1
|
Gao M, Cheng J, Qiu A, Zhao D, Wang J, Liu J. Magnetic resonance imaging (MRI)-based intratumoral and peritumoral radiomics for prognosis prediction in glioma patients. Clin Radiol 2024; 79:e1383-e1393. [PMID: 39218720 DOI: 10.1016/j.crad.2024.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 06/30/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024]
Abstract
AIM The purpose of this study was to identify robust radiological features from intratumoral and peritumoral regions, evaluate MRI protocols, and machine learning methods for overall survival stratification of glioma patients, and explore the relationship between radiological features and the tumour microenvironment. MATERIAL AND METHODS A retrospective analysis was conducted on 163 glioma patients, divided into a training set (n=113) and a testing set (n=50). For each patient, 2135 features were extracted from clinical MRI. Feature selection was performed using the Minimum Redundancy Maximum Relevance method and the Random Forest (RF) algorithm. Prognostic factors were assessed using the Cox proportional hazards model. Four machine learning models (RF, Logistic Regression, Support Vector Machine, and XGBoost) were trained on clinical and radiological features from tumour and peritumoral regions. Model evaluations on the testing set used receiver operating characteristic curves. RESULTS Among the 163 patients, 96 had an overall survival (OS) of less than three years postsurgery, while 67 had an OS of more than three years. Univariate Cox regression in the validation set indicated that age (p=0.003) and tumour grade (p<0.001) were positively associated with the risk of death within three years postsurgery. The final predictive model incorporated 13 radiological and 7 clinical features. The RF model, combining intratumor and peritumor radiomics, achieved the best predictive performance (AUC = 0.91; ACC = 0.86), outperforming single-region models. CONCLUSION Combined intratumoral and peritumoral radiomics can improve survival prediction and have potential as a practical imaging biomarker to guide clinical decision-making.
Collapse
Affiliation(s)
- M Gao
- Department of Radiology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - J Cheng
- Hunan Provincial Key Lab on Bioinformatics, School of Computer Science and Engineering, Central South University, Changsha, China; Institute of Guizhou Aerospace Measuring and Testing Technology, Guiyang, China
| | - A Qiu
- Department of Biomedical Engineering, The Johns Hopkins University, MD, USA; Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China
| | - D Zhao
- Institute of Computing Technology, Chinese Academy of Sciences, Beijing, China.
| | - J Wang
- Hunan Provincial Key Lab on Bioinformatics, School of Computer Science and Engineering, Central South University, Changsha, China.
| | - J Liu
- Department of Radiology, The Second Xiangya Hospital of Central South University, Changsha, China; Department of Radiology Quality Control Center, Changsha, China.
| |
Collapse
|
2
|
Kalasauskas D, Kosterhon M, Kurz E, Schmidt L, Altmann S, Grauhan NF, Sommer C, Othman A, Brockmann MA, Ringel F, Keric N. Preoperative prediction of CNS WHO grade and tumour aggressiveness in intracranial meningioma based on radiomics and structured semantics. Sci Rep 2024; 14:20586. [PMID: 39232068 PMCID: PMC11374997 DOI: 10.1038/s41598-024-71200-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 08/26/2024] [Indexed: 09/06/2024] Open
Abstract
Preoperative identification of intracranial meningiomas with aggressive behaviour may help in choosing the optimal treatment strategy. Radiomics is emerging as a powerful diagnostic tool with potential applications in patient risk stratification. In this study, we aimed to compare the predictive value of conventional, semantic based and radiomic analyses to determine CNS WHO grade and early tumour relapse in intracranial meningiomas. We performed a single-centre retrospective analysis of intracranial meningiomas operated between 2007 and 2018. Recurrence within 5 years after Simpson Grade I-III resection was considered as early. Preoperative T1 CE MRI sequences were analysed conventionally by two radiologists. Additionally a semantic feature score based on systematic analysis of morphological characteristics was developed and a radiomic analysis were performed. For the radiomic model, tumour volume was extracted manually, 791 radiomic features were extracted. Eight feature selection algorithms and eight machine learning methods were used. Models were analysed using test and training datasets. In total, 226 patients were included. There were 21% CNS WHO grade 2 tumours, no CNS WHO grade 3 tumour, and 25 (11%) tumour recurrences were detected in total. In ROC analysis the best radiomic models demonstrated superior performance for determination of CNS WHO grade (AUC 0.930) and early recurrence (AUC 0.892) in comparison to the semantic feature score (AUC 0.74 and AUC 0.65) and conventional radiological analysis (AUC 0.65 and 0.54). The combination of human classifiers, semantic score and radiomic analysis did not markedly increase the model performance. Radiomic analysis is a promising tool for preoperative identification of aggressive and atypical intracranial meningiomas and could become a useful tool in the future.
Collapse
Affiliation(s)
- Darius Kalasauskas
- Department of Neurosurgery, University Medical Center, Johannes Gutenberg University, Langenbeckstr. 1, 55131, Mainz, Germany
| | - Michael Kosterhon
- Department of Neurosurgery, University Medical Center, Johannes Gutenberg University, Langenbeckstr. 1, 55131, Mainz, Germany.
| | - Elena Kurz
- Department of Neurosurgery, University Medical Center, Johannes Gutenberg University, Langenbeckstr. 1, 55131, Mainz, Germany
| | - Leon Schmidt
- Department of Neurosurgery, University Medical Center, Johannes Gutenberg University, Langenbeckstr. 1, 55131, Mainz, Germany
| | - Sebastian Altmann
- Department of Neuroradiology, University Medical Center, Johannes Gutenberg University, Langenbeckstr. 1, 55131, Mainz, Germany
| | - Nils F Grauhan
- Department of Neuroradiology, University Medical Center, Johannes Gutenberg University, Langenbeckstr. 1, 55131, Mainz, Germany
| | - Clemens Sommer
- Institute of Neuropathology, University Medical Center, Johannes Gutenberg University, Langenbeckstr. 1, 55131, Mainz, Germany
| | - Ahmed Othman
- Department of Neuroradiology, University Medical Center, Johannes Gutenberg University, Langenbeckstr. 1, 55131, Mainz, Germany
| | - Marc A Brockmann
- Department of Neuroradiology, University Medical Center, Johannes Gutenberg University, Langenbeckstr. 1, 55131, Mainz, Germany
| | - Florian Ringel
- Department of Neurosurgery, University Medical Center, Johannes Gutenberg University, Langenbeckstr. 1, 55131, Mainz, Germany
| | - Naureen Keric
- Department of Neurosurgery, University Medical Center, Johannes Gutenberg University, Langenbeckstr. 1, 55131, Mainz, Germany
| |
Collapse
|
3
|
Wawrzuta D, Chojnacka M, Drogosiewicz M, Pędziwiatr K, Dembowska-Bagińska B. Reirradiation for diffuse intrinsic pontine glioma: prognostic radiomic factors at progression. Strahlenther Onkol 2024; 200:797-804. [PMID: 38748214 PMCID: PMC11343881 DOI: 10.1007/s00066-024-02241-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 04/23/2024] [Indexed: 08/24/2024]
Abstract
PURPOSE Diffuse intrinsic pontine glioma (DIPG) is a lethal pediatric brain tumor. Radiation therapy (RT) is the standard treatment, with reirradiation considered in case of progression. However, the prognostic factors for reirradiation are not well understood. This study aims to investigate the outcomes of DIPG patients undergoing reirradiation and identify clinical and radiomic prognostic factors. METHODS We conducted a retrospective analysis of patients with DIPG who underwent reirradiation at our institution between January 2016 and December 2023. Using PyRadiomics, we extracted radiomic features of tumors at the time of progression from FLAIR MRI images and collected clinical data. We used the least absolute shrinkage and selection operator (lasso) for Cox's proportional hazard model with leave-one-out cross-validation to select optimal prognostic factors for survival after reirradiation. RESULTS The study included 18 patients who underwent reirradiation at first progression, receiving a total dose of 20 Gy or 24 Gy in 2‑Gy fractions. Reirradiation was well tolerated, with no severe toxicity. Most patients (78%) showed neurological improvement after treatment. Median survival after progression was 29.2 weeks. The Cox model demonstrated a concordance of 0.81 (95% CI: 0.75-0.88), revealing that tumor sphericity and structural gray-level heterogeneity in FLAIR MRI images were associated with longer survival of reirradiated patients. CONCLUSION Reirradiation is a safe and effective approach for patients with DIPG. MRI-based radiomic models could be helpful in predicting survival after reirradiation.
Collapse
Affiliation(s)
- Dominik Wawrzuta
- Department of Radiation Oncology, Maria Sklodowska-Curie National Research Institute of Oncology, Wawelska 15B, 02-034, Warsaw, Poland.
| | - Marzanna Chojnacka
- Department of Radiation Oncology, Maria Sklodowska-Curie National Research Institute of Oncology, Wawelska 15B, 02-034, Warsaw, Poland
| | - Monika Drogosiewicz
- Department of Oncology, Children's Memorial Health Institute, Al. Dzieci Polskich 20, 04-730, Warsaw, Poland
| | - Katarzyna Pędziwiatr
- Department of Radiation Oncology, Maria Sklodowska-Curie National Research Institute of Oncology, Wawelska 15B, 02-034, Warsaw, Poland
| | - Bożenna Dembowska-Bagińska
- Department of Oncology, Children's Memorial Health Institute, Al. Dzieci Polskich 20, 04-730, Warsaw, Poland
| |
Collapse
|
4
|
He H, Long Q, Li L, Fu Y, Wang X, Qin Y, Jiang M, Tan Z, Yi X, Chen BT. Ensemble learning-based pretreatment MRI radiomic model for distinguishing intracranial extraventricular ependymoma from glioblastoma multiforme. NMR IN BIOMEDICINE 2024:e5242. [PMID: 39164197 DOI: 10.1002/nbm.5242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/16/2024] [Accepted: 08/05/2024] [Indexed: 08/22/2024]
Abstract
This study aims to develop an ensemble learning (EL) method based on magnetic resonance (MR) radiomic features to preoperatively differentiate intracranial extraventricular ependymoma (IEE) from glioblastoma (GBM). This retrospective study enrolled patients with histopathologically confirmed IEE and GBM from June 2016 to June 2021. Radiomics features were extracted from T1-weighted imaging (T1WI) and T2-weighted imaging (T2WI) sequence images, and classification models were constructed using EL methods and logistic regression (LR). The efficiency of the models was assessed using receiver operating characteristic (ROC) curves, calibration curves, and decision curve analysis. The combined EL model, based on clinical parameters and radiomic features from T1WI and T2WI images, demonstrated good discriminative ability, achieving an area under the receiver operating characteristics curve (AUC) of 0.96 (95% CI 0.94-0.98), a specificity of 0.84, an accuracy of 0.92, and a sensitivity of 0.95 in the training set, and an AUC of 0.89 (95% CI 0.83-0.94), a specificity of 0.83, an accuracy of 0.81, and a sensitivity of 0.74 in the validation set. The discriminative efficacy of the EL model was significantly higher than that of the LR model. Favorable calibration performance and clinical applicability for the EL model were observed. The EL model combining preoperative MR-based tumor radiomics and clinical data showed high accuracy and sensitivity in differentiating IEE from GBM preoperatively, which may potentially assist in clinical management of these brain tumors.
