1
|
Bansal M, Ansari S, Verma M. Role of miRNAs to control the progression of Chronic Myeloid Leukemia by their expression levels. Med Oncol 2024; 41:55. [PMID: 38216843 DOI: 10.1007/s12032-023-02278-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 11/30/2023] [Indexed: 01/14/2024]
Abstract
Chronic Myeloid Leukemia (CML) is a myeloproliferative disorder distinguished by a specific genetic anomaly known as a reciprocal translocation between chromosomes 9 and 22. This translocation causes fusion between the BCR and ABL regions. Consequently, BCR::ABL oncoprotein is formed, which plays a significant role in driving CML progression. Imatinib, a tyrosine kinase inhibitor (TKI), became the first line of drugs against CML. However, with continuous treatment, patients developed resistance against it. Indeed, to address this challenge, microRNA-based therapy emerges as a promising approach. miRNAs are 20-25 nucleotides long and hold great significance in various cellular processes, including cell differentiation, proliferation, migration, and apoptosis. In several malignancies, it has been reported that miRNAs might help to promote or prevent tumourigenesis and abnormal expression because they could act as both oncogenes/tumor suppressors. Recently, because of their vital regulatory function in maintaining cell homeostasis, miRNAs might be used to control CML progression and in developing new therapies for TKI-resistant patients. They might also act as potential prognostic, diagnostic, and therapeutic biomarkers based on their expression profiles. Various annotation tools and microarray-based expression profiles can be used to predict dysregulated miRNAs and their target genes. The main purpose of this review is to provide brief insights into the role of dysregulated miRNAs in CML pathogenesis and to emphasize their clinical relevance, such as their significant potential as therapeutics against CML. Utilizing these miRNAs as a therapeutic approach by inhibition or amplification of their activity could unlock new doors for the therapy of CML.
Collapse
MESH Headings
- Humans
- MicroRNAs/genetics
- Fusion Proteins, bcr-abl
- Drug Resistance, Neoplasm/genetics
- Imatinib Mesylate/therapeutic use
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Protein Kinase Inhibitors/pharmacology
- Protein Kinase Inhibitors/therapeutic use
- Apoptosis
Collapse
Affiliation(s)
- Manvi Bansal
- School of Biotechnology, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India
| | - Sana Ansari
- School of Biotechnology, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India
| | - Malkhey Verma
- School of Biotechnology, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India.
| |
Collapse
|
2
|
Huang W, Paul D, Calin GA, Bayraktar R. miR-142: A Master Regulator in Hematological Malignancies and Therapeutic Opportunities. Cells 2023; 13:84. [PMID: 38201290 PMCID: PMC10778542 DOI: 10.3390/cells13010084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/29/2023] [Accepted: 12/15/2023] [Indexed: 01/12/2024] Open
Abstract
MicroRNAs (miRNAs) are a type of non-coding RNA whose dysregulation is frequently associated with the onset and progression of human cancers. miR-142, an ultra-conserved miRNA with both active -3p and -5p mature strands and wide-ranging physiological targets, has been the subject of countless studies over the years. Due to its preferential expression in hematopoietic cells, miR-142 has been found to be associated with numerous types of lymphomas and leukemias. This review elucidates the multifaceted role of miR-142 in human physiology, its influence on hematopoiesis and hematopoietic cells, and its intriguing involvement in exosome-mediated miR-142 transport. Moreover, we offer a comprehensive exploration of the genetic and molecular landscape of the miR-142 genomic locus, highlighting its mutations and dysregulation within hematological malignancies. Finally, we discuss potential avenues for harnessing the therapeutic potential of miR-142 in the context of hematological malignancies.
Collapse
Affiliation(s)
- Wilson Huang
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (W.H.); (G.A.C.)
| | - Doru Paul
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA;
| | - George A. Calin
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (W.H.); (G.A.C.)
- Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Department of Leukemia, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Recep Bayraktar
- Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
3
|
Zhang B, Zhao D, Chen F, Frankhouser D, Wang H, Pathak KV, Dong L, Torres A, Garcia-Mansfield K, Zhang Y, Hoang DH, Chen MH, Tao S, Cho H, Liang Y, Perrotti D, Branciamore S, Rockne R, Wu X, Ghoda L, Li L, Jin J, Chen J, Yu J, Caligiuri MA, Kuo YH, Boldin M, Su R, Swiderski P, Kortylewski M, Pirrotte P, Nguyen LXT, Marcucci G. Acquired miR-142 deficit in leukemic stem cells suffices to drive chronic myeloid leukemia into blast crisis. Nat Commun 2023; 14:5325. [PMID: 37658085 PMCID: PMC10474062 DOI: 10.1038/s41467-023-41167-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 08/23/2023] [Indexed: 09/03/2023] Open
Abstract
The mechanisms underlying the transformation of chronic myeloid leukemia (CML) from chronic phase (CP) to blast crisis (BC) are not fully elucidated. Here, we show lower levels of miR-142 in CD34+CD38- blasts from BC CML patients than in those from CP CML patients, suggesting that miR-142 deficit is implicated in BC evolution. Thus, we create miR-142 knockout CML (i.e., miR-142-/-BCR-ABL) mice, which develop BC and die sooner than miR-142 wt CML (i.e., miR-142+/+BCR-ABL) mice, which instead remain in CP CML. Leukemic stem cells (LSCs) from miR-142-/-BCR-ABL mice recapitulate the BC phenotype in congenic recipients, supporting LSC transformation by miR-142 deficit. State-transition and mutual information analyses of "bulk" and single cell RNA-seq data, metabolomic profiling and functional metabolic assays identify enhanced fatty acid β-oxidation, oxidative phosphorylation and mitochondrial fusion in LSCs as key steps in miR-142-driven BC evolution. A synthetic CpG-miR-142 mimic oligodeoxynucleotide rescues the BC phenotype in miR-142-/-BCR-ABL mice and patient-derived xenografts.
