2023.115090] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/20/2023] [Accepted: 06/26/2023] [Indexed: 07/02/2023] Open
Abstract
Tumor-associated macrophages (TAMs) are key components of tumor immune microenvironment and play a dual role in promoting tumor growth and anti-tumor immunity. Therefore, regulating TAMs has become a promising method in cancer immunotherapy. NF- κB pathway is the key regulatory pathway of TAMs. Targeting this pathway has shown the potential to improve tumor immune microenvironment. At present, there are still some controversies and the idea of combined therapy in this field. This article reviews the progress in the field of immunotherapy in improving tumor immune microenvironment by exploring the mechanism of regulating TAMs (including promoting M1 polarization, inhibiting M2 polarization and regulating TAMs infiltration).
Collapse
Affiliation(s)
- Rui He
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, PR China
| | - Yan He
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, PR China
| | - Ran Du
- College of Education and Psychology, Chengdu Normal University, Chengdu, Sichuan 611130, PR China
| | - Chenxin Liu
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, PR China
| | - Zeran Chen
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, PR China
| | - Anqi Zeng
- Institute of Translational Pharmacology and Clinical Application, Sichuan Academy of Chinese Medical Science, Chengdu, Sichuan 610041, PR China
| | - Linjiang Song
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, PR China
| |
Collapse
|
13
|
Ma B, Zhong Y, Chen R, Zhan X, Huang G, Xiong Y, Tan B. Tripterygium glycosides reverse chemotherapy resistance in ovarian cancer by targeting the NRF2/GPX4 signal axis to induce ferroptosis of drug-resistant human epithelial ovarian cancer cells. Biochem Biophys Res Commun 2023; 665:178-186. [PMID: 37163938 DOI: 10.1016/j.bbrc.2023.04.111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/18/2023] [Accepted: 04/29/2023] [Indexed: 05/12/2023]
Abstract
Cisplatin resistance is the main cause of postoperative recurrence and difficulty in the treatment of ovarian cancer. It is urgently needed to identify therapeutic drugs with unique functions to overcome the current challenges in the treatment of ovarian cancer. In this study, we found that TG promoted the accumulation of ROS and MDA in A2780/DDP cells and downregulated the expression of key antioxidant molecules. In vivo, the survival rate of tumor-bearing nude mice was prolonged by TG without significant hepatotoxic reaction. The expression of key antioxidant molecules in tumor tissues was consistent with that in vitro. These findings revealed that TG disrupted homeostasis of redox reactions and induced ferroptosis in A2780/DDP cells, thereby enhancing cisplatin chemosensitivity of ovarian cancer. Overall, TG may be a novel potential therapeutic option for reversing resistance to cisplatin chemotherapy.
Collapse
Affiliation(s)
- Bo Ma
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330000, China
| | - Yanying Zhong
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330000, China
| | - Runqiu Chen
- Queen Mary School, Nanchang University, Nanchang, 330000, China
| | - Xinlu Zhan
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330000, China
| | - Genhua Huang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330000, China
| | - Yifei Xiong
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330000, China
| | - Buzhen Tan
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330000, China.