Collapse
Affiliation(s)
- Haoling He
- Department of Radiology, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Qianyan Long
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, China
| | - Liyan Li
- Department of Radiology, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yan Fu
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, China
| | - Xueying Wang
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, China
| | - Yuhong Qin
- Department of Radiology, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Muliang Jiang
- Department of Radiology, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Zeming Tan
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Xiaoping Yi
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, China
| | - Bihong T Chen
- Department of Diagnostic Radiology, City of Hope National Medical Center, Duarte, California, USA
| |
Collapse
|
5
|
Gui Y, Zhang J. Research Progress of Artificial Intelligence in the Grading and Classification of Meningiomas. Acad Radiol 2024; 31:3346-3354. [PMID: 38413314 DOI: 10.1016/j.acra.2024.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 02/02/2024] [Accepted: 02/02/2024] [Indexed: 02/29/2024]
Abstract
A meningioma is a common primary central nervous system tumor. The histological features of meningiomas vary significantly depending on the grade and subtype, leading to differences in treatment and prognosis. Therefore, early diagnosis, grading, and typing of meningiomas are crucial for developing comprehensive and individualized diagnosis and treatment plans. The advancement of artificial intelligence (AI) in medical imaging, particularly radiomics and deep learning (DL), has contributed to the increasing research on meningioma grading and classification. These techniques are fast and accurate, involve fully automated learning, are non-invasive and objective, enable the efficient and non-invasive prediction of meningioma grades and classifications, and provide valuable assistance in clinical treatment and prognosis. This article provides a summary and analysis of the research progress in radiomics and DL for meningioma grading and classification. It also highlights the existing research findings, limitations, and suggestions for future improvement, aiming to facilitate the future application of AI in the diagnosis and treatment of meningioma.
Collapse
Affiliation(s)
- Yuan Gui
- Department of Radiology, the fifth affiliated hospital of zunyi medical university, zhufengdadao No.1439, Doumen District, Zhuhai, China
| | - Jing Zhang
- Department of Radiology, the fifth affiliated hospital of zunyi medical university, zhufengdadao No.1439, Doumen District, Zhuhai, China.
| |
Collapse
|
6
|
Nguyen TTT, Greene LA, Mnatsakanyan H, Badr CE. Revolutionizing Brain Tumor Care: Emerging Technologies and Strategies. Biomedicines 2024; 12:1376. [PMID: 38927583 PMCID: PMC11202201 DOI: 10.3390/biomedicines12061376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/16/2024] [Accepted: 06/17/2024] [Indexed: 06/28/2024] Open
Abstract
Glioblastoma multiforme (GBM) is one of the most aggressive forms of brain tumor, characterized by a daunting prognosis with a life expectancy hovering around 12-16 months. Despite a century of relentless research, only a select few drugs have received approval for brain tumor treatment, largely due to the formidable barrier posed by the blood-brain barrier. The current standard of care involves a multifaceted approach combining surgery, irradiation, and chemotherapy. However, recurrence often occurs within months despite these interventions. The formidable challenges of drug delivery to the brain and overcoming therapeutic resistance have become focal points in the treatment of brain tumors and are deemed essential to overcoming tumor recurrence. In recent years, a promising wave of advanced treatments has emerged, offering a glimpse of hope to overcome the limitations of existing therapies. This review aims to highlight cutting-edge technologies in the current and ongoing stages of development, providing patients with valuable insights to guide their choices in brain tumor treatment.
Collapse
Affiliation(s)
- Trang T. T. Nguyen
- Ronald O. Perelman Department of Dermatology, Perlmutter Cancer Center, NYU Grossman School of Medicine, NYU Langone Health, New York, NY 10016, USA
| | - Lloyd A. Greene
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY 10032, USA;
| | - Hayk Mnatsakanyan
- Department of Neurology, Massachusetts General Hospital, Neuroscience Program, Harvard Medical School, Boston, MA 02129, USA; (H.M.); (C.E.B.)
| | - Christian E. Badr
- Department of Neurology, Massachusetts General Hospital, Neuroscience Program, Harvard Medical School, Boston, MA 02129, USA; (H.M.); (C.E.B.)
| |
Collapse
|
7
|
Gui Y, Chen F, Ren J, Wang L, Chen K, Zhang J. MRI- and DWI-Based Radiomics Features for Preoperatively Predicting Meningioma Sinus Invasion. JOURNAL OF IMAGING INFORMATICS IN MEDICINE 2024; 37:1054-1066. [PMID: 38351221 PMCID: PMC11169408 DOI: 10.1007/s10278-024-01024-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/05/2024] [Accepted: 01/08/2024] [Indexed: 06/13/2024]
Abstract
The aim of this study was to use multimodal imaging (contrast-enhanced T1-weighted (T1C), T2-weighted (T2), and diffusion-weighted imaging (DWI)) to develop a radiomics model for preoperatively predicting venous sinus invasion in meningiomas. This prediction would assist in selecting the appropriate surgical approach and forecasting the prognosis of meningiomas. A retrospective analysis was conducted on 331 participants who had been pathologically diagnosed with meningiomas. For each participant, 3948 radiomics features were acquired from the T1C, T2, and DWI images. Minimum redundancy maximum correlation, rank sum test, and multi-factor recursive elimination were used to extract the most significant features of different models. Then, multivariate logistic regression was used to build classification models to predict meningioma venous sinus invasion. The diagnostic capabilities were assessed using receiver operating characteristic (ROC) analysis. In addition, a nomogram was constructed by incorporating clinical and radiological characteristics and a radiomics signature. To assess the clinical usefulness of the nomogram, a decision curve analysis (DCA) was performed. Tumor shape, boundary, and enhancement features were independent predictors of meningioma venous sinus invasion (p = 0.013, p = 0.013, p = 0.005, respectively). Eleven (T2:1, T1C:4, DWI:6) of the 3948 radiomics features were screened for strong association with meningioma sinus invasion. The areas under the ROC curves for the training and external test sets were 0.946 and 0.874, respectively. The clinicoradiomic model showed excellent predictive performance for invasive meningioma, which may help to guide surgical approaches and predict prognosis.
Collapse
Affiliation(s)
- Yuan Gui
- Department of Radiology, Doumen District, The Fifth affiliated Hospital of Zunyi Medical University, Zhufeng Dadao No. 1439, Zhuhai, China
| | - Fen Chen
- Department of Radiology, Doumen District, The Fifth affiliated Hospital of Zunyi Medical University, Zhufeng Dadao No. 1439, Zhuhai, China
| | - Jialiang Ren
- Department of Pharmaceuticals Diagnosis, GE Healthcare, Beijing, China
| | - Limei Wang
- Department of Radiology, Doumen District, The Fifth affiliated Hospital of Zunyi Medical University, Zhufeng Dadao No. 1439, Zhuhai, China
| | - Kuntao Chen
- Department of Radiology, Doumen District, The Fifth affiliated Hospital of Zunyi Medical University, Zhufeng Dadao No. 1439, Zhuhai, China
| | - Jing Zhang
- Department of Radiology, Doumen District, The Fifth affiliated Hospital of Zunyi Medical University, Zhufeng Dadao No. 1439, Zhuhai, China.
| |
Collapse
|
8
|
Tan R, Sui C, Wang C, Zhu T. MRI-based intratumoral and peritumoral radiomics for preoperative prediction of glioma grade: a multicenter study. Front Oncol 2024; 14:1401977. [PMID: 38803534 PMCID: PMC11128562 DOI: 10.3389/fonc.2024.1401977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 04/29/2024] [Indexed: 05/29/2024] Open
Abstract
Background Accurate preoperative prediction of glioma is crucial for developing individualized treatment decisions and assessing prognosis. In this study, we aimed to establish and evaluate the value of integrated models by incorporating the intratumoral and peritumoral features from conventional MRI and clinical characteristics in the prediction of glioma grade. Methods A total of 213 glioma patients from two centers were included in the retrospective analysis, among which, 132 patients were classified as the training cohort and internal validation set, and the remaining 81 patients were zoned as the independent external testing cohort. A total of 7728 features were extracted from MRI sequences and various volumes of interest (VOIs). After feature selection, 30 radiomic models depended on five sets of machine learning classifiers, different MRI sequences, and four different combinations of predictive feature sources, including features from the intratumoral region only, features from the peritumoral edema region only, features from the fusion area including intratumoral and peritumoral edema region (VOI-fusion), and features from the intratumoral region with the addition of features from peritumoral edema region (feature-fusion), were established to select the optimal model. A nomogram based on the clinical parameter and optimal radiomic model was constructed for predicting glioma grade in clinical practice. Results The intratumoral radiomic models based on contrast-enhanced T1-weighted and T2-flair sequences outperformed those based on a single MRI sequence. Moreover, the internal validation and independent external test underscored that the XGBoost machine learning classifier, incorporating features extracted from VOI-fusion, showed superior predictive efficiency in differentiating between low-grade gliomas (LGG) and high-grade gliomas (HGG), with an AUC of 0.805 in the external test. The radiomic models of VOI-fusion yielded higher prediction efficiency than those of feature-fusion. Additionally, the developed nomogram presented an optimal predictive efficacy with an AUC of 0.825 in the testing cohort. Conclusion This study systematically investigated the effect of intratumoral and peritumoral radiomics to predict glioma grading with conventional MRI. The optimal model was the XGBoost classifier coupled radiomic model based on VOI-fusion. The radiomic models that depended on VOI-fusion outperformed those that depended on feature-fusion, suggesting that peritumoral features should be rationally utilized in radiomic studies.
Collapse
Affiliation(s)
- Rui Tan
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Chunxiao Sui
- Department of Molecular Imaging and Nuclear Medicine, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Chao Wang
- Department of Neurosurgery, Qilu Hospital of Shandong University Dezhou Hospital (Dezhou People’s Hospital), Shandong, China
| | - Tao Zhu
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
9
|
Chen J, Xue Y, Ren L, Lv K, Du P, Cheng H, Sun S, Hua L, Xie Q, Wu R, Gong Y. Predicting meningioma grades and pathologic marker expression via deep learning. Eur Radiol 2024; 34:2997-3008. [PMID: 37853176 DOI: 10.1007/s00330-023-10258-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 07/05/2023] [Accepted: 07/15/2023] [Indexed: 10/20/2023]
Abstract
OBJECTIVES To establish a deep learning (DL) model for predicting tumor grades and expression of pathologic markers of meningioma. METHODS A total of 1192 meningioma patients from two centers who underwent surgical resection between September 2018 and December 2021 were retrospectively included. The pathological data and post-contrast T1-weight images for each patient were collected. The patients from institute I were subdivided into training, validation, and testing sets, while the patients from institute II served as the external testing cohort. The fine-tuned ResNet50 model based on transfer learning was adopted to classify WHO grade in the whole cohort and predict Ki-67 index, H3K27me3, and progesterone receptor (PR) status of grade 1 meningiomas. The predictive performance was evaluated by the accuracy and loss curve, confusion matrix, receiver operating characteristic curve (ROC), and area under curve (AUC). RESULTS The DL prediction model for each label achieved high predictive performance in two cohorts. For WHO grade prediction, the area under the curve (AUC) was 0.966 (95%CI 0.957-0.975) in the internal testing set and 0.669 (95%CI 0.643-0.695) in the external validation cohort. The AUC in predicting Ki-67 index, H3K27me3, and PR status were 0.905 (95%CI 0.895-0.915), 0.773 (95%CI 0.760-0.786), and 0.771 (95%CI 0.750-0.792) in the internal testing set and 0.591 (95%CI 0.562-0.620), 0.658 (95%CI 0.648-0.668), and 0.703 (95%CI 0.674-0.732) in the external validation cohort, respectively. CONCLUSION DL models can preoperatively predict meningioma grades and pathologic marker expression with favorable predictive performance. CLINICAL RELEVANCE STATEMENT Our DL model could predict meningioma grades and expression of pathologic markers and identify high-risk patients with WHO grade 1 meningioma, which would suggest a more aggressive operative intervention preoperatively and a more frequent follow-up schedule postoperatively. KEY POINTS WHO grades and some pathologic markers of meningioma were associated with therapeutic strategies and clinical outcomes. A deep learning-based approach was employed to develop a model for predicting meningioma grades and the expression of pathologic markers. Preoperative prediction of meningioma grades and the expression of pathologic markers was beneficial for clinical decision-making.
Collapse
Affiliation(s)
- Jiawei Chen
- Department of Neurosurgery of Huashan Hospital, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science and Institutes of Brain Science, Fudan University, Shanghai, China
| | - Yanping Xue
- Department of Neurosurgery of Huashan Hospital, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science and Institutes of Brain Science, Fudan University, Shanghai, China
| | - Leihao Ren
- Department of Neurosurgery of Huashan Hospital, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science and Institutes of Brain Science, Fudan University, Shanghai, China
| | - Kun Lv
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Peng Du
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Haixia Cheng
- Department of Pathology, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Shuchen Sun
- Department of Neurosurgery, Shanghai International Hospital, Shanghai, China
- Department of Neurosurgery, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lingyang Hua
- Department of Neurosurgery of Huashan Hospital, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science and Institutes of Brain Science, Fudan University, Shanghai, China
| | - Qing Xie
- Department of Neurosurgery of Huashan Hospital, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science and Institutes of Brain Science, Fudan University, Shanghai, China.
| | - Ruiqi Wu
- Department of Neurosurgery of Huashan Hospital, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science and Institutes of Brain Science, Fudan University, Shanghai, China.
| | - Ye Gong
- Department of Neurosurgery of Huashan Hospital, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science and Institutes of Brain Science, Fudan University, Shanghai, China.
- Department of Critical Care Medicine, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China.
| |
Collapse
|
10
|
Kang KM, Song J, Choi Y, Park C, Park JE, Kim HS, Park SH, Park CK, Choi SH. MRI Scoring Systems for Predicting Isocitrate Dehydrogenase Mutation and Chromosome 1p/19q Codeletion in Adult-type Diffuse Glioma Lacking Contrast Enhancement. Radiology 2024; 311:e233120. [PMID: 38713025 DOI: 10.1148/radiol.233120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Background According to 2021 World Health Organization criteria, adult-type diffuse gliomas include glioblastoma, isocitrate dehydrogenase (IDH)-wildtype; oligodendroglioma, IDH-mutant and 1p/19q-codeleted; and astrocytoma, IDH-mutant, even when contrast enhancement is lacking. Purpose To develop and validate simple scoring systems for predicting IDH and subsequent 1p/19q codeletion status in gliomas without contrast enhancement using standard clinical MRI sequences. Materials and Methods This retrospective study included adult-type diffuse gliomas lacking contrast at contrast-enhanced MRI from two tertiary referral hospitals between January 2012 and April 2022 with diagnoses confirmed at pathology. IDH status was predicted primarily by using T2-fluid-attenuated inversion recovery (FLAIR) mismatch sign, followed by 1p/19q codeletion prediction. A visual rating of MRI features, apparent diffusion coefficient (ADC) ratio, and relative cerebral blood volume was measured. Scoring systems were developed through univariable and multivariable logistic regressions and underwent calibration and discrimination, including internal and external validation. Results For the internal validation cohort, 237 patients were included (mean age, 44.4 years ± 14.4 [SD]; 136 male patients; 193 patients in IDH prediction and 163 patients in 1p/19q prediction). For the external validation cohort, 35 patients were included (46.1 years ± 15.3; 20 male patients; 28 patients in IDH prediction and 24 patients in 1p/19q prediction). The T2-FLAIR mismatch sign demonstrated 100% specificity and 100% positive predictive value for IDH mutation. IDH status prediction scoring system for tumors without mismatch sign included age, ADC ratio, and morphologic characteristics, whereas 1p/19q codeletion prediction for IDH-mutant gliomas included ADC ratio, cortical involvement, and mismatch sign. For IDH status and 1p/19q codeletion prediction, bootstrap-corrected areas under the receiver operating characteristic curve were 0.86 (95% CI: 0.81, 0.90) and 0.73 (95% CI: 0.65, 0.81), respectively, whereas at external validation they were 0.99 (95% CI: 0.98, 1.0) and 0.88 (95% CI: 0.63, 1.0). Conclusion The T2-FLAIR mismatch sign and scoring systems using standard clinical MRI predicted IDH and 1p/19q codeletion status in gliomas lacking contrast enhancement. © RSNA, 2024 Supplemental material is available for this article. See also the editorial by Badve and Hodges in this issue.
Collapse
Affiliation(s)
- Koung Mi Kang
- From the Department of Radiology (K.M.K., J.S., S.H.C.), Biomedical Research Institute (C.P., C.K.P.), Department of Pathology (S.H.P.), and Department of Neurosurgery (C.K.P.), Seoul National University Hospital, Seoul 03080, Republic of Korea; Department of Radiology, Seoul National University College of Medicine, Seoul, Republic of Korea (K.M.K., S.H.C.); Division of Medical Statistics, Medical Research Collaborating Center, Seoul, Republic of Korea (Y.C.); and Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea (J.E.P., H.S.K.)
| | - Jiyoung Song
- From the Department of Radiology (K.M.K., J.S., S.H.C.), Biomedical Research Institute (C.P., C.K.P.), Department of Pathology (S.H.P.), and Department of Neurosurgery (C.K.P.), Seoul National University Hospital, Seoul 03080, Republic of Korea; Department of Radiology, Seoul National University College of Medicine, Seoul, Republic of Korea (K.M.K., S.H.C.); Division of Medical Statistics, Medical Research Collaborating Center, Seoul, Republic of Korea (Y.C.); and Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea (J.E.P., H.S.K.)
| | - Yunhee Choi
- From the Department of Radiology (K.M.K., J.S., S.H.C.), Biomedical Research Institute (C.P., C.K.P.), Department of Pathology (S.H.P.), and Department of Neurosurgery (C.K.P.), Seoul National University Hospital, Seoul 03080, Republic of Korea; Department of Radiology, Seoul National University College of Medicine, Seoul, Republic of Korea (K.M.K., S.H.C.); Division of Medical Statistics, Medical Research Collaborating Center, Seoul, Republic of Korea (Y.C.); and Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea (J.E.P., H.S.K.)
| | - Chanrim Park
- From the Department of Radiology (K.M.K., J.S., S.H.C.), Biomedical Research Institute (C.P., C.K.P.), Department of Pathology (S.H.P.), and Department of Neurosurgery (C.K.P.), Seoul National University Hospital, Seoul 03080, Republic of Korea; Department of Radiology, Seoul National University College of Medicine, Seoul, Republic of Korea (K.M.K., S.H.C.); Division of Medical Statistics, Medical Research Collaborating Center, Seoul, Republic of Korea (Y.C.); and Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea (J.E.P., H.S.K.)
| | - Ji Eun Park
- From the Department of Radiology (K.M.K., J.S., S.H.C.), Biomedical Research Institute (C.P., C.K.P.), Department of Pathology (S.H.P.), and Department of Neurosurgery (C.K.P.), Seoul National University Hospital, Seoul 03080, Republic of Korea; Department of Radiology, Seoul National University College of Medicine, Seoul, Republic of Korea (K.M.K., S.H.C.); Division of Medical Statistics, Medical Research Collaborating Center, Seoul, Republic of Korea (Y.C.); and Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea (J.E.P., H.S.K.)
| | - Ho Sung Kim
- From the Department of Radiology (K.M.K., J.S., S.H.C.), Biomedical Research Institute (C.P., C.K.P.), Department of Pathology (S.H.P.), and Department of Neurosurgery (C.K.P.), Seoul National University Hospital, Seoul 03080, Republic of Korea; Department of Radiology, Seoul National University College of Medicine, Seoul, Republic of Korea (K.M.K., S.H.C.); Division of Medical Statistics, Medical Research Collaborating Center, Seoul, Republic of Korea (Y.C.); and Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea (J.E.P., H.S.K.)
| | - Sung-Hye Park
- From the Department of Radiology (K.M.K., J.S., S.H.C.), Biomedical Research Institute (C.P., C.K.P.), Department of Pathology (S.H.P.), and Department of Neurosurgery (C.K.P.), Seoul National University Hospital, Seoul 03080, Republic of Korea; Department of Radiology, Seoul National University College of Medicine, Seoul, Republic of Korea (K.M.K., S.H.C.); Division of Medical Statistics, Medical Research Collaborating Center, Seoul, Republic of Korea (Y.C.); and Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea (J.E.P., H.S.K.)
| | - Chul-Kee Park
- From the Department of Radiology (K.M.K., J.S., S.H.C.), Biomedical Research Institute (C.P., C.K.P.), Department of Pathology (S.H.P.), and Department of Neurosurgery (C.K.P.), Seoul National University Hospital, Seoul 03080, Republic of Korea; Department of Radiology, Seoul National University College of Medicine, Seoul, Republic of Korea (K.M.K., S.H.C.); Division of Medical Statistics, Medical Research Collaborating Center, Seoul, Republic of Korea (Y.C.); and Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea (J.E.P., H.S.K.)
| | - Seung Hong Choi
- From the Department of Radiology (K.M.K., J.S., S.H.C.), Biomedical Research Institute (C.P., C.K.P.), Department of Pathology (S.H.P.), and Department of Neurosurgery (C.K.P.), Seoul National University Hospital, Seoul 03080, Republic of Korea; Department of Radiology, Seoul National University College of Medicine, Seoul, Republic of Korea (K.M.K., S.H.C.); Division of Medical Statistics, Medical Research Collaborating Center, Seoul, Republic of Korea (Y.C.); and Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea (J.E.P., H.S.K.)
| |
Collapse
|
11
|
Zhao J, Jiao Y, Wang H, Song P, Gao Z, Bing X, Zhang C, Ouyang A, Yao J, Wang S, Jiang H. Radiomic features of the hippocampal based on magnetic resonance imaging in the menopausal mouse model linked to neuronal damage and cognitive deficits. Brain Imaging Behav 2024; 18:368-377. [PMID: 38102441 PMCID: PMC11156756 DOI: 10.1007/s11682-023-00808-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/01/2023] [Indexed: 12/17/2023]
Abstract
Estrogen deficiency in the early postmenopausal phase is associated with an increased long-term risk of cognitive decline or dementia. Non-invasive characterization of the pathological features of the pathological hallmarks in the brain associated with postmenopausal women (PMW) could enhance patient management and the development of therapeutic strategies. Radiomics is a means to quantify the radiographic phenotype of a diseased tissue via the high-throughput extraction and mining of quantitative features from images acquired from modalities such as CT and magnetic resonance imaging (MRI). This study set out to explore the correlation between radiomics features based on MRI and pathological features of the hippocampus and cognitive function in the PMW mouse model. Ovariectomized (OVX) mice were used as PWM models. MRI scans were performed two months after surgery. The brain's hippocampal region was manually annotated, and the radiomic features were extracted with PyRadiomics. Chemiluminescence was used to evaluate the peripheral blood estrogen level of mice, and the Morris water maze test was used to evaluate the cognitive ability of mice. Nissl staining and immunofluorescence were used to quantify neuronal damage and COX1 expression in brain sections of mice. The OVX mice exhibited marked cognitive decline, brain neuronal damage, and increased expression of mitochondrial complex IV subunit COX1, which are pathological phenomena commonly observed in the brains of AD patients, and these phenotypes were significantly correlated with radiomics features (p < 0.05, |r|>0.5), including Original_firstorder_Interquartile Range, Original_glcm_Difference Average, Original_glcm_Difference Average and Wavelet-LHH_glszm_Small Area Emphasis. Meanwhile, the above radiomics features were significantly different between the sham-operated and OVX groups (p < 0.01) and were associated with decreased serum estrogen levels (p < 0.05, |r|>0.5). This initial study indicates that the above radiomics features may have a role in the assessment of the pathology of brain damage caused by estrogen deficiency using routinely acquired structural MR images.
Collapse
Affiliation(s)
- Jie Zhao
- Department of Radiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China
- Department of Radiology, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Yan Jiao
- Department of Radiology, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Hui Wang
- Department of Radiology, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Peiji Song
- Department of Radiology, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Zhen Gao
- Department of Radiology, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Xue Bing
- Department of Radiology, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Chunling Zhang
- Department of Radiology, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Aimei Ouyang
- Department of Radiology, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Jian Yao
- Department of Radiology, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Song Wang
- Department of Radiology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, No.725, South Wanping Road, Shanghai, 200032, China.
| | - Huijie Jiang
- Department of Radiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China.
| |
Collapse
|
12
|
Kasap DNG, Mora NGN, Blömer DA, Akkurt BH, Heindel WL, Mannil M, Musigmann M. Comparison of MRI Sequences to Predict IDH Mutation Status in Gliomas Using Radiomics-Based Machine Learning. Biomedicines 2024; 12:725. [PMID: 38672080 PMCID: PMC11048271 DOI: 10.3390/biomedicines12040725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/24/2024] [Accepted: 03/21/2024] [Indexed: 04/28/2024] Open
Abstract
OBJECTIVES Regarding the 2021 World Health Organization (WHO) classification of central nervous system (CNS) tumors, the isocitrate dehydrogenase (IDH) mutation status is one of the most important factors for CNS tumor classification. The aim of our study is to analyze which of the commonly used magnetic resonance imaging (MRI) sequences is best suited to obtain this information non-invasively using radiomics-based machine learning models. We developed machine learning models based on different MRI sequences and determined which of the MRI sequences analyzed yields the highest discriminatory power in predicting the IDH mutation status. MATERIAL AND METHODS In our retrospective IRB-approved study, we used the MRI images of 106 patients with histologically confirmed gliomas. The MRI images were acquired using the T1 sequence with and without administration of a contrast agent, the T2 sequence, and the Fluid-Attenuated Inversion Recovery (FLAIR) sequence. To objectively compare performance in predicting the IDH mutation status as a function of the MRI sequence used, we included only patients in our study cohort for whom MRI images of all four sequences were available. Seventy-one of the patients had an IDH mutation, and the remaining 35 patients did not have an IDH mutation (IDH wild-type). For each of the four MRI sequences used, 107 radiomic features were extracted from the corresponding MRI images by hand-delineated regions of interest. Data partitioning into training data and independent test data was repeated 100 times to avoid random effects associated with the data partitioning. Feature preselection and subsequent model development were performed using Random Forest, Lasso regression, LDA, and Naïve Bayes. The performance of all models was determined with independent test data. RESULTS Among the different approaches we examined, the T1-weighted contrast-enhanced sequence was found to be the most suitable for predicting IDH mutations status using radiomics-based machine learning models. Using contrast-enhanced T1-weighted MRI images, our seven-feature model developed with Lasso regression achieved a mean area under the curve (AUC) of 0.846, a mean accuracy of 0.792, a mean sensitivity of 0.847, and a mean specificity of 0.681. The administration of contrast agents resulted in a significant increase in the achieved discriminatory power. CONCLUSIONS Our analyses show that for the prediction of the IDH mutation status using radiomics-based machine learning models, among the MRI images acquired with the commonly used MRI sequences, the contrast-enhanced T1-weighted images are the most suitable.
Collapse
|
13
|
Fan H, Luo Y, Gu F, Tian B, Xiong Y, Wu G, Nie X, Yu J, Tong J, Liao X. Artificial intelligence-based MRI radiomics and radiogenomics in glioma. Cancer Imaging 2024; 24:36. [PMID: 38486342 PMCID: PMC10938723 DOI: 10.1186/s40644-024-00682-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 03/03/2024] [Indexed: 03/18/2024] Open
Abstract
The specific genetic subtypes that gliomas exhibit result in variable clinical courses and the need to involve multidisciplinary teams of neurologists, epileptologists, neurooncologists and neurosurgeons. Currently, the diagnosis of gliomas pivots mainly around the preliminary radiological findings and the subsequent definitive surgical diagnosis (via surgical sampling). Radiomics and radiogenomics present a potential to precisely diagnose and predict survival and treatment responses, via morphological, textural, and functional features derived from MRI data, as well as genomic data. In spite of their advantages, it is still lacking standardized processes of feature extraction and analysis methodology among different research groups, which have made external validations infeasible. Radiomics and radiogenomics can be used to better understand the genomic basis of gliomas, such as tumor spatial heterogeneity, treatment response, molecular classifications and tumor microenvironment immune infiltration. These novel techniques have also been used to predict histological features, grade or even overall survival in gliomas. In this review, workflows of radiomics and radiogenomics are elucidated, with recent research on machine learning or artificial intelligence in glioma.
Collapse
Affiliation(s)
- Haiqing Fan
- Department of Medical Imaging, The Affiliated Hospital of Guizhou Medical University, 550000, Guizhou, Guiyang, China
| | - Yilin Luo
- Department of Medical Imaging, The Affiliated Hospital of Guizhou Medical University, 550000, Guizhou, Guiyang, China
| | - Fang Gu
- Department of Medical Imaging, The Affiliated Hospital of Guizhou Medical University, 550000, Guizhou, Guiyang, China
| | - Bin Tian
- Department of Medical Imaging, The Affiliated Hospital of Guizhou Medical University, 550000, Guizhou, Guiyang, China
| | - Yongqin Xiong
- Department of Medical Imaging, The Affiliated Hospital of Guizhou Medical University, 550000, Guizhou, Guiyang, China
| | - Guipeng Wu
- Department of Medical Imaging, The Affiliated Hospital of Guizhou Medical University, 550000, Guizhou, Guiyang, China
| | - Xin Nie
- Department of Medical Imaging, The Affiliated Hospital of Guizhou Medical University, 550000, Guizhou, Guiyang, China
| | - Jing Yu
- Department of Medical Imaging, The Affiliated Hospital of Guizhou Medical University, 550000, Guizhou, Guiyang, China
| | - Juan Tong
- Department of Medical Imaging, The Affiliated Hospital of Guizhou Medical University, 550000, Guizhou, Guiyang, China
| | - Xin Liao
- Department of Medical Imaging, The Affiliated Hospital of Guizhou Medical University, 550000, Guizhou, Guiyang, China.
| |
Collapse
|
14
|
Zhao Z, Song Z, Wang Z, Zhang F, Ding Z, Fan T. Advances in Molecular Pathology, Diagnosis and Treatment of Spinal Cord Astrocytomas. Technol Cancer Res Treat 2024; 23:15330338241262483. [PMID: 39043042 PMCID: PMC11271101 DOI: 10.1177/15330338241262483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 05/23/2024] [Accepted: 05/28/2024] [Indexed: 07/25/2024] Open
Abstract
Spinal cord astrocytoma (SCA) is a rare subtype of astrocytoma, posing challenges in diagnosis and treatment. Low-grade SCA can achieve long-term survival solely through surgery, while high-grade has a disappointing prognosis even with comprehensive treatment. Diagnostic criteria and standard treatment of intracranial astrocytoma have shown obvious limitations in SCA. Research on the molecular mechanism in SCA is lagging far behind that on intracranial astrocytoma. In recent years, huge breakthroughs have been made in molecular pathology of astrocytoma, and novel techniques have emerged, including DNA methylation analysis and radiomics. These advances are now making it possible to provide a precise diagnosis and develop corresponding treatment strategies in SCA. Our aim is to review the current status of diagnosis and treatment of SCA, and summarize the latest research advancement, including tumor subtype, molecular characteristics, diagnostic technology, and potential therapy strategies, thus deepening our understanding of this uncommon tumor type and providing guidance for accurate diagnosis and treatment.
Collapse
Affiliation(s)
- Zijun Zhao
- Spine Center, Sanbo Brain Hospital, Capital Medical University, Beijing, China
| | - Zihan Song
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Zairan Wang
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Fan Zhang
- Spine Center, Sanbo Brain Hospital, Capital Medical University, Beijing, China
| | - Ze Ding
- Spine Center, Sanbo Brain Hospital, Capital Medical University, Beijing, China
| | - Tao Fan
- Spine Center, Sanbo Brain Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
15
|
Lu J, Guo Y, Wang M, Luo Y, Zeng X, Miao X, Zaman A, Yang H, Cao A, Kang Y. Determining acute ischemic stroke onset time using machine learning and radiomics features of infarct lesions and whole brain. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2024; 21:34-48. [PMID: 38303412 DOI: 10.3934/mbe.2024002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
Accurate determination of the onset time in acute ischemic stroke (AIS) patients helps to formulate more beneficial treatment plans and plays a vital role in the recovery of patients. Considering that the whole brain may contain some critical information, we combined the Radiomics features of infarct lesions and whole brain to improve the prediction accuracy. First, the radiomics features of infarct lesions and whole brain were separately calculated using apparent diffusion coefficient (ADC), diffusion-weighted imaging (DWI) and fluid-attenuated inversion recovery (FLAIR) sequences of AIS patients with clear onset time. Then, the least absolute shrinkage and selection operator (Lasso) was used to select features. Four experimental groups were generated according to combination strategies: Features in infarct lesions (IL), features in whole brain (WB), direct combination of them (IW) and Lasso selection again after direct combination (IWS), which were used to evaluate the predictive performance. The results of ten-fold cross-validation showed that IWS achieved the best AUC of 0.904, which improved by 13.5% compared with IL (0.769), by 18.7% compared with WB (0.717) and 4.2% compared with IW (0.862). In conclusion, combining infarct lesions and whole brain features from multiple sequences can further improve the accuracy of AIS onset time.
Collapse
Affiliation(s)
- Jiaxi Lu
- School of Applied Technology, Shenzhen University, Shenzhen 518060, China
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen 518118, China
| | - Yingwei Guo
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen 518118, China
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang 110169, China
| | - Mingming Wang
- Department of Radiology, Shanghai Fourth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai 200434, China
| | - Yu Luo
- Department of Radiology, Shanghai Fourth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai 200434, China
| | - Xueqiang Zeng
- School of Applied Technology, Shenzhen University, Shenzhen 518060, China
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen 518118, China
| | - Xiaoqiang Miao
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen 518118, China
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang 110169, China
| | - Asim Zaman
- School of Applied Technology, Shenzhen University, Shenzhen 518060, China
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen 518118, China
| | - Huihui Yang
- School of Applied Technology, Shenzhen University, Shenzhen 518060, China
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen 518118, China
| | - Anbo Cao
- School of Applied Technology, Shenzhen University, Shenzhen 518060, China
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen 518118, China
| | - Yan Kang
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen 518118, China
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang 110169, China
- Engineering Research Centre of Medical Imaging and Intelligent Analysis, Ministry of Education, Shenyang 110169, China
| |
Collapse
|
16
|
Kertels O, Delbridge C, Sahm F, Ehret F, Acker G, Capper D, Peeken JC, Diehl C, Griessmair M, Metz MC, Negwer C, Krieg SM, Onken J, Yakushev I, Vajkoczy P, Meyer B, Zips D, Combs SE, Zimmer C, Kaul D, Bernhardt D, Wiestler B. Imaging meningioma biology: Machine learning predicts integrated risk score in WHO grade 2/3 meningioma. Neurooncol Adv 2024; 6:vdae080. [PMID: 38957161 PMCID: PMC11217900 DOI: 10.1093/noajnl/vdae080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024] Open
Abstract
Background Meningiomas are the most common primary brain tumors. While most are benign (WHO grade 1) and have a favorable prognosis, up to one-fourth are classified as higher-grade, falling into WHO grade 2 or 3 categories. Recently, an integrated risk score (IRS) pertaining to tumor biology was developed and its prognostic relevance was validated in a large, multicenter study. We hypothesized imaging data to be reflective of the IRS. Thus, we assessed the potential of a machine learning classifier for its noninvasive prediction using preoperative magnetic resonance imaging (MRI). Methods In total, 160 WHO grade 2 and 3 meningioma patients from 2 university centers were included in this study. All patients underwent surgery with histopathological workup including methylation analysis. Preoperative MRI scans were automatically segmented, and radiomic parameters were extracted. Using a random forest classifier, 3 machine learning classifiers (1 multiclass classifier for IRS and 2 binary classifiers for low-risk and high-risk prediction, respectively) were developed in a training set (120 patients) and independently tested in a hold-out test set (40 patients). Results Multiclass IRS classification had a test set area under the curve (AUC) of 0.7, mostly driven by the difficulties in clearly separating medium-risk from high-risk patients. Consequently, a classifier predicting low-risk IRS versus medium-/high-risk showed a very high test accuracy of 90% (AUC 0.88). In particular, "sphericity" was associated with low-risk IRS classification. Conclusion The IRS, in particular molecular low-risk, can be predicted from imaging data with high accuracy, making this important prognostic classification accessible by imaging.
Collapse
Affiliation(s)
- Olivia Kertels
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Claire Delbridge
- Department of Neuropathology, School of Medicine, Institute of Pathology, Technical University of Munich, Munich, Germany
| | - Felix Sahm
- Department of Neuropathology, Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
- Clinical Cooperation Unit Neuropathology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Felix Ehret
- German Cancer Consortium (DKTK), Partner Site Berlin, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Radiation Oncology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Güliz Acker
- Department of Radiation Oncology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Department of Neurosurgery, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - David Capper
- German Cancer Consortium (DKTK), Partner Site Berlin, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Neuropathology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Jan C Peeken
- Department of Radiation Oncology, Klinikum rechts der Isar, Technische Universität München, Institut für Innovative Radiotherapy (iRT), Munich, Germany
| | - Christian Diehl
- Department of Radiation Oncology, Klinikum rechts der Isar, Technische Universität München, Institut für Innovative Radiotherapy (iRT), Munich, Germany
| | - Michael Griessmair
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Marie-Christin Metz
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Chiara Negwer
- Department of Neurosurgery, Technical University of Munich, School of Medicine, Klinikum rechts der Isar, Munich, Germany
| | - Sandro M Krieg
- Department of Neurosurgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Julia Onken
- Department of Neurosurgery, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Igor Yakushev
- Department of Nuclear Medicine, Klinikum Rechts der Isar, Technical University of Munich, München, Germany
| | - Peter Vajkoczy
- Department of Neurosurgery, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Bernhard Meyer
- Department of Neurosurgery, Technical University of Munich, School of Medicine, Klinikum rechts der Isar, Munich, Germany
| | - Daniel Zips
- Department of Radiation Oncology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Stephanie E Combs
- Department of Radiation Oncology, Klinikum rechts der Isar, Technische Universität München, Institut für Innovative Radiotherapy (iRT), Munich, Germany
| | - Claus Zimmer
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - David Kaul
- Faculty of Medicine, HMU Health and Medical University, Potsdam, Germany
- Department of Radiation Oncology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Denise Bernhardt
- Department of Radiation Oncology, Klinikum rechts der Isar, Technische Universität München, Institut für Innovative Radiotherapy (iRT), Munich, Germany
| | - Benedikt Wiestler
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- TranslaTUM, Center for Translational Cancer Research, Technical University of Munich, Munich, Germany
| |
Collapse
|
17
|
Ghayda RA, Cannarella R, Calogero AE, Shah R, Rambhatla A, Zohdy W, Kavoussi P, Avidor-Reiss T, Boitrelle F, Mostafa T, Saleh R, Toprak T, Birowo P, Salvio G, Calik G, Kuroda S, Kaiyal RS, Ziouziou I, Crafa A, Phuoc NHV, Russo GI, Durairajanayagam D, Al-Hashimi M, Hamoda TAAAM, Pinggera GM, Adriansjah R, Maldonado Rosas I, Arafa M, Chung E, Atmoko W, Rocco L, Lin H, Huyghe E, Kothari P, Solorzano Vazquez JF, Dimitriadis F, Garrido N, Homa S, Falcone M, Sabbaghian M, Kandil H, Ko E, Martinez M, Nguyen Q, Harraz AM, Serefoglu EC, Karthikeyan VS, Tien DMB, Jindal S, Micic S, Bellavia M, Alali H, Gherabi N, Lewis S, Park HJ, Simopoulou M, Sallam H, Ramirez L, Colpi G, Agarwal A. Artificial Intelligence in Andrology: From Semen Analysis to Image Diagnostics. World J Mens Health 2024; 42:39-61. [PMID: 37382282 PMCID: PMC10782130 DOI: 10.5534/wjmh.230050] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/10/2023] [Accepted: 03/17/2023] [Indexed: 06/30/2023] Open
Abstract
Artificial intelligence (AI) in medicine has gained a lot of momentum in the last decades and has been applied to various fields of medicine. Advances in computer science, medical informatics, robotics, and the need for personalized medicine have facilitated the role of AI in modern healthcare. Similarly, as in other fields, AI applications, such as machine learning, artificial neural networks, and deep learning, have shown great potential in andrology and reproductive medicine. AI-based tools are poised to become valuable assets with abilities to support and aid in diagnosing and treating male infertility, and in improving the accuracy of patient care. These automated, AI-based predictions may offer consistency and efficiency in terms of time and cost in infertility research and clinical management. In andrology and reproductive medicine, AI has been used for objective sperm, oocyte, and embryo selection, prediction of surgical outcomes, cost-effective assessment, development of robotic surgery, and clinical decision-making systems. In the future, better integration and implementation of AI into medicine will undoubtedly lead to pioneering evidence-based breakthroughs and the reshaping of andrology and reproductive medicine.
Collapse
Affiliation(s)
- Ramy Abou Ghayda
- Urology Institute, University Hospitals, Case Western Reserve University, Cleveland, OH, USA
| | - Rossella Cannarella
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
- Glickman Urological & Kidney Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Aldo E. Calogero
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Rupin Shah
- Department of Urology, Lilavati Hospital and Research Centre, Mumbai, India
| | - Amarnath Rambhatla
- Department of Urology, Henry Ford Health System, Vattikuti Urology Institute, Detroit, MI, USA
| | - Wael Zohdy
- Andrology and STDs, Cairo University, Cairo, Egypt
| | - Parviz Kavoussi
- Department of Urology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Tomer Avidor-Reiss
- Department of Biological Sciences, University of Toledo, Toledo, OH, USA
- Department of Urology, College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA
| | - Florence Boitrelle
- Reproductive Biology, Fertility Preservation, Andrology, CECOS, Poissy Hospital, Poissy, France
- Department of Biology, Reproduction, Epigenetics, Environment, and Development, Paris Saclay University, UVSQ, INRAE, BREED, Paris, France
| | - Taymour Mostafa
- Andrology, Sexology & STIs Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Ramadan Saleh
- Department of Dermatology, Venereology and Andrology, Faculty of Medicine, Sohag University, Sohag, Egypt
| | - Tuncay Toprak
- Department of Urology, Fatih Sultan Mehmet Training and Research Hospital, University of Health Sciences, Istanbul, Turkey
| | - Ponco Birowo
- Department of Urology, Dr. Cipto Mangunkusumo Hospital, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Gianmaria Salvio
- Department of Endocrinology, Polytechnic University of Marche, Ancona, Italy
| | - Gokhan Calik
- Department of Urology, Istanbul Medipol University, Istanbul, Turkey
| | - Shinnosuke Kuroda
- Glickman Urological & Kidney Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
- Department of Urology, Reproduction Center, Yokohama City University Medical Center, Yokohama, Japan
| | - Raneen Sawaid Kaiyal
- Glickman Urological & Kidney Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Imad Ziouziou
- Department of Urology, College of Medicine and Pharmacy, Ibn Zohr University, Agadir, Morocco
| | - Andrea Crafa
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Nguyen Ho Vinh Phuoc
- Department of Andrology, Binh Dan Hospital, Ho Chi Minh City, Vietnam
- Department of Urology and Andrology, Pham Ngoc Thach University of Medicine, Ho Chi Minh City, Vietnam
| | | | - Damayanthi Durairajanayagam
- Department of Physiology, Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh Campus, Selangor, Malaysia
| | - Manaf Al-Hashimi
- Department of Urology, Burjeel Hospital, Abu Dhabi, United Arab Emirates (UAE)
- Khalifa University, College of Medicine and Health Science, Abu Dhabi, United Arab Emirates (UAE)
| | - Taha Abo-Almagd Abdel-Meguid Hamoda
- Department of Urology, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Urology, Faculty of Medicine, Minia University, El-Minia, Egypt
| | | | - Ricky Adriansjah
- Department of Urology, Hasan Sadikin General Hospital, Universitas Padjadjaran, Banding, Indonesia
| | | | - Mohamed Arafa
- Department of Urology, Hamad Medical Corporation, Doha, Qatar
- Department of Urology, Weill Cornell Medical-Qatar, Doha, Qatar
| | - Eric Chung
- Department of Urology, Princess Alexandra Hospital, University of Queensland, Brisbane QLD, Australia
| | - Widi Atmoko
- Department of Urology, Dr. Cipto Mangunkusumo Hospital, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Lucia Rocco
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, Caserta, Italy
| | - Haocheng Lin
- Department of Urology, Peking University Third Hospital, Peking University, Beijing, China
| | - Eric Huyghe
- Department of Urology and Andrology, University Hospital of Toulouse, Toulouse, France
| | - Priyank Kothari
- Department of Urology, B.Y.L. Nair Charitable Hospital, Topiwala National Medical College, Mumbai, India
| | | | - Fotios Dimitriadis
- Department of Urology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Nicolas Garrido
- IVIRMA Global Research Alliance, IVI Foundation, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Valencia, Spain
| | - Sheryl Homa
- Department of Biosciences, University of Kent, Canterbury, United Kingdom
| | - Marco Falcone
- Department of Urology, Molinette Hospital, A.O.U. Città della Salute e della Scienza, University of Turin, Torino, Italy
| | - Marjan Sabbaghian
- Department of Andrology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | | | - Edmund Ko
- Department of Urology, Loma Linda University Health, Loma Linda, CA, USA
| | - Marlon Martinez
- Section of Urology, Department of Surgery, University of Santo Tomas Hospital, Manila, Philippines
| | - Quang Nguyen
- Section of Urology, Department of Surgery, University of Santo Tomas Hospital, Manila, Philippines
- Center for Andrology and Sexual Medicine, Viet Duc University Hospital, Hanoi, Vietnam
- Department of Urology, Andrology and Sexual Medicine, University of Medicine and Pharmacy, Vietnam National University, Hanoi, Vietnam
| | - Ahmed M. Harraz
- Urology and Nephrology Center, Mansoura University, Mansoura, Egypt
- Department of Surgery, Urology Unit, Farwaniya Hospital, Farwaniya, Kuwait
- Department of Urology, Sabah Al Ahmad Urology Center, Kuwait City, Kuwait
| | - Ege Can Serefoglu
- Department of Urology, Biruni University School of Medicine, Istanbul, Turkey
| | | | - Dung Mai Ba Tien
- Department of Andrology, Binh Dan Hospital, Ho Chi Minh City, Vietnam
| | - Sunil Jindal
- Department of Andrology and Reproductive Medicine, Jindal Hospital, Meerut, India
| | - Sava Micic
- Department of Andrology, Uromedica Polyclinic, Belgrade, Serbia
| | - Marina Bellavia
- Andrology and IVF Center, Next Fertility Procrea, Lugano, Switzerland
| | - Hamed Alali
- King Fahad Specialist Hospital, Dammam, Saudi Arabia
| | - Nazim Gherabi
- Andrology Committee of the Algerian Association of Urology, Algiers, Algeria
| | - Sheena Lewis
- Examen Lab Ltd., Northern Ireland, United Kingdom
| | - Hyun Jun Park
- Department of Urology, Pusan National University School of Medicine, Busan, Korea
- Medical Research Institute of Pusan National University Hospital, Busan, Korea
| | - Mara Simopoulou
- Department of Experimental Physiology, School of Health Sciences, Faculty of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Hassan Sallam
- Alexandria University Faculty of Medicine, Alexandria, Egypt
| | - Liliana Ramirez
- IVF Laboratory, CITMER Reproductive Medicine, Mexico City, Mexico
| | - Giovanni Colpi
- Andrology and IVF Center, Next Fertility Procrea, Lugano, Switzerland
| | - Ashok Agarwal
- Global Andrology Forum, Moreland Hills, OH, USA
- Cleveland Clinic, Cleveland, OH, USA
| | | |
Collapse
|
18
|
Han T, Liu X, Long C, Xu Z, Geng Y, Zhang B, Deng L, Jing M, Zhou J. Prediction of meningioma grade by constructing a clinical radiomics model nomogram based on magnetic resonance imaging. Magn Reson Imaging 2023; 104:16-22. [PMID: 37734573 DOI: 10.1016/j.mri.2023.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 08/10/2023] [Accepted: 09/17/2023] [Indexed: 09/23/2023]
Abstract
PURPOSE To explore the clinical value of a clinical radiomics model nomogram based on magnetic resonance imaging (MRI) for preoperative meningioma grading. MATERIALS AND METHODS We collected retrospectively 544 patients with pathological diagnosis of meningiomas were categorized into training (n = 380) and validation (n = 164) groups at the ratio of 7∶ 3. There were 3,376 radiomics features extracted from T2WI and T1C by shukun technology platform after manual segmentation using an independent blind method by two radiologists. The Selectpercentile and Lasso are used to filter the most strongly correlated features. Random forest (RF) radiomics model and clinical radiomics model nomogram were constructed respectively. The calibration, discrimination, and clinical validity were evaluated by using the calibration curve and decision analysis curve (DCA). RESULTS The RF radiomics model based on T1C and T2WI was the most effective to predict meningioma grade before surgery among the six different classifiers. The predictive ability of clinical radiomics model was slightly higher than that of RF model alone. The AUC, SEN, SPE, and ACC of the training set were 0.949, 0.976, 0.785, and 0.826, and the AUC, SEN, SPE, and ACC of the validation set were 0.838, 0.829, 0.783, and 0.793, respectively. The calibration curve and Hosmer-Lemeshow test showed the predictive probability of the fusion model was similar to the actual differentiated LGM and HGM. The analysis of the decision curve showed that the clinical radiomics model could obtain the best clinical net profit. CONCLUSIONS The clinical radiomics model nomogram based on T1C and T2WI has high accuracy and sensitivity for predicting meningioma grade.
Collapse
Affiliation(s)
- Tao Han
- Department of Radiology, Lanzhou University Second Hospital, Lanzhou 730030, China; Second Clinical School, Lanzhou University, Lanzhou 730030, China; Key Laboratory of Medical Imaging of Gansu Province, Lanzhou 730030, China; Gansu International Scientific and Technological Cooperation Base of Medical Imaging Artificial Intelligence, Lanzhou 730030, China
| | - Xianwang Liu
- Department of Radiology, Lanzhou University Second Hospital, Lanzhou 730030, China; Second Clinical School, Lanzhou University, Lanzhou 730030, China; Key Laboratory of Medical Imaging of Gansu Province, Lanzhou 730030, China; Gansu International Scientific and Technological Cooperation Base of Medical Imaging Artificial Intelligence, Lanzhou 730030, China
| | - Changyou Long
- Image Center of Affiliated Hospital of Qinghai University, Xining, China
| | - Zhendong Xu
- Shukun (Beijing) Technology Co., Ltd., Jinhui Building, Qiyang Road, 100102 Beijing, China
| | - Yayuan Geng
- Shukun (Beijing) Technology Co., Ltd., Jinhui Building, Qiyang Road, 100102 Beijing, China
| | - Bin Zhang
- Department of Radiology, Lanzhou University Second Hospital, Lanzhou 730030, China; Second Clinical School, Lanzhou University, Lanzhou 730030, China; Key Laboratory of Medical Imaging of Gansu Province, Lanzhou 730030, China; Gansu International Scientific and Technological Cooperation Base of Medical Imaging Artificial Intelligence, Lanzhou 730030, China
| | - Liangna Deng
- Department of Radiology, Lanzhou University Second Hospital, Lanzhou 730030, China; Second Clinical School, Lanzhou University, Lanzhou 730030, China; Key Laboratory of Medical Imaging of Gansu Province, Lanzhou 730030, China; Gansu International Scientific and Technological Cooperation Base of Medical Imaging Artificial Intelligence, Lanzhou 730030, China
| | - Mengyuan Jing
- Department of Radiology, Lanzhou University Second Hospital, Lanzhou 730030, China; Second Clinical School, Lanzhou University, Lanzhou 730030, China; Key Laboratory of Medical Imaging of Gansu Province, Lanzhou 730030, China; Gansu International Scientific and Technological Cooperation Base of Medical Imaging Artificial Intelligence, Lanzhou 730030, China
| | - Junlin Zhou
- Department of Radiology, Lanzhou University Second Hospital, Lanzhou 730030, China; Key Laboratory of Medical Imaging of Gansu Province, Lanzhou 730030, China; Gansu International Scientific and Technological Cooperation Base of Medical Imaging Artificial Intelligence, Lanzhou 730030, China.
| |
Collapse
|
19
|
Chen C, Du X, Yang L, Liu H, Li Z, Gou Z, Qi J. Research on application of radiomics in glioma: a bibliometric and visual analysis. Front Oncol 2023; 13:1083080. [PMID: 37771434 PMCID: PMC10523166 DOI: 10.3389/fonc.2023.1083080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 08/16/2023] [Indexed: 09/30/2023] Open
Abstract
Background With the continuous development of medical imaging informatics technology, radiomics has become a new and evolving field in medical applications. Radiomics aims to be an aid to support clinical decision making by extracting quantitative features from medical images and has a very wide range of applications. The purpose of this study was to perform a bibliometric and visual analysis of scientific results and research trends in the research application of radiomics in glioma. Methods We searched the Web of Science Core Collection (WOScc) for publications related to glioma radiomics. A bibliometric and visual analysis of online publications in this field related to countries/regions, authors, journals, references and keywords was performed using CiteSpace and R software. Results A total of 587 relevant literature published from 2012 to September 2022 were retrieved in WOScc, and finally a total of 484 publications were obtained according to the filtering criteria, including 393 (81.20%) articles and 91 (18.80%) reviews. The number of relevant publications increases year by year. The highest number of publications was from the USA (171 articles, 35.33%) and China (170 articles, 35.12%). The research institution with the highest number of publications was Chinese Acad Sci (24), followed by Univ Penn (22) and Fudan Univ (21). WANG Y (27) had the most publications, followed by LI Y (22), and WANG J (20). Among the 555 co-cited authors, LOUIS DN (207) and KICKINGEREDER P (207) were the most cited authors. FRONTIERS IN ONCOLOGY (42) was the most published journal and NEURO-ONCOLOGY (412) was the most co-cited journal. The most frequent keywords in all publications included glioblastoma (187), survival (136), classification (131), magnetic resonance imaging (113), machine learning (100), tumor (82), and feature (79), central nervous system (66), IDH (57), and radiomics (55). Cluster analysis was performed on the basis of keyword co-occurrence, and a total of 16 clusters were formed, indicating that these directions are the current hotspots of radiomics research applications in glioma and may be the future directions of continuous development. Conclusion In the past decade, radiomics has received much attention in the medical field and has been widely used in clinical research applications. Cooperation and communication between countries/regions need to be enhanced in future research to promote the development of radiomics in the field of medicine. In addition, the application of radiomics has improved the accuracy of pre-treatment diagnosis, efficacy prediction and prognosis assessment of glioma and helped to promote the development into precision medicine, the future still faces many challenges.
Collapse
Affiliation(s)
- Chunbao Chen
- Department of Neurosurgery, Afiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Xue Du
- Department of Oncology, The People's Hospital of Hechuan, Chongqing, China
- Department of Oncology, North Sichuan Medical College, Nanchong, China
| | - Lu Yang
- Department of Oncology, Suining Central Hospital, Suining, China
| | - Hongjun Liu
- Department of Neurosurgery, Afiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Zhou Li
- Department of Neurosurgery, Nanchong Central Hospital, The Afiliated Nanchong Central Hospital of North Sichuan Medical College, Nanchong, China
| | - Zhangyang Gou
- Department of Neurosurgery, Afiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Jian Qi
- Department of Neurosurgery, Afiliated Hospital of North Sichuan Medical College, Nanchong, China
| |
Collapse
|
20
|
Chilaca-Rosas MF, Contreras-Aguilar MT, Garcia-Lezama M, Salazar-Calderon DR, Vargas-Del-Angel RG, Moreno-Jimenez S, Piña-Sanchez P, Trejo-Rosales RR, Delgado-Martinez FA, Roldan-Valadez E. Identification of Radiomic Signatures in Brain MRI Sequences T1 and T2 That Differentiate Tumor Regions of Midline Gliomas with H3.3K27M Mutation. Diagnostics (Basel) 2023; 13:2669. [PMID: 37627927 PMCID: PMC10453217 DOI: 10.3390/diagnostics13162669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/02/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023] Open
Abstract
BACKGROUND Radiomics refers to the acquisition of traces of quantitative features that are usually non-perceptible to human vision and are obtained from different imaging techniques and subsequently transformed into high-dimensional data. Diffuse midline gliomas (DMG) represent approximately 20% of pediatric CNS tumors, with a median survival of less than one year after diagnosis. We aimed to identify which radiomics can discriminate DMG tumor regions (viable tumor and peritumoral edema) from equivalent midline normal tissue (EMNT) in patients with the positive H3.F3K27M mutation, which is associated with a worse prognosis. PATIENTS AND METHODS This was a retrospective study. From a database of 126 DMG patients (children, adolescents, and young adults), only 12 had H3.3K27M mutation and available brain magnetic resonance DICOM file. The MRI T1 post-gadolinium and T2 sequences were uploaded to LIFEx software to post-process and extract radiomic features. Statistical analysis included normal distribution tests and the Mann-Whitney U test performed using IBM SPSS® (Version 27.0.0.1, International Business Machines Corp., Armonk, NY, USA), considering a significant statistical p-value ≤ 0.05. RESULTS EMNT vs. Tumor: From the T1 sequence 10 radiomics were identified, and 14 radiomics from the T2 sequence, but only one radiomic identified viable tumors in both sequences (p < 0.05) (DISCRETIZED_Q1). Peritumoral edema vs. EMNT: From the T1 sequence, five radiomics were identified, and four radiomics from the T2 sequence. However, four radiomics could discriminate peritumoral edema in both sequences (p < 0.05) (CONVENTIONAL_Kurtosis, CONVENTIONAL_ExcessKurtosis, DISCRETIZED_Kurtosis, and DISCRETIZED_ExcessKurtosis). There were no radiomics useful for distinguishing tumor tissue from peritumoral edema in both sequences. CONCLUSIONS Less than 5% of the radiomic characteristics identified tumor regions of medical-clinical interest in T1 and T2 sequences of conventional magnetic resonance imaging. The first-order and second-order radiomic features suggest support to investigators and clinicians for careful evaluation for diagnosis, patient classification, and multimodality cancer treatment planning.
Collapse
Affiliation(s)
- Maria-Fatima Chilaca-Rosas
- Radiotherapy Department, Hospital de Oncología, Centro Medico Nacional Siglo XXI, Instituto Mexicano Del Seguro Social, Mexico City 06720, Mexico; (M.-F.C.-R.); (D.-R.S.-C.)
| | - Manuel-Tadeo Contreras-Aguilar
- Radiotherapy Department, Hospital de Oncología, Centro Medico Nacional Siglo XXI, Instituto Mexicano Del Seguro Social, Mexico City 06720, Mexico; (M.-F.C.-R.); (D.-R.S.-C.)
| | - Melissa Garcia-Lezama
- Directorate of Research, Hospital General de Mexico Dr Eduardo Liceaga, Mexico City 06720, Mexico;
| | - David-Rafael Salazar-Calderon
- Radiotherapy Department, Hospital de Oncología, Centro Medico Nacional Siglo XXI, Instituto Mexicano Del Seguro Social, Mexico City 06720, Mexico; (M.-F.C.-R.); (D.-R.S.-C.)
| | | | - Sergio Moreno-Jimenez
- Neurological Center, Neurosurgery Department of National Institute of Neurology and Neurosurgery, Mexico City 14269, Mexico;
- Neurological Center, Neurosurgery Department of American British Cowdray Medical Center, Mexico City 01120, Mexico
| | - Patricia Piña-Sanchez
- Oncology Diagnostic, Unidad de Investigacion Medica en Enfermedades Oncologicas U.I.M.E.O, Hospital de Oncología, Centro Medico Nacional Siglo XXI, Instituto Mexicano Del Seguro Social, Mexico City 06720, Mexico;
| | - Raul-Rogelio Trejo-Rosales
- Medical Oncology, Hospital de Oncología, Centro Medico Nacional Siglo XXI, Instituto Mexicano Del Seguro Social, Mexico City 06720, Mexico;
| | - Felipe-Alfredo Delgado-Martinez
- Magnetic Resonance Service, Hospital de Especialidades, Centro Medico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City 06720, Mexico;
| | - Ernesto Roldan-Valadez
- Directorate of Research, Hospital General de Mexico Dr Eduardo Liceaga, Mexico City 06720, Mexico;
- Department of Radiology, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119992 Moscow, Russia
| |
Collapse
|
21
|
Perillo T, de Giorgi M, Papace UM, Serino A, Cuocolo R, Manto A. Current role of machine learning and radiogenomics in precision neuro-oncology. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2023; 4:545-555. [PMID: 37720347 PMCID: PMC10501892 DOI: 10.37349/etat.2023.00151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 04/20/2023] [Indexed: 09/19/2023] Open
Abstract
In the past few years, artificial intelligence (AI) has been increasingly used to create tools that can enhance workflow in medicine. In particular, neuro-oncology has benefited from the use of AI and especially machine learning (ML) and radiogenomics, which are subfields of AI. ML can be used to develop algorithms that dynamically learn from available medical data in order to automatically do specific tasks. On the other hand, radiogenomics can identify relationships between tumor genetics and imaging features, thus possibly giving new insights into the pathophysiology of tumors. Therefore, ML and radiogenomics could help treatment tailoring, which is crucial in personalized neuro-oncology. The aim of this review is to illustrate current and possible future applications of ML and radiomics in neuro-oncology.
Collapse
Affiliation(s)
- Teresa Perillo
- Department of Neuroradiology, “Umberto I” Hospital, 84014 Norcera Inferiore, Italy
| | - Marco de Giorgi
- Department of Advanced Biomedical Sciences, University of Naples “Federico II”, 80138 Naples, Italy
| | - Umberto Maria Papace
- Department of Advanced Biomedical Sciences, University of Naples “Federico II”, 80138 Naples, Italy
| | - Antonietta Serino
- Department of Neuroradiology, “Umberto I” Hospital, 84014 Norcera Inferiore, Italy
| | - Renato Cuocolo
- Department of Medicine, Surgery, and Dentistry, University of Salerno, 84084 Fisciano, Italy
| | - Andrea Manto
- Department of Neuroradiology, “Umberto I” Hospital, 84014 Norcera Inferiore, Italy
| |
Collapse
|
22
|
Cole KL, Findlay MC, Kundu M, Johansen C, Rawanduzy C, Lucke-Wold B. The Role of Advanced Imaging in Neurosurgical Diagnosis. JOURNAL OF MODERN MEDICAL IMAGING 2023; 1:2. [PMID: 36908971 PMCID: PMC10003679 DOI: 10.53964/jmmi.2023002] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
Neurosurgery as a specialty has developed at a rapid pace as a result of the continual advancements in neuroimaging modalities. With more sophisticated imaging options available to the modern neurosurgeon, diagnoses become more accurate and at a faster rate, allowing for greater surgical planning and precision. Herein, the authors review the current heavily used imaging modalities within neurosurgery, weighing their strengths and weaknesses, and provide a look into new advances and imaging options within the field. Of the many imaging modalities currently available to the practicing neurosurgeon, magnetic resonance imaging (MRI), computed tomography (CT), positron emission tomography (PET), and ultrasonography (US) are used most heavily within the field for appropriate diagnosis of neuropathologies in question. For each, their strengths are weighed regarding appropriate capabilities in accurate diagnosis of cranial or spinal lesions. Reasoning for choosing one over the other for various pathologies is also reviewed. Current limitations of each is also assessed, providing insight for possible improvement for each. New advancements in imaging options are subsequently reviewed for best uses within neurosurgery, including the new utilization of FIESTA sequencing, glymphatic mapping, black-blood MRI, and functional MRI. The specialty of neurosurgery will continue to heavily rely on improvements within imaging options available for improved diagnosis and greater surgical outcomes for the patients treated. The synthesis of techniques provided herein may provide meaningful guidance for neurosurgeons in effectively diagnosing neurological pathologies while also helping guide future efforts in neuroimaging developments.
Collapse
Affiliation(s)
- Kyril L Cole
- School of Medicine, University of Utah, Salt Lake City, UT, USA
| | | | - Mrinmoy Kundu
- Institute of Medical Sciences & Sum Hospital, Bhubaneswar, India
| | | | - Cameron Rawanduzy
- Department of Neurosurgery, University of Utah, Salt Lake City, UT, USA
| | | |
Collapse
|
23
|
Martucci M, Russo R, Schimperna F, D’Apolito G, Panfili M, Grimaldi A, Perna A, Ferranti AM, Varcasia G, Giordano C, Gaudino S. Magnetic Resonance Imaging of Primary Adult Brain Tumors: State of the Art and Future Perspectives. Biomedicines 2023; 11:364. [PMID: 36830900 PMCID: PMC9953338 DOI: 10.3390/biomedicines11020364] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/20/2023] [Accepted: 01/22/2023] [Indexed: 01/28/2023] Open
Abstract
MRI is undoubtedly the cornerstone of brain tumor imaging, playing a key role in all phases of patient management, starting from diagnosis, through therapy planning, to treatment response and/or recurrence assessment. Currently, neuroimaging can describe morphologic and non-morphologic (functional, hemodynamic, metabolic, cellular, microstructural, and sometimes even genetic) characteristics of brain tumors, greatly contributing to diagnosis and follow-up. Knowing the technical aspects, strength and limits of each MR technique is crucial to correctly interpret MR brain studies and to address clinicians to the best treatment strategy. This article aimed to provide an overview of neuroimaging in the assessment of adult primary brain tumors. We started from the basilar role of conventional/morphological MR sequences, then analyzed, one by one, the non-morphological techniques, and finally highlighted future perspectives, such as radiomics and artificial intelligence.
Collapse
Affiliation(s)
- Matia Martucci
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico “A. Gemelli” IRCCS, 00168 Rome, Italy
| | - Rosellina Russo
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico “A. Gemelli” IRCCS, 00168 Rome, Italy
| | | | - Gabriella D’Apolito
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico “A. Gemelli” IRCCS, 00168 Rome, Italy
| | - Marco Panfili
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico “A. Gemelli” IRCCS, 00168 Rome, Italy
| | - Alessandro Grimaldi
- Istituto di Radiologia, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Alessandro Perna
- Istituto di Radiologia, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | | | - Giuseppe Varcasia
- Istituto di Radiologia, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Carolina Giordano
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico “A. Gemelli” IRCCS, 00168 Rome, Italy
| | - Simona Gaudino
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico “A. Gemelli” IRCCS, 00168 Rome, Italy
- Istituto di Radiologia, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| |
Collapse
|
24
|
Eyraud R, Ayache S, Tsvetkov PO, Kalidindi SS, Baksheeva VE, Boissonneau S, Jiguet-Jiglaire C, Appay R, Nanni-Metellus I, Chinot O, Devred F, Tabouret E. Plasma nanoDSF Denaturation Profile at Baseline Is Predictive of Glioblastoma EGFR Status. Cancers (Basel) 2023; 15:cancers15030760. [PMID: 36765718 PMCID: PMC9913157 DOI: 10.3390/cancers15030760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 01/05/2023] [Accepted: 01/18/2023] [Indexed: 01/28/2023] Open
Abstract
Glioblastoma (GBM) is the most frequent and aggressive primary brain tumor in adults. Recently, we demonstrated that plasma denaturation profiles of glioblastoma patients obtained using Differential Scanning Fluorimetry can be automatically distinguished from healthy controls with the help of Artificial Intelligence (AI). Here, we used a set of machine-learning algorithms to automatically classify plasma denaturation profiles of glioblastoma patients according to their EGFR status. We found that Adaboost AI is able to discriminate EGFR alterations in GBM with an 81.5% accuracy. Our study shows that the use of these plasma denaturation profiles could answer the unmet neuro-oncology need for diagnostic predictive biomarker in combination with brain MRI and clinical data, in order to allow for a rapid orientation of patients for a definitive pathological diagnosis and then treatment. We complete this study by showing that discriminating another mutation, MGMT, seems harder, and that post-surgery monitoring using our approach is not conclusive in the 48 h that follow the surgery.
Collapse
Affiliation(s)
- Rémi Eyraud
- Laboratoire Hubert Curien UMR 5516, UJM-Saint-Etienne, University Lyon, CNRS, 42000 Saint Etienne, France
| | | | - Philipp O. Tsvetkov
- Inst Neurophysiopathol, INP, Faculté des Sciences Médicales et Paramédicales, Aix Marseille Univ, CNRS, 13005 Marseille, France
- Plateforme Interactome Timone, PINT, Faculté des Sciences Médicales et Paramédicales, Aix Marseille Univ, 13005 Marseille, France
| | - Shanmugha Sri Kalidindi
- Laboratoire Hubert Curien UMR 5516, UJM-Saint-Etienne, University Lyon, CNRS, 42000 Saint Etienne, France
| | - Viktoriia E. Baksheeva
- Inst Neurophysiopathol, INP, Faculté des Sciences Médicales et Paramédicales, Aix Marseille Univ, CNRS, 13005 Marseille, France
| | | | - Carine Jiguet-Jiglaire
- Inst Neurophysiopathol, INP, Faculté des Sciences Médicales et Paramédicales, Aix Marseille Univ, CNRS, 13005 Marseille, France
- Department of Anatomopathology, Timone Hospital, APHM, 13005 Marseille, France
| | - Romain Appay
- Inst Neurophysiopathol, INP, Faculté des Sciences Médicales et Paramédicales, Aix Marseille Univ, CNRS, 13005 Marseille, France
- Department of Anatomopathology, Timone Hospital, APHM, 13005 Marseille, France
| | | | - Olivier Chinot
- Inst Neurophysiopathol, INP, Faculté des Sciences Médicales et Paramédicales, Aix Marseille Univ, CNRS, 13005 Marseille, France
- Service de Neurooncologie, CHU Timone, APHM, 13005 Marseille, France
| | - François Devred
- Inst Neurophysiopathol, INP, Faculté des Sciences Médicales et Paramédicales, Aix Marseille Univ, CNRS, 13005 Marseille, France
- Plateforme Interactome Timone, PINT, Faculté des Sciences Médicales et Paramédicales, Aix Marseille Univ, 13005 Marseille, France
- Correspondence: (F.D.); (E.T.)
| | - Emeline Tabouret
- Inst Neurophysiopathol, INP, Faculté des Sciences Médicales et Paramédicales, Aix Marseille Univ, CNRS, 13005 Marseille, France
- Service de Neurooncologie, CHU Timone, APHM, 13005 Marseille, France
- Correspondence: (F.D.); (E.T.)
| |
Collapse
|
25
|
An integrative non-invasive malignant brain tumors classification and Ki-67 labeling index prediction pipeline with radiomics approach. Eur J Radiol 2023; 158:110639. [PMID: 36463703 DOI: 10.1016/j.ejrad.2022.110639] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 10/05/2022] [Accepted: 11/25/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND The histological sub-classes of brain tumors and the Ki-67 labeling index (LI) of tumor cells are major factors in the diagnosis, prognosis, and treatment management of patients. Many existing studies primarily focused on the classification of two classes of brain tumors and the Ki-67LI of gliomas. This study aimed to develop a preoperative non-invasive radiomics pipeline based on multiparametric-MRI to classify-three types of brain tumors, glioblastoma (GBM), metastasis (MET) and primary central nervous system lymphoma (PCNSL), and to predict their corresponding Ki-67LI. METHODS In this retrospective study, 153 patients with malignant brain tumors were involved. The radiomics features were extracted from three types of MRI (T1-weighted imaging (T1WI), fluid-attenuated inversion recovery (FLAIR), and contrast-enhanced T1-weighted imaging (CE-T1WI)) with three masks (tumor core, edema, and whole tumor masks) and selected by a combination of Pearson correlation coefficient (CORR), LASSO, and Max-Relevance and Min-Redundancy (mRMR) filters. The performance of six classifiers was compared and the top three performing classifiers were used to construct the ensemble learning model (ELM). The proposed ELM was evaluated in the training dataset (108 patients) by 5-fold cross-validation and in the test dataset (45 patients) by hold-out. The accuracy (ACC), sensitivity (SEN), specificity (SPE), F1-Score, and the area under the receiver operating characteristic curve (AUC) indicators evaluated the performance of the models. RESULTS The best feature sets and ELM with the optimal performance were selected to construct the tri-categorized brain tumor aided diagnosis model (training dataset AUC: 0.96 (95% CI: 0.93, 0.99); test dataset AUC: 0.93) and Ki-67LI prediction model (training dataset AUC: 0.96 (95% CI: 0.94, 0.98); test dataset AUC: 0.91). The CE-T1WI was the best single modality for all classifiers. Meanwhile, the whole tumor was the most vital mask for the tumor classification and the tumor core was the most vital mask for the Ki-67LI prediction. CONCLUSION The developed radiomics models led to the precise preoperative classification of GBM, MET, and PCNSL and the prediction of Ki-67LI, which could be utilized in clinical practice for the treatment planning for brain tumors.
Collapse
|
26
|
di Noia C, Grist JT, Riemer F, Lyasheva M, Fabozzi M, Castelli M, Lodi R, Tonon C, Rundo L, Zaccagna F. Predicting Survival in Patients with Brain Tumors: Current State-of-the-Art of AI Methods Applied to MRI. Diagnostics (Basel) 2022; 12:diagnostics12092125. [PMID: 36140526 PMCID: PMC9497964 DOI: 10.3390/diagnostics12092125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/05/2022] [Accepted: 08/17/2022] [Indexed: 11/24/2022] Open
Abstract
Given growing clinical needs, in recent years Artificial Intelligence (AI) techniques have increasingly been used to define the best approaches for survival assessment and prediction in patients with brain tumors. Advances in computational resources, and the collection of (mainly) public databases, have promoted this rapid development. This narrative review of the current state-of-the-art aimed to survey current applications of AI in predicting survival in patients with brain tumors, with a focus on Magnetic Resonance Imaging (MRI). An extensive search was performed on PubMed and Google Scholar using a Boolean research query based on MeSH terms and restricting the search to the period between 2012 and 2022. Fifty studies were selected, mainly based on Machine Learning (ML), Deep Learning (DL), radiomics-based methods, and methods that exploit traditional imaging techniques for survival assessment. In addition, we focused on two distinct tasks related to survival assessment: the first on the classification of subjects into survival classes (short and long-term or eventually short, mid and long-term) to stratify patients in distinct groups. The second focused on quantification, in days or months, of the individual survival interval. Our survey showed excellent state-of-the-art methods for the first, with accuracy up to ∼98%. The latter task appears to be the most challenging, but state-of-the-art techniques showed promising results, albeit with limitations, with C-Index up to ∼0.91. In conclusion, according to the specific task, the available computational methods perform differently, and the choice of the best one to use is non-univocal and dependent on many aspects. Unequivocally, the use of features derived from quantitative imaging has been shown to be advantageous for AI applications, including survival prediction. This evidence from the literature motivates further research in the field of AI-powered methods for survival prediction in patients with brain tumors, in particular, using the wealth of information provided by quantitative MRI techniques.
Collapse
Affiliation(s)
- Christian di Noia
- Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum—University of Bologna, 40125 Bologna, Italy
| | - James T. Grist
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford OX1 3PT, UK
- Department of Radiology, Oxford University Hospitals NHS Foundation Trust, Oxford OX3 9DU, UK
- Oxford Centre for Clinical Magnetic Research Imaging, University of Oxford, Oxford OX3 9DU, UK
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham B15 2SY, UK
| | - Frank Riemer
- Mohn Medical Imaging and Visualization Centre (MMIV), Department of Radiology, Haukeland University Hospital, N-5021 Bergen, Norway
| | - Maria Lyasheva
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - Miriana Fabozzi
- Centro Medico Polispecialistico (CMO), 80058 Torre Annunziata, Italy
| | - Mauro Castelli
- NOVA Information Management School (NOVA IMS), Universidade NOVA de Lisboa, Campus de Campolide, 1070-312 Lisboa, Portugal
| | - Raffaele Lodi
- Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum—University of Bologna, 40125 Bologna, Italy
- Functional and Molecular Neuroimaging Unit, IRCCS Istituto delle Scienze Neurologiche di Bologna, 40139 Bologna, Italy
| | - Caterina Tonon
- Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum—University of Bologna, 40125 Bologna, Italy
- Functional and Molecular Neuroimaging Unit, IRCCS Istituto delle Scienze Neurologiche di Bologna, 40139 Bologna, Italy
| | - Leonardo Rundo
- Department of Information and Electrical Engineering and Applied Mathematics, University of Salerno, 84084 Fisciano, Italy
| | - Fulvio Zaccagna
- Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum—University of Bologna, 40125 Bologna, Italy
- Functional and Molecular Neuroimaging Unit, IRCCS Istituto delle Scienze Neurologiche di Bologna, 40139 Bologna, Italy
- Correspondence: ; Tel.: +39-0514969951
| |
Collapse
|
27
|
Guo X, Wu Y, Fang J. Incidence and Prognostic Factors of Patients with Benign Pituitary Tumors Based on the Surveillance, Epidemiology, and End Results (SEER) Database. World Neurosurg 2022; 165:e30-e42. [PMID: 35504480 DOI: 10.1016/j.wneu.2022.04.113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 04/25/2022] [Accepted: 04/26/2022] [Indexed: 12/14/2022]
Abstract
OBJECTIVE To study the incidence and prognostic factors of patients with benign pituitary tumors based on the Surveillance, Epidemiology, and End Results (SEER) database. METHODS This was a retrospective cohort study. Patients with benign pituitary tumors reported in the Surveillance, Epidemiology, and End Results database from 2004 to 2016, who presented completed demographic and clinical data, were included in our study. The age-adjusted incidence rate was calculated and stratified by year at diagnosis, age, gender, and the pathological type of benign pituitary tumor. We used Kaplan-Meier curves and multivariable Cox regressions to determine the factors associated with overall survival. RESULTS A total of 29,967 patients were included in the study, of whom 26,691 (89.07%) survived and 3276 (10.93%) died. The age-adjusted incidence rate increased from 3.15 per 100,000 person-years in 2004 to 4.66 per 100,000 person-years in 2011 (annual percent change = 5.51, P < 0.001), and the subsequent growth trend from 2011 to 2016 was not statistically significant (annual percent change = 0.26, P = 0.711). Most patients were female, aged 60-79 years, and pituitary adenomas accounted for the main proportion of the incidence of benign pituitary tumors. Surgery was associated with the overall survival on the multivariable Cox regression model (hazard ratio = 0.677, 95% confidential interval: 0.629-0.727) and Kaplan-Meier curves, especially in pituitary adenoma. Radiation was not associated with the overall survival of benign pituitary tumor. CONCLUSIONS The overall incidence of benign pituitary tumors was low but showed an increasing trend. Surgery may be beneficial to the prognosis. It should be noted that benign pituitary tumors may not require excessive treatment, such as radiation.
Collapse
Affiliation(s)
- Xiaohong Guo
- Department of Neurosurgery, Dongyang People's Hospital, Jinhua, P. R. China
| | - Yi Wu
- Department of Neurosurgery, Dongyang People's Hospital, Jinhua, P. R. China
| | - Junkang Fang
- Department of Neurosurgery, Dongyang People's Hospital, Jinhua, P. R. China.
| |
Collapse
|
28
|
Krauze AV, Zhuge Y, Zhao R, Tasci E, Camphausen K. AI-Driven Image Analysis in Central Nervous System Tumors-Traditional Machine Learning, Deep Learning and Hybrid Models. JOURNAL OF BIOTECHNOLOGY AND BIOMEDICINE 2022; 5:1-19. [PMID: 35106480 PMCID: PMC8802234 DOI: 10.26502/jbb.2642-91280046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The interpretation of imaging in medicine in general and in oncology specifically remains problematic due to several limitations which include the need to incorporate detailed clinical history, patient and disease-specific history, clinical exam features, previous and ongoing treatment, and account for the dependency on reproducible human interpretation of multiple factors with incomplete data linkage. To standardize reporting, minimize bias, expedite management, and improve outcomes, the use of Artificial Intelligence (AI) has gained significant prominence in imaging analysis. In oncology, AI methods have as a result been explored in most cancer types with ongoing progress in employing AI towards imaging for oncology treatment, assessing treatment response, and understanding and communicating prognosis. Challenges remain with limited available data sets, variability in imaging changes over time augmented by a growing heterogeneity in analysis approaches. We review the imaging analysis workflow and examine how hand-crafted features also referred to as traditional Machine Learning (ML), Deep Learning (DL) approaches, and hybrid analyses, are being employed in AI-driven imaging analysis in central nervous system tumors. ML, DL, and hybrid approaches coexist, and their combination may produce superior results although data in this space is as yet novel, and conclusions and pitfalls have yet to be fully explored. We note the growing technical complexities that may become increasingly separated from the clinic and enforce the acute need for clinician engagement to guide progress and ensure that conclusions derived from AI-driven imaging analysis reflect that same level of scrutiny lent to other avenues of clinical research.
Collapse
Affiliation(s)
- A V Krauze
- Center for Cancer Research, National Cancer Institute, NIH, Building 10, Room B2-3637, Bethesda, USA
| | - Y Zhuge
- Center for Cancer Research, National Cancer Institute, NIH, Building 10, Room B2-3637, Bethesda, USA
| | - R Zhao
- University of British Columbia, Faculty of Medicine, 317 - 2194 Health Sciences Mall, Vancouver, Canada
| | - E Tasci
- Center for Cancer Research, National Cancer Institute, NIH, Building 10, Room B2-3637, Bethesda, USA
| | - K Camphausen
- Center for Cancer Research, National Cancer Institute, NIH, Building 10, Room B2-3637, Bethesda, USA
| |
Collapse
|