1
|
Zhang J, Xu S, Yue L, Lei H, Zhai X. A Collection of Novel Antitumor Agents That Regulate Lipid Metabolism in the Tumor Microenvironment. J Med Chem 2024. [PMID: 39726379 DOI: 10.1021/acs.jmedchem.4c02809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
Lipid metabolism disorder is the cause of one of the most significant metabolic changes in tumors. In the process of tumor occurrence and development, tumor cells choose a continuous metabolic adaptation to accommodate the changing environment to the maximum extent possible. In a variety of tumors, the uptake, production, and storage of lipids are generally upregulated. Tumor cells take advantage of lipid metabolism to access basic energy, biofilm components, and signal molecules of the tumor microenvironment required for proliferation, survival, invasion, and metastasis. This Perspective briefly uncovers the main metabolic processes and key factors involved in lipid metabolism reprogramming, mainly related to lipid uptake, de novo synthesis and storage of fatty acids, oxidation of fatty acids, cholesterol synthesis, and related regulatory factors. From a medicinal chemistry perspective, agents against related key targets are reviewed, expecting to pave the way for promising antitumor drugs with prospects for application through lipid metabolism reprogramming.
Collapse
Affiliation(s)
- Jiahao Zhang
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, P.R. China
| | - Sha Xu
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, P.R. China
| | - Lingfeng Yue
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, P.R. China
| | - Hongrui Lei
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, P.R. China
| | - Xin Zhai
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, P.R. China
| |
Collapse
|
2
|
Giarrizzo M, LaComb JF, Patel HR, Reddy RG, Haley JD, Graves LM, Iwanowicz EJ, Bialkowska AB. TR-107, an Agonist of Caseinolytic Peptidase Proteolytic Subunit, Disrupts Mitochondrial Metabolism and Inhibits the Growth of Human Colorectal Cancer Cells. Mol Cancer Ther 2024; 23:1761-1778. [PMID: 39233476 PMCID: PMC11614700 DOI: 10.1158/1535-7163.mct-24-0170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 07/01/2024] [Accepted: 08/22/2024] [Indexed: 09/06/2024]
Abstract
Oxidative phosphorylation is an essential metabolic process for cancer proliferation and therapy resistance. The ClpXP complex maintains mitochondrial proteostasis by degrading misfolded proteins. Madera Therapeutics has developed a class of highly potent and selective small-molecule activators (TR compounds) of the ClpXP component caseinolytic peptidase proteolytic subunit (ClpP). This approach to cancer therapy eliminates substrate recognition and activates nonspecific protease function within mitochondria, which has shown encouraging preclinical efficacy in multiple malignancies. The class-leading compound TR-107 has demonstrated significantly improved potency in ClpP affinity and activation and enhanced pharmacokinetic properties over the multitargeting clinical agent ONC201. In this study, we investigate the in vitro efficacy of TR-107 against human colorectal cancer cells. TR-107 inhibited colorectal cancer cell proliferation in a dose- and time-dependent manner and induced cell cycle arrest at low nanomolar concentrations. Mechanistically, TR-107 downregulated the expression of proteins involved in the mitochondrial unfolded protein response and mitochondrial DNA transcription and translation. TR-107 attenuated oxygen consumption rate and glycolytic compensation, confirming inactivation of oxidative phosphorylation and a reduction in total cellular respiration. Multiomics analysis of treated cells indicated a downregulation of respiratory chain complex subunits and an upregulation of mitophagy and ferroptosis pathways. Further evaluation of ferroptosis revealed a depletion of antioxidant and iron toxicity defenses that could potentiate sensitivity to combinatory chemotherapeutics. Together, this study provides evidence and insight into the subcellular mechanisms employed by colorectal cancer cells in response to potent ClpP agonism. Our findings demonstrate a productive approach to disrupting mitochondrial metabolism, supporting the translational potential of TR-107.