| |
Collapse
|
14
|
Kralj J, Pernar Kovač M, Dabelić S, Polančec DS, Wachtmeister T, Köhrer K, Brozovic A. Transcriptome analysis of newly established carboplatin-resistant ovarian cancer cell model reveals genes shared by drug resistance and drug-induced EMT. Br J Cancer 2023; 128:1344-1359. [PMID: 36717670 PMCID: PMC10050213 DOI: 10.1038/s41416-023-02140-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 12/20/2022] [Accepted: 01/04/2023] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND In ovarian cancer (OC) therapy, even initially responsive patients develop drug resistance. METHODS Here, we present an OC cell model composed of variants with differing degrees of acquired resistance to carboplatin (CBP), cross-resistance to paclitaxel, and CBP-induced metastatic properties (migration and invasion). Transcriptome data were analysed by two approaches identifying differentially expressed genes and CBP sensitivity-correlating genes. The impact of selected genes and signalling pathways on drug resistance and metastatic potential, along with their clinical relevance, was examined by in vitro and in silico approaches. RESULTS TMEM200A and PRKAR1B were recognised as potentially involved in both phenomena, also having high predictive and prognostic values for OC patients. CBP-resistant MES-OV CBP8 cells were more sensitive to PI3K/Akt/mTOR pathway inhibitors Rapamycin, Wortmannin, SB216763, and transcription inhibitor Triptolide compared with parental MES-OV cells. When combined with CBP, Rapamycin decreased the sensitivity of parental cells while Triptolide sensitised drug-resistant cells to CBP. Four PI3K/Akt/mTOR inhibitors reduced migration in both cell lines. CONCLUSIONS A newly established research model and two distinct transcriptome analysis approaches identified novel candidate genes enrolled in CBP resistance development and/or CBP-induced EMT and implied that one-gene targeting could be a better approach than signalling pathway inhibition for influencing both phenomena.
Collapse
Affiliation(s)
- Juran Kralj
- Division of Molecular Biology, Ruđer Bošković Institute, Bijenička cesta 54, Zagreb, Croatia
| | - Margareta Pernar Kovač
- Division of Molecular Biology, Ruđer Bošković Institute, Bijenička cesta 54, Zagreb, Croatia
| | - Sanja Dabelić
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy and Biochemistry, University of Zagreb, Ante Kovačića 1, Zagreb, Croatia
| | | | - Thorsten Wachtmeister
- Genomics and Transcriptomics Laboratory at the Biological and Medical Research Center (BMFZ), Heinrich-Heine-University Düsseldorf, Universitätsstraße 1, Düsseldorf, Germany
| | - Karl Köhrer
- Genomics and Transcriptomics Laboratory at the Biological and Medical Research Center (BMFZ), Heinrich-Heine-University Düsseldorf, Universitätsstraße 1, Düsseldorf, Germany
| | - Anamaria Brozovic
- Division of Molecular Biology, Ruđer Bošković Institute, Bijenička cesta 54, Zagreb, Croatia.
| |
Collapse
|
15
|
Truxova I, Cibula D, Spisek R, Fucikova J. Targeting tumor-associated macrophages for successful immunotherapy of ovarian carcinoma. J Immunother Cancer 2023; 11:jitc-2022-005968. [PMID: 36822672 PMCID: PMC9950980 DOI: 10.1136/jitc-2022-005968] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/07/2023] [Indexed: 02/25/2023] Open
Abstract
Epithelial ovarian cancer (EOC) is among the top five causes of cancer-related death in women, largely reflecting early, prediagnosis dissemination of malignant cells to the peritoneum. Despite improvements in medical therapies, particularly with the implementation of novel drugs targeting homologous recombination deficiency, the survival rates of patients with EOC remain low. Unlike other neoplasms, EOC remains relatively insensitive to immune checkpoint inhibitors, which is correlated with a tumor microenvironment (TME) characterized by poor infiltration by immune cells and active immunosuppression dominated by immune components with tumor-promoting properties, especially tumor-associated macrophages (TAMs). In recent years, TAMs have attracted interest as potential therapeutic targets by seeking to reverse the immunosuppression in the TME and enhance the clinical efficacy of immunotherapy. Here, we review the key biological features of TAMs that affect tumor progression and their relevance as potential targets for treating EOC. We especially focus on the therapies that might modulate the recruitment, polarization, survival, and functional properties of TAMs in the TME of EOC that can be harnessed to develop superior combinatorial regimens with immunotherapy for the clinical care of patients with EOC.