Collapse
Affiliation(s)
- Bin Zhang
- Department of Hematological Malignancies Translational Science, Gehr Family Center for Leukemia Research, City of Hope Medical Center and Beckman Research Institute, Duarte, CA, USA.
| | - Dandan Zhao
- Department of Hematological Malignancies Translational Science, Gehr Family Center for Leukemia Research, City of Hope Medical Center and Beckman Research Institute, Duarte, CA, USA
| | - Fang Chen
- Department of Hematological Malignancies Translational Science, Gehr Family Center for Leukemia Research, City of Hope Medical Center and Beckman Research Institute, Duarte, CA, USA
| | - David Frankhouser
- Department of Computational and Quantitative Medicine, City of Hope Medical Center and Beckman Research Institute, Duarte, CA, USA
| | - Huafeng Wang
- Department of Hematological Malignancies Translational Science, Gehr Family Center for Leukemia Research, City of Hope Medical Center and Beckman Research Institute, Duarte, CA, USA
- Department of Hematology, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, PR China
| | - Khyatiben V Pathak
- Cancer & Cell Biology Division, Translational Genomics Research Institute, Phoenix, AZ, USA
- Integrated Mass Spectrometry Shared Resource, City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | - Lei Dong
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA, USA
| | - Anakaren Torres
- Cancer & Cell Biology Division, Translational Genomics Research Institute, Phoenix, AZ, USA
- Integrated Mass Spectrometry Shared Resource, City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | - Krystine Garcia-Mansfield
- Cancer & Cell Biology Division, Translational Genomics Research Institute, Phoenix, AZ, USA
- Integrated Mass Spectrometry Shared Resource, City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | - Yi Zhang
- Department of Hematological Malignancies Translational Science, Gehr Family Center for Leukemia Research, City of Hope Medical Center and Beckman Research Institute, Duarte, CA, USA
- Department of Hematology, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, PR China
| | - Dinh Hoa Hoang
- Department of Hematological Malignancies Translational Science, Gehr Family Center for Leukemia Research, City of Hope Medical Center and Beckman Research Institute, Duarte, CA, USA
| | - Min-Hsuan Chen
- City of Hope National Medical Center, Integrative Genomics Core, Department of Computational and Quantitative Medicine, Beckman Research Institute, Duarte, CA, USA
| | - Shu Tao
- City of Hope National Medical Center, Integrative Genomics Core, Department of Computational and Quantitative Medicine, Beckman Research Institute, Duarte, CA, USA
| | - Hyejin Cho
- City of Hope National Medical Center, Integrative Genomics Core, Department of Computational and Quantitative Medicine, Beckman Research Institute, Duarte, CA, USA
| | - Yong Liang
- DNA/RNA Peptide Shared Resources, Beckman Research Institute, Duarte, CA, USA
| | - Danilo Perrotti
- Department of Medicine and Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine Baltimore, Baltimore, MD, USA
- Department of Immunology and Inflammation, Centre of Hematology, Imperial College of London, London, UK
| | - Sergio Branciamore
- Department of Computational and Quantitative Medicine, City of Hope Medical Center and Beckman Research Institute, Duarte, CA, USA
| | - Russell Rockne
- Department of Computational and Quantitative Medicine, City of Hope Medical Center and Beckman Research Institute, Duarte, CA, USA
| | - Xiwei Wu
- City of Hope National Medical Center, Integrative Genomics Core, Department of Computational and Quantitative Medicine, Beckman Research Institute, Duarte, CA, USA
| | - Lucy Ghoda
- Department of Hematological Malignancies Translational Science, Gehr Family Center for Leukemia Research, City of Hope Medical Center and Beckman Research Institute, Duarte, CA, USA
| | - Ling Li
- Department of Hematological Malignancies Translational Science, Gehr Family Center for Leukemia Research, City of Hope Medical Center and Beckman Research Institute, Duarte, CA, USA
| | - Jie Jin
- Department of Hematology, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, PR China
| | - Jianjun Chen
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA, USA
| | - Jianhua Yu
- Department of Hematology & Hematopoietic Cell Transplantation, City of Hope National Medical Center, Duarte, CA, USA
| | - Michael A Caligiuri
- Department of Hematology & Hematopoietic Cell Transplantation, City of Hope National Medical Center, Duarte, CA, USA
| | - Ya-Huei Kuo
- Department of Hematological Malignancies Translational Science, Gehr Family Center for Leukemia Research, City of Hope Medical Center and Beckman Research Institute, Duarte, CA, USA
| | - Mark Boldin
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA, USA
| | - Rui Su
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA, USA
| | - Piotr Swiderski
- DNA/RNA Peptide Shared Resources, Beckman Research Institute, Duarte, CA, USA
| | - Marcin Kortylewski
- Department of Immuno-Oncology, Beckman Research Institute, Duarte, CA, USA
| | - Patrick Pirrotte
- Cancer & Cell Biology Division, Translational Genomics Research Institute, Phoenix, AZ, USA
- Integrated Mass Spectrometry Shared Resource, City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | - Le Xuan Truong Nguyen
- Department of Hematological Malignancies Translational Science, Gehr Family Center for Leukemia Research, City of Hope Medical Center and Beckman Research Institute, Duarte, CA, USA.
- Cancer & Cell Biology Division, Translational Genomics Research Institute, Phoenix, AZ, USA.
| | - Guido Marcucci
- Department of Hematological Malignancies Translational Science, Gehr Family Center for Leukemia Research, City of Hope Medical Center and Beckman Research Institute, Duarte, CA, USA.
| |
Collapse
|