Collapse
Affiliation(s)
- Michael Giarrizzo
- Department of Medicine, Renaissance School of Medicine at Stony Brook University, Stony Brook, New York
| | - Joseph F LaComb
- Department of Medicine, Renaissance School of Medicine at Stony Brook University, Stony Brook, New York
| | - Hetvi R Patel
- Department of Medicine, Renaissance School of Medicine at Stony Brook University, Stony Brook, New York
| | - Rohan G Reddy
- Department of Medicine, Renaissance School of Medicine at Stony Brook University, Stony Brook, New York
| | - John D Haley
- Department of Pathology, Stony Brook University, Stony Brook, New York
- Developmental Therapeutics at SBU Cancer Center, Stony Brook University, Stony Brook, New York
- SBU Proteomics Center, Stony Brook University, Stony Brook, New York
| | - Lee M Graves
- Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | | | - Agnieszka B Bialkowska
- Department of Medicine, Renaissance School of Medicine at Stony Brook University, Stony Brook, New York
| |
Collapse
|
3
|
El Mokbel N, Goyeneche AA, Prakash R, Forgie BN, Abdalbari FH, Zeng X, Tessier-Cloutier B, Annie Leung SO, Telleria CM. Comparison of two-dimensional and three-dimensional culture systems and their responses to chemotherapy in cells representing disease progression of high-grade serous ovarian cancer. Biochem Biophys Rep 2024; 40:101838. [PMID: 39469046 PMCID: PMC11513490 DOI: 10.1016/j.bbrep.2024.101838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/24/2024] [Accepted: 10/02/2024] [Indexed: 10/30/2024] Open
Abstract
High-grade serous cancer is the most common type of ovarian cancer and is usually diagnosed at advanced stages with high mortality due to recurrence and eventual resistance to standard platinum therapy. The aim of this study was to compare two-dimensional (2D) versus tridimensional (3D) cell culture as a preclinical model of response to carboplatin, paclitaxel and niraparib using PEO1, PEO4 and PEO6 cell lines, which were generated from the same patient along disease progression. Morphologically, cells formed flat adherent layers versus spheroidal structures with different compaction patterns in 2D and 3D respectively. In 2D, apoptosis was rare whereas in 3D cells formed a multilayered structure with an outer layer of live proliferating cells and an inner core of apoptotic cells. Furthermore, a differential capacity to produce ATP was observed among the cell lines in 3D but not in 2D. While response to carboplatin, paclitaxel and niraparib in both settings followed a similar trend, a lower sensitivity was observed in 3D with respect to 2D. Overall, 3D cell culture is likely more reflective of the in vivo cellular tumor behavior and more suitable of therapeutic evaluation given its added complexity absent in 2D.
Collapse
Affiliation(s)
- Naya El Mokbel
- McGill University, Experimental Pathology Unit, Department of Pathology, Faculty of Medicine and Health Sciences, Montreal, QC, Canada
| | - Alicia A. Goyeneche
- McGill University, Experimental Pathology Unit, Department of Pathology, Faculty of Medicine and Health Sciences, Montreal, QC, Canada
| | - Rewati Prakash
- McGill University, Experimental Pathology Unit, Department of Pathology, Faculty of Medicine and Health Sciences, Montreal, QC, Canada
| | - Benjamin N. Forgie
- McGill University, Experimental Pathology Unit, Department of Pathology, Faculty of Medicine and Health Sciences, Montreal, QC, Canada
| | - Farah H. Abdalbari
- McGill University, Experimental Pathology Unit, Department of Pathology, Faculty of Medicine and Health Sciences, Montreal, QC, Canada
| | - Xing Zeng
- McGill University Health Centre, Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Montreal, QC, Canada
| | - Basile Tessier-Cloutier
- McGill University, Experimental Pathology Unit, Department of Pathology, Faculty of Medicine and Health Sciences, Montreal, QC, Canada
| | - Shuk On Annie Leung
- McGill University Health Centre, Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Montreal, QC, Canada
- Research Institute of the McGill University Health Centre, Cancer Research Program, Montreal, QC, Canada
| | - Carlos M. Telleria
- McGill University, Experimental Pathology Unit, Department of Pathology, Faculty of Medicine and Health Sciences, Montreal, QC, Canada
- Research Institute of the McGill University Health Centre, Cancer Research Program, Montreal, QC, Canada
| |
Collapse
|
4
|
Sun Q, Lei X, Yang X. CircRNAs as upstream regulators of miRNA//HMGA2 axis in human cancer. Pharmacol Ther 2024; 263:108711. [PMID: 39222752 DOI: 10.1016/j.pharmthera.2024.108711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/21/2024] [Accepted: 08/30/2024] [Indexed: 09/04/2024]
Abstract
High mobility group protein A2 (HMGA2) is widely recognized as a chromatin-binding protein, whose overexpression is observed in nearly all human cancers. It exerts its oncogenic effects by influencing various cellular processes such as the epithelial-mesenchymal transition, cell differentiation, and DNA damage repair. MicroRNA (miRNA) serves as a pivotal gene expression regulator, concurrently modulating multiple genes implicated in cancer progression, including HMGA2. It also serves as a significant biomarker for cancer. Circular RNA (circRNA) plays a crucial role in gene regulation primarily by sequestering miRNAs and impeding their ability to enhance the expression of other genes, including HMGA2. Increasingly, studies have underscored the vital role of miRNA/HMGA2 interactions in cancer. Given the significance of circRNA as an upstream regulatory mediator and the complexity of regulatory mechanisms, we hereby present a comprehensive overview of the pivotal role of circRNAs as upstream regulators of the miRNA//HMGA2 axis in human cancers. This insight may herald a novel direction for future cancer research.
Collapse
Affiliation(s)
- Qiqi Sun
- School of Pharmaceutical Science, Hengyang Medical College, University of South China, 28 Western Changsheng Road, Hengyang, Hunan 421001, China
| | - Xiaoyong Lei
- School of Pharmaceutical Science, Hengyang Medical College, University of South China, 28 Western Changsheng Road, Hengyang, Hunan 421001, China; Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, University of South China, 28 Western Changsheng Road, Hengyang, Hunan 421001, China
| | - Xiaoyan Yang
- School of Pharmaceutical Science, Hengyang Medical College, University of South China, 28 Western Changsheng Road, Hengyang, Hunan 421001, China; Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, University of South China, 28 Western Changsheng Road, Hengyang, Hunan 421001, China.
| |
Collapse
|
5
|
Mauro-Lizcano M, Di Pisa F, Larrea Murillo L, Sugden CJ, Sotgia F, Lisanti MP. High mitochondrial DNA content is a key determinant of stemness, proliferation, cell migration, and cancer metastasis in vivo. Cell Death Dis 2024; 15:745. [PMID: 39394145 PMCID: PMC11470112 DOI: 10.1038/s41419-024-07103-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/11/2024] [Accepted: 09/23/2024] [Indexed: 10/13/2024]
Abstract
Here, we examined the potential role of mitochondrial DNA (mtDNA) levels in conveying aggressive phenotypes in cancer cells, using two widely-used breast cell lines as model systems (MCF7[ER+] and MDA-MB-231[ER-]). These human breast cancer cell lines were fractionated into mtDNA-high and mtDNA-low cell sub-populations by flow cytometry, using SYBR Gold as a vital probe to stain mitochondrial nucleoids in living cells. Enrichment of mtDNA-high and mtDNA-low cell sub-populations was independently validated, using a specific DNA-binding mAb probe (AC-30-10), and mitochondrial-based functional assays. As predicted, mtDNA-high MCF7 cells showed significant increases in mitochondrial mass, membrane potential, and superoxide production, as well as increased mitochondrial respiration and ATP production. Moreover, mtDNA-high MCF7 cells demonstrated increases in stemness features, such as anchorage-independent growth and CD44 levels, as well as drug-resistance to Gemcitabine and Tamoxifen. Proliferation rates were also significantly increased, with a dramatic shift towards the S- and G2/M-phases of the cell cycle; this was indeed confirmed by RNA-Seq analysis. Complementary results were obtained with MDA-MB-231 cells. More specifically, mtDNA-high MDA-MB-231 cells showed increases in stemness features and ATP production, as well as rapid cell cycle progression. Moreover, mtDNA-high MDA-MB-231 cells also exhibited increases in both cell migration and invasion, suggesting a role for mtDNA in distant metastasis. To test this hypothesis more directly, a preclinical in vivo model was utilized. For this purpose, MDA-MB-231 tumour cell grafts were treated with an established mtDNA synthesis inhibitor, namely Alovudine (3'-deoxy-3'-fluorothymidine). As expected, drug-induced depletion of mtDNA led to a shift from mitochondrial to glycolytic metabolism. Interestingly, Alovudine very effectively reduced the formation of spontaneous metastases by nearly 70%, but minimally inhibited tumour growth by approximately 20%. Taken together, these data suggest that high mtDNA content is a key driver of stemness, proliferation, and migration, as well as cancer cell metastasis.
Collapse
Affiliation(s)
- Marta Mauro-Lizcano
- Translational Medicine, School of Science, Engineering and Environment (SEE), University of Salford, Greater Manchester, M5 4WT, UK
| | - Filippo Di Pisa
- Translational Medicine, School of Science, Engineering and Environment (SEE), University of Salford, Greater Manchester, M5 4WT, UK
- Lunella Biotech, 1145 Carling Avenue, Ottawa, ON, K1Z 7K4, Canada
| | - Luis Larrea Murillo
- Translational Medicine, School of Science, Engineering and Environment (SEE), University of Salford, Greater Manchester, M5 4WT, UK
| | - Conor J Sugden
- Translational Medicine, School of Science, Engineering and Environment (SEE), University of Salford, Greater Manchester, M5 4WT, UK
| | - Federica Sotgia
- Translational Medicine, School of Science, Engineering and Environment (SEE), University of Salford, Greater Manchester, M5 4WT, UK.
- Lunella Biotech, 1145 Carling Avenue, Ottawa, ON, K1Z 7K4, Canada.
| | - Michael P Lisanti
- Translational Medicine, School of Science, Engineering and Environment (SEE), University of Salford, Greater Manchester, M5 4WT, UK.
- Lunella Biotech, 1145 Carling Avenue, Ottawa, ON, K1Z 7K4, Canada.
| |
Collapse
|
6
|
Mendoza-Munoz PL, Kushwaha ND, Chauhan D, Ali Gacem KB, Garrett JE, Dynlacht JR, Charbonnier JB, Gavande NS, Turchi JJ. Impact of Optimized Ku-DNA Binding Inhibitors on the Cellular and In Vivo DNA Damage Response. Cancers (Basel) 2024; 16:3286. [PMID: 39409907 PMCID: PMC11475570 DOI: 10.3390/cancers16193286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/09/2024] [Accepted: 09/18/2024] [Indexed: 10/20/2024] Open
Abstract
Background: DNA-dependent protein kinase (DNA-PK) is a validated cancer therapeutic target involved in DNA damage response (DDR) and non-homologous end-joining (NHEJ) repair of DNA double-strand breaks (DSBs). Ku serves as a sensor of DSBs by binding to DNA ends and activating DNA-PK. Inhibition of DNA-PK is a common strategy to block DSB repair and improve efficacy of ionizing radiation (IR) therapy and radiomimetic drug therapies. We have previously developed Ku-DNA binding inhibitors (Ku-DBis) that block in vitro and cellular NHEJ activity, abrogate DNA-PK autophosphorylation, and potentiate cellular sensitivity to IR. Results and Conclusions: Here we report the discovery of oxindole Ku-DBis with improved cellular uptake and retained potent Ku-inhibitory activity. Variable monotherapy activity was observed in a panel of non-small cell lung cancer (NSCLC) cell lines, with ATM-null cells being the most sensitive and showing synergy with IR. BRCA1-deficient cells were resistant to single-agent treatment and antagonistic when combined with DSB-generating therapies. In vivo studies in an NSCLC xenograft model demonstrated that the Ku-DBi treatment blocked IR-dependent DNA-PKcs autophosphorylation, modulated DDR, and reduced tumor cell proliferation. This represents the first in vivo demonstration of a Ku-targeted DNA-binding inhibitor impacting IR response and highlights the potential therapeutic utility of Ku-DBis for cancer treatment.
Collapse
Affiliation(s)
| | - Narva Deshwar Kushwaha
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201, USA
| | - Dineshsinha Chauhan
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201, USA
| | - Karim Ben Ali Gacem
- Institute for Integrative Biology of the Cell (I2BC), Institute Joliot, CEA, CNRS, Université Paris-Sud, 91198 Gif-sur-Yvette Cedex, France
- Structure-Design-Informatics, Sanofi R&D, 94400 Vitry sur Seine, France
| | - Joy E. Garrett
- Department of Radiation Oncology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Joseph R. Dynlacht
- Department of Radiation Oncology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Jean-Baptiste Charbonnier
- Institute for Integrative Biology of the Cell (I2BC), Institute Joliot, CEA, CNRS, Université Paris-Sud, 91198 Gif-sur-Yvette Cedex, France
| | - Navnath S. Gavande
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201, USA
- Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University, Detroit, MI 48201, USA
| | - John J. Turchi
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- NERx Biosciences, Indianapolis, IN 46202, USA
| |
Collapse
|
7
|
Singh SP, Pathuri G, Asch AS, Rao CV, Madka V. Stat3 Inhibitors TTI-101 and SH5-07 Suppress Bladder Cancer Cell Survival in 3D Tumor Models. Cells 2024; 13:1463. [PMID: 39273033 PMCID: PMC11394313 DOI: 10.3390/cells13171463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 08/28/2024] [Accepted: 08/29/2024] [Indexed: 09/15/2024] Open
Abstract
Bladder cancer (BCa) is one of the most lethal genitourinary malignancies owing to its propensity for recurrence and poor survival. The biochemical pathway, signal transducer and activator of transcription 3 (STAT3), has gained significance as a molecular pathway that promotes proliferation, invasion, and chemoresistance. In this study, we explored the targeting of STAT3 with TTI-101 and SH5-07 in BCa and elucidated the mechanisms in three-dimensional (3D) spheroid and organoid models. We optimized the growth of spheroids from human, rat, and mouse BCa cell lines (J82, NBT-II, and MB49 respectively) and organoids from BBN (N-butyl-N-(4-hydroxybutyl)-nitrosamine)-induced rat bladder tumors. Cell viability was assessed using MTT and trypan blue assays. Intracellular ATP production, ROS production, and calcium AM (CA)/EtBr staining were used to measure the spheroid and organoid inhibition and mitochondrial function. Western blot analysis was performed to evaluate the pharmacodynamic markers involved in cell proliferation, apoptosis, cancer stem cells (CSCs), and STAT3 signaling in BCa. We found that targeting STAT3 (using TTI-101 and SH5-07) significantly reduced the proliferation of BCa spheroids and organoids, which was accompanied by decreased expression of pSTAT3, Cyclin D1, and PCNA. Our data also demonstrated that treatment with STAT3 inhibitors induced ROS production and cell death in BCa spheroids and organoids. STAT3 inhibition-induced cell death was associated with the activation of caspase 3/7 and PARP cleavage. Moreover, TTI-101 and SH5-07 target cancer stem cells by downregulating the expression of CD44 and CD133 in 3D models. This study provides the first evidence for the prevention of BCa with small-molecule inhibitors TTI-101 and SH5-07 via suppression of CSCs and STAT3 signaling.
Collapse
Affiliation(s)
- Surya P. Singh
- Center for Cancer Prevention and Drug Development, Stephenson Cancer Center, Hem-Onc Section, Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (S.P.S.); (G.P.); (C.V.R.)
- Stephenson Cancer Center, Hem-Onc Section, Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA;
| | - Gopal Pathuri
- Center for Cancer Prevention and Drug Development, Stephenson Cancer Center, Hem-Onc Section, Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (S.P.S.); (G.P.); (C.V.R.)
- Stephenson Cancer Center, Hem-Onc Section, Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA;
| | - Adam S. Asch
- Stephenson Cancer Center, Hem-Onc Section, Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA;
| | - Chinthalapally V. Rao
- Center for Cancer Prevention and Drug Development, Stephenson Cancer Center, Hem-Onc Section, Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (S.P.S.); (G.P.); (C.V.R.)
- Stephenson Cancer Center, Hem-Onc Section, Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA;
| | - Venkateshwar Madka
- Center for Cancer Prevention and Drug Development, Stephenson Cancer Center, Hem-Onc Section, Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (S.P.S.); (G.P.); (C.V.R.)
- Stephenson Cancer Center, Hem-Onc Section, Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA;
| |
Collapse
|
8
|
Kejík Z, Hajduch J, Abramenko N, Vellieux F, Veselá K, Fialová JL, Petrláková K, Kučnirová K, Kaplánek R, Tatar A, Skaličková M, Masařík M, Babula P, Dytrych P, Hoskovec D, Martásek P, Jakubek M. Cyanine dyes in the mitochondria-targeting photodynamic and photothermal therapy. Commun Chem 2024; 7:180. [PMID: 39138299 PMCID: PMC11322665 DOI: 10.1038/s42004-024-01256-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 07/26/2024] [Indexed: 08/15/2024] Open
Abstract
Mitochondrial dysregulation plays a significant role in the carcinogenesis. On the other hand, its destabilization strongly represses the viability and metastatic potential of cancer cells. Photodynamic and photothermal therapies (PDT and PTT) target mitochondria effectively, providing innovative and non-invasive anticancer therapeutic modalities. Cyanine dyes, with strong mitochondrial selectivity, show significant potential in enhancing PDT and PTT. The potential and limitations of cyanine dyes for mitochondrial PDT and PTT are discussed, along with their applications in combination therapies, theranostic techniques, and optimal delivery systems. Additionally, novel approaches for sonodynamic therapy using photoactive cyanine dyes are presented, highlighting advances in cancer treatment.
Collapse
Affiliation(s)
- Zdeněk Kejík
- BIOCEV, First Faculty of Medicine, Charles University, 252 50 Vestec, Prague, Czech Republic.
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 455, 120 00, Prague, Czech Republic.
| | - Jan Hajduch
- BIOCEV, First Faculty of Medicine, Charles University, 252 50 Vestec, Prague, Czech Republic
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 455, 120 00, Prague, Czech Republic
| | - Nikita Abramenko
- BIOCEV, First Faculty of Medicine, Charles University, 252 50 Vestec, Prague, Czech Republic
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 455, 120 00, Prague, Czech Republic
| | - Frédéric Vellieux
- BIOCEV, First Faculty of Medicine, Charles University, 252 50 Vestec, Prague, Czech Republic
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 455, 120 00, Prague, Czech Republic
| | - Kateřina Veselá
- BIOCEV, First Faculty of Medicine, Charles University, 252 50 Vestec, Prague, Czech Republic
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 455, 120 00, Prague, Czech Republic
| | | | - Kateřina Petrláková
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-625 00, Brno, Czech Republic
| | - Kateřina Kučnirová
- BIOCEV, First Faculty of Medicine, Charles University, 252 50 Vestec, Prague, Czech Republic
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 455, 120 00, Prague, Czech Republic
| | - Robert Kaplánek
- BIOCEV, First Faculty of Medicine, Charles University, 252 50 Vestec, Prague, Czech Republic
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 455, 120 00, Prague, Czech Republic
| | - Ameneh Tatar
- BIOCEV, First Faculty of Medicine, Charles University, 252 50 Vestec, Prague, Czech Republic
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 455, 120 00, Prague, Czech Republic
| | - Markéta Skaličková
- BIOCEV, First Faculty of Medicine, Charles University, 252 50 Vestec, Prague, Czech Republic
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 455, 120 00, Prague, Czech Republic
| | - Michal Masařík
- BIOCEV, First Faculty of Medicine, Charles University, 252 50 Vestec, Prague, Czech Republic
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 455, 120 00, Prague, Czech Republic
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-625 00, Brno, Czech Republic
- Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Petr Babula
- Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Petr Dytrych
- 1st Department of Surgery-Department of Abdominal, Thoracic Surgery and Traumatology, First Faculty of Medicine, Charles University and General University Hospital in Prague, U Nemocnice 2, 121 08, Prague, Czech Republic
| | - David Hoskovec
- 1st Department of Surgery-Department of Abdominal, Thoracic Surgery and Traumatology, First Faculty of Medicine, Charles University and General University Hospital in Prague, U Nemocnice 2, 121 08, Prague, Czech Republic
| | - Pavel Martásek
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 455, 120 00, Prague, Czech Republic.
| | - Milan Jakubek
- BIOCEV, First Faculty of Medicine, Charles University, 252 50 Vestec, Prague, Czech Republic.
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 455, 120 00, Prague, Czech Republic.
| |
Collapse
|
9
|
Edelmann M, Fan S, De Oliveira T, Goldhardt T, Sartorius D, Midelashvili T, Conrads K, Paul NB, Beißbarth T, Fleischer JR, Blume ML, Bohnenberger H, Josipovic N, Papantonis A, Linnebacher M, Dröge LH, Ghadimi M, Rieken S, Conradi LC. Tumor Vessel Normalization via PFKFB3 Inhibition Alleviates Hypoxia and Increases Tumor Necrosis in Rectal Cancer upon Radiotherapy. CANCER RESEARCH COMMUNICATIONS 2024; 4:2008-2024. [PMID: 39007350 PMCID: PMC11310748 DOI: 10.1158/2767-9764.crc-24-0077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 05/22/2024] [Accepted: 07/11/2024] [Indexed: 07/16/2024]
Abstract
Treatment of patients with locally advanced rectal cancer (RC) is based on neoadjuvant chemoradiotherapy followed by surgery. In order to reduce the development of therapy resistance, it is necessary to further improve previous treatment approaches. Recent in vivo experimental studies suggested that the reduction of tumor hypoxia by tumor vessel normalization (TVN), through the inhibition of the glycolytic activator PFKFB3, could significantly improve tumor response to therapy. We have evaluated in vitro and in vivo the effects of the PFKFB3 inhibitor 2E-3-(3-pyridinyl)-1-(4-pyridinyl)-2-propen-1-one (3PO) on cell survival, clonogenicity, migration, invasion, and metabolism using colorectal cancer cells, patient-derived tumor organoid (PDO), and xenograft (PDX). 3PO treatment of colorectal cancer cells increased radiation-induced cell death and reduced cancer cell invasion. Moreover, gene set enrichment analysis shows that 3PO is able to alter the metabolic status of PDOs toward oxidative phosphorylation. Additionally, in vivo neoadjuvant treatment with 3PO induced TVN, alleviated tumor hypoxia, and increased tumor necrosis. Our results support PFKFB3 inhibition as a possible future neoadjuvant addition for patients with RC. SIGNIFICANCE Novel therapies to better treat colorectal cancer are necessary to improve patient outcomes. Therefore, in this study, we evaluated the combination of a metabolic inhibitor (3PO) and standard radiotherapy in different experimental settings. We have observed that the addition of 3PO increased radiation effects, ultimately improving tumor cell response to therapy.
Collapse
Affiliation(s)
- Marcus Edelmann
- Department of General, Visceral and Pediatric Surgery, University Medical Center Göttingen, Göttingen, Germany.
| | - Shuang Fan
- Department of General, Visceral and Pediatric Surgery, University Medical Center Göttingen, Göttingen, Germany.
| | - Tiago De Oliveira
- Department of General, Visceral and Pediatric Surgery, University Medical Center Göttingen, Göttingen, Germany.
| | - Tina Goldhardt
- Department of General, Visceral and Pediatric Surgery, University Medical Center Göttingen, Göttingen, Germany.
| | - Dorothée Sartorius
- Department of General, Visceral and Pediatric Surgery, University Medical Center Göttingen, Göttingen, Germany.
| | - Teona Midelashvili
- Department of General, Visceral and Pediatric Surgery, University Medical Center Göttingen, Göttingen, Germany.
| | - Karly Conrads
- Department for Medical Bioinformatics, University Medical Center Göttingen, Göttingen, Germany.
| | - Niels B. Paul
- Department for Medical Bioinformatics, University Medical Center Göttingen, Göttingen, Germany.
| | - Tim Beißbarth
- Department for Medical Bioinformatics, University Medical Center Göttingen, Göttingen, Germany.
| | - Johannes R. Fleischer
- Department of General, Visceral and Pediatric Surgery, University Medical Center Göttingen, Göttingen, Germany.
| | - Moritz L. Blume
- Department of General, Visceral and Pediatric Surgery, University Medical Center Göttingen, Göttingen, Germany.
| | - Hanibal Bohnenberger
- Institute for Pathology, University Medical Center Göttingen, Göttingen, Germany.
| | - Natasa Josipovic
- Institute for Pathology, University Medical Center Göttingen, Göttingen, Germany.
| | - Argyris Papantonis
- Institute for Pathology, University Medical Center Göttingen, Göttingen, Germany.
| | - Michael Linnebacher
- Molecular Oncology and