Collapse
Affiliation(s)
| | - David Cibula
- Gynecologic Oncology Center, Department of Obstetrics and Gynecology, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Radek Spisek
- Sotio Biotech, Prague, Czech Republic,Department of Immunology, Second Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic
| | - Jitka Fucikova
- Sotio Biotech, Prague, Czech Republic .,Department of Immunology, Second Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic
| |
Collapse
|
16
|
Wu D, Tian S, Zhu W. Modulating multidrug resistance to drug-based antitumor therapies through NF-κB signaling pathway: mechanisms and perspectives. Expert Opin Ther Targets 2023; 27:503-515. [PMID: 37314372 DOI: 10.1080/14728222.2023.2225767] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 06/12/2023] [Indexed: 06/15/2023]
Abstract
INTRODUCTION Despite the advances made in cancer treatment in the past decades, therapeutic efficacy is still quite challenging, partially due to the emergence of multidrug resistance (MDR). It is crucial to decipher the underlying mechanisms of resistance in order to develop new therapeutic strategies for cancer patients. Previous studies have shown that activation of nuclear factor-κB (NF-κB) plays key roles in various cellular processes including proliferation, anti-apoptosis, metastasis, invasion, and chemoresistance. AREAS COVERED In this review, we conduct an integrated analysis of the evidence suggesting the vital roles of the NF-κB signaling pathway in MDR during chemotherapy, immunotherapy, endocrine, and targeted therapy. A literature search was performed on NF-κB and drug resistance in PubMed up to February 2023. EXPERT OPINION This review summarizes that the NF-κB signaling pathway exhibits a crucial role in enhancing drug resistance in chemotherapy, immunotherapy, endocrine, and targeted therapy. The application of combination therapy with existing antineoplastic drugs and a safe NF-κB inhibitor could become a promising strategy in cancer treatment. A better understanding of the pathway and mechanisms of drug resistance may help exploit safer and more effective NF-κB-targeting agents for clinical use in the future.
Collapse
Affiliation(s)
- Dapeng Wu
- Department of Oncology, Qingdao Hospital, University of Health and Rehabilitation Sciences (Qingdao Municipal Hospital), Qingdao, China
| | - Sai Tian
- Department of Pediatric Clinic, Qingdao Hospital, University of Health and Rehabilitation Sciences (Qingdao Municipal Hospital), Qingdao, China
| | - Wenjing Zhu
- Clinical Research Center, Qingdao Hospital, University of Health and Rehabilitation Sciences (Qingdao Municipal Hospital), Qingdao, China
- Department of Respiratory and Critical Care Medicine, Qingdao Hospital, University of Health and Rehabilitation Sciences (Qingdao Municipal Hospital), Qingdao, China
| |
Collapse
|
17
|
Li L, Wang C, Qiu Z, Deng D, Chen X, Wang Q, Meng Y, Zhang B, Zheng G, Hu J. Triptolide inhibits intrahepatic cholangiocarcinoma growth by suppressing glycolysis via the AKT/mTOR pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 109:154575. [PMID: 36610163 DOI: 10.1016/j.phymed.2022.154575] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 11/04/2022] [Accepted: 11/20/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND High levels of glycolysis supply large quantities of energy and biological macromolecular raw materials for cell proliferation. Triptolide (TP) is a kind of epoxy diterpene lactone extracted from the roots, flowers, leaves, or grains of the Celastraceae plant, Tripterygium wilfordii. TP has multiple biological activities, including anti-inflammatory, immunologic suppression, and anti-cancer effects. Nevertheless, it is little known regarding its anti-intrahepatic cholangiocarcinoma (ICC) growth, and the mechanism still require exploration. PURPOSE This research explored the effect of TP on ICC growth and investigated whether TP inhibits glycolysis via the AKT/mTOR pathway. METHODS Cell proliferation was analyzed by Cell Counting Kit-8 (CCK-8), clonogenic assay, and flow cytometry. The underlying molecular mechanism was identified by determining glucose consumption, ATP production, lactate production, hexokinase (HK) and pyruvate kinase (PK) activity, and Western blot analysis. A rapid ICC model of AKT/YapS127A oncogene coactivation in mice was used to clarify the effect of TP treatment on tumor growth and glycolysis. RESULTS The results showed that TP treatment significantly inhibited ICC cell proliferation and glycolysis in a dose- and time-dependent manner(P < 0.05). Further analysis suggested that TP suppressed ICC cell glycolysis by targeting AKT/mTOR signaling. Additionally, we found that TP inhibits tumor growth and glycolysis in AKT/YapS127A mice(P < 0.05). CONCLUSION Taken together, we revealed that TP suppressed ICC growth by suppressing glycolysis via the AKT/mTOR pathway and may provide a potential therapeutic target for ICC treatment.
Collapse
Affiliation(s)
- Li Li
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Chuting Wang
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Zhenpeng Qiu
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Dongjie Deng
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Xin Chen
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Qi Wang
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Yan Meng
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Baohui Zhang
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Guohua Zheng
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China; Key Laboratory of Chinese Medicine Resource and Compound Prescription, Ministry of Education, Hubei University of Chinese Medicine, Wuhan 430065, China.
| | - Junjie Hu
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China.
| |
Collapse
|
18
|
Jiang T, Xie L, Zhou S, Liu Y, Huang Y, Mei N, Ma F, Gong J, Gao X, Chen J. Metformin and histone deacetylase inhibitor based anti-inflammatory nanoplatform for epithelial-mesenchymal transition suppression and metastatic tumor treatment. J Nanobiotechnology 2022; 20:394. [PMID: 36045429 PMCID: PMC9429706 DOI: 10.1186/s12951-022-01592-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 08/08/2022] [Indexed: 11/24/2022] Open
Abstract
Epithelial-mesenchymal transition (EMT), a differentiation process with aberrant changes of tumor cells, is identified as an initial and vital procedure for metastatic processes. Inflammation is a significant inducer of EMT and provides an indispensable target for blocking EMT, however, an anti-inflammatory therapeutic with highlighted safety and efficacy is deficient. Metformin is a promising anti-inflammatory agent with low side effects, but tumor monotherapy with an anti-inflammation drug could generate therapy resistance, cell adaptation or even promote tumor development. Combination therapies with various anti-inflammatory mechanisms can be favorable options improving therapeutic effects of metformin, here we develop a tumor targeting hybrid micelle based on metformin and a histone deacetylase inhibitor propofol-docosahexaenoic acid for efficient therapeutic efficacies of anti-inflammatory drugs. Triptolide is further encapsulated in hybrid micelles for orthotopic tumor therapies. The final multifunctional nanoplatforms (HAOPTs) with hyaluronic acid (HA) modification can target tumor efficiently, inhibit tumor cell EMT processes, repress metastasis establishment and suppress metastatic tumor development in a synergistic manner. Collectively, the results afford proof of concept that the tumor targeting anti-inflammatory nanoplatform can provide a potent, safe and clinical translational approach for EMT inhibition and metastatic tumor therapy.
Collapse
Affiliation(s)
- Tianze Jiang
- Shanghai Pudong Hospital & Department of Pharmaceutics, School of Pharmacy, Fudan University, Lane 826, Zhangheng Road, Shanghai, 201203, People's Republic of China.,Key Laboratory of Marine Drugs, Ministry of Education, Shandong Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao, 266003, People's Republic of China
| | - Laozhi Xie
- Shanghai Pudong Hospital & Department of Pharmaceutics, School of Pharmacy, Fudan University, Lane 826, Zhangheng Road, Shanghai, 201203, People's Republic of China
| | - Songlei Zhou
- Shanghai Pudong Hospital & Department of Pharmaceutics, School of Pharmacy, Fudan University, Lane 826, Zhangheng Road, Shanghai, 201203, People's Republic of China
| | - Yipu Liu
- Shanghai Pudong Hospital & Department of Pharmaceutics, School of Pharmacy, Fudan University, Lane 826, Zhangheng Road, Shanghai, 201203, People's Republic of China
| | - Yukun Huang
- Shanghai Pudong Hospital & Department of Pharmaceutics, School of Pharmacy, Fudan University, Lane 826, Zhangheng Road, Shanghai, 201203, People's Republic of China.,Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025, People's Republic of China
| | - Ni Mei
- Shanghai Center for Drug Evaluation and Inspection, Lane 58, HaiQv Road, Shanghai, 201210, People's Republic of China
| | - Fenfen Ma
- Shanghai Pudong Hospital & Department of Pharmaceutics, School of Pharmacy, Fudan University, Lane 826, Zhangheng Road, Shanghai, 201203, People's Republic of China.,Department of Pharmacy, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, 2800 Gongwei Road, Shanghai, 201399, People's Republic of China
| | - Jingru Gong
- Shanghai Pudong Hospital & Department of Pharmaceutics, School of Pharmacy, Fudan University, Lane 826, Zhangheng Road, Shanghai, 201203, People's Republic of China. .,Department of Pharmacy, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, 2800 Gongwei Road, Shanghai, 201399, People's Republic of China.
| | - Xiaoling Gao
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025, People's Republic of China.
| | - Jun Chen
- Shanghai Pudong Hospital & Department of Pharmaceutics, School of Pharmacy, Fudan University, Lane 826, Zhangheng Road, Shanghai, 201203, People's Republic of China. .,Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Lane 826, Zhangheng Road, Shanghai, 201203, People's Republic of China.
| |
Collapse
|
19
|
Li L, Li S, Wang H, Li L, Wang P, Shen D, Dang X. GSG2 promotes tumor growth through regulating cell proliferation in hepatocellular carcinoma. Biochem Biophys Res Commun 2022; 625:109-115. [DOI: 10.1016/j.bbrc.2022.07.093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 07/23/2022] [Indexed: 12/24/2022]
|
20
|
Ren Y, He J, Zhao W, Ma Y. The Anti-Tumor Efficacy of Verbascoside on Ovarian Cancer via Facilitating CCN1-AKT/NF-κB Pathway-Mediated M1 Macrophage Polarization. Front Oncol 2022; 12:901922. [PMID: 35785168 PMCID: PMC9249354 DOI: 10.3389/fonc.2022.901922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 05/02/2022] [Indexed: 11/26/2022] Open
Abstract
Background Ovarian cancer (OC) is the leading cause of gynecological cancer-related mortality. Verbascoside (VB) is a phenylpropanoid glycoside from Chinese herbs, with anti-tumour activities. This study aimed to investigate the effects and mechanism of VB on OC. Methods OC cell lines SKOV3 and A2780 were used in this study. Cell viability, proliferation, and migration were measured using CCK-8, clonogenic, and transwell assays, respectively. Apoptosis and M1/M2 macrophages were detected using flow cytometry. The interaction between VB and CCN1 was predicted by molecular docking. The mRNA expression of CCN1 was detected by RT-qPCR. The protein levels of CCN1, AKT, p-AKT, p65, and p-p65 were determined by western blotting. A xenograft mice model was established for in vivo validation. Results VB inhibited OC cell proliferation and migration in a dose-dependent manner, and promoted apoptosis and M1 macrophage polarization. VB downregulated CCN1 and inhibited the AKT/NF-κB pathway. LY294002, an AKT inhibitor, potentiated the anti-tumour effects of VB. CCN1 overexpression weakened the anti-tumour effects of VB and VB + LY294002. In vivo experiments verified that VB inhibited tumour growth and promoted M1 polarization, which is regulated by the CCN1-mediated AKT/NF-κB pathway. Conclusion VB triggers the CCN1-AKT/NF-κB pathway-mediated M1 macrophage polarization for protecting against OC.
Collapse
Affiliation(s)
- Yu Ren
- Scientific Research Department, Inner Mongolia People’s Hospital, Hohhot, China
| | - Jinying He
- Reproductive Medicine Centre, Inner Mongolia People’s Hospital, Hohhot, China
| | - Wenhua Zhao
- Reproductive Medicine Centre, Inner Mongolia People’s Hospital, Hohhot, China
| | - Yuzhen Ma
- Reproductive Medicine Centre, Inner Mongolia People’s Hospital, Hohhot, China
- *Correspondence: Yuzhen Ma,
| |
Collapse
|
21
|
Xiao M, He J, Yin L, Chen X, Zu X, Shen Y. Tumor-Associated Macrophages: Critical Players in Drug Resistance of Breast Cancer. Front Immunol 2022; 12:799428. [PMID: 34992609 PMCID: PMC8724912 DOI: 10.3389/fimmu.2021.799428] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 12/01/2021] [Indexed: 12/11/2022] Open
Abstract
Drug resistance is one of the most critical challenges in breast cancer (BC) treatment. The occurrence and development of drug resistance are closely related to the tumor immune microenvironment (TIME). Tumor-associated macrophages (TAMs), the most important immune cells in TIME, are essential for drug resistance in BC treatment. In this article, we summarize the effects of TAMs on the resistance of various drugs in endocrine therapy, chemotherapy, targeted therapy, and immunotherapy, and their underlying mechanisms. Based on the current overview of the key role of TAMs in drug resistance, we discuss the potential possibility for targeting TAMs to reduce drug resistance in BC treatment, By inhibiting the recruitment of TAMs, depleting the number of TAMs, regulating the polarization of TAMs and enhancing the phagocytosis of TAMs. Evidences in our review support it is important to develop novel therapeutic strategies to target TAMs in BC to overcome the treatment of resistance.
Collapse
Affiliation(s)
- Maoyu Xiao
- Cancer Research Institute, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Jun He
- Department of Spine Surgery, The Nanhua Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Liyang Yin
- Cancer Research Institute, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Xiguan Chen
- Cancer Research Institute, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Xuyu Zu
- Cancer Research Institute, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Yingying Shen
- Cancer Research Institute, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| |
Collapse
|
22
|
Cheuk YC, Zhang P, Xu S, Wang J, Chen T, Mao Y, Jiang Y, Luo Y, Guo J, Wang W, Rong R. Bioinformatics analysis of pathways of renal infiltrating macrophages in different renal disease models. Transl Androl Urol 2022; 10:4333-4343. [PMID: 35070815 PMCID: PMC8749068 DOI: 10.21037/tau-21-761] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 12/03/2021] [Indexed: 12/11/2022] Open
Abstract
Background Recent studies have suggested that macrophages are significantly involved in different renal diseases. However, the role of these renal infiltrating macrophages has not been entirely uncovered. To further clarify the underlying mechanism and identify therapeutic targets, a bioinformatic analysis based on transcriptome profiles was performed. Methods Three transcription profiling datasets, GSE27045, GSE51466 and GSE75808, were obtained from the Gene Expression Omnibus (GEO). Differentially expressed genes (DEGs) were assessed by Gene Ontology (GO) functional annotation, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis and gene set enrichment analysis (GSEA). Results The classic signaling pathways and metabolic pathways of macrophages infiltrating the kidney in different pathophysiological processes, including lupus nephritis (LN), renal crystal formation and renal ischemia-reperfusion injury (IRI), were analysed. Furthermore, the common classical pathways significantly altered in the three renal disorders were the oxidative phosphorylation, VEGF signaling and JAK/STAT signaling pathways, while the renin-angiotensin system was uniquely altered in LN, the glycolysis and gluconeogenesis pathways were uniquely altered in models of renal crystal formation, and the calcium signaling pathway was specific to renal IRI. Conclusions Via bioinformatics analysis, this study revealed the transcriptional features of macrophages in murine LN, renal crystal formation and IRI models, which may serve as promising targets for mechanistic research and the clinical treatment of multiple renal diseases.
Collapse
Affiliation(s)
- Yin Celeste Cheuk
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Organ Transplantation, Shanghai, China
| | - Pingbao Zhang
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Organ Transplantation, Shanghai, China
| | - Shihao Xu
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Organ Transplantation, Shanghai, China
| | - Jiyan Wang
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Organ Transplantation, Shanghai, China
| | - Tian Chen
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Organ Transplantation, Shanghai, China
| | - Yongxin Mao
- Department of Urology, Huadong Hospital, Fudan University, Shanghai, China
| | - Yamei Jiang
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Organ Transplantation, Shanghai, China
| | - Yongsheng Luo
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Organ Transplantation, Shanghai, China
| | - Jingjing Guo
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Organ Transplantation, Shanghai, China
| | - Weixi Wang
- Department of Geriatrics, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Ruiming Rong
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Organ Transplantation, Shanghai, China
| |
Collapse
|
23
|
Wang P, Hu Y, Qu P, Zhao Y, Liu J, Zhao J, Kong B. Protein tyrosine phosphatase receptor type Z1 inhibits the cisplatin resistance of ovarian cancer by regulating PI3K/AKT/mTOR signal pathway. Bioengineered 2022; 13:1931-1941. [PMID: 35001804 PMCID: PMC8805848 DOI: 10.1080/21655979.2021.2022268] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 12/20/2021] [Indexed: 12/30/2022] Open
Abstract
Most patients with ovarian cancer (OC) get remission after undergoing cytoreductive surgery and platinum-based standard chemotherapy, but more than 50% of patients with advanced OC relapse within the first 5 years after treatment and develop resistance to standard chemotherapy. The production of medicinal properties is the main reason for the poor prognosis and high mortality of OC patients. Cisplatin (DDP) resistance is a major cause for poor prognosis of OC patients. PTPRZ1 can regulate the growth and apoptosis of ovarian cancer cells, while the molecular mechanism remains unknown. This study was designed to investigate the roles of PTPRZ1 in DDP-resistant OC cells and possible mechanism. PTPRZ1 expression in OC tissues and normal tissues was analyzed by GEPIA database and verified by Real-time Quantitative Reverse Transcription PCR (RT-PCR) assay. PTPRZ1 expression in normal ovarian cancer cells and DDP-resistant OC cells was also analyzed. Subsequently, RT-PCR, Western blot, MTT experiment and flow cytometry were used to assess the effects of PTPRZ1-PI3K/AKT/mTOR regulating axis on DDP resistance of OC. PTPRZ1 expression was abnormally low in OC tissues, and notably reduced in DDP-resistant OC cells. MTT experiment and flow cytometer indicated that overexpression of PTPRZ1 enhanced the DDP sensitivity of OC cells and promoted the cell apoptosis. Moreover, the results of our research showed that PTPRZ1 might exert its biological effects through blocking PI3K/AKT/mTOR pathway. PTPRZ1 overexpression inhibitied OC tumor growth and resistance to DDP in vivo. Overall, PTPRZ1 might suppress the DDP resistance of OC and induce the cytotoxicity by blocking PI3K/AKT/mTOR pathway.
Collapse
Affiliation(s)
- Peng Wang
- Department of Gynecology Oncology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Department of Gynecology Oncology, Tianjin Central Hospital of Obstetrics and Gynecology, Tianjin, China
| | - Yuanjing Hu
- Department of Gynecology Oncology, Tianjin Central Hospital of Obstetrics and Gynecology, Tianjin, China
| | - Pengpeng Qu
- Department of Gynecology Oncology, Tianjin Central Hospital of Obstetrics and Gynecology, Tianjin, China
| | - Ying Zhao
- Department of Gynecology Oncology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Jing Liu
- Department of Gynecology Oncology, Tianjin Central Hospital of Obstetrics and Gynecology, Tianjin, China
| | - Jianguo Zhao
- Department of Gynecology Oncology, Tianjin Central Hospital of Obstetrics and Gynecology, Tianjin, China
| | - Beihua Kong
- Department of Gynecology Oncology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| |
Collapse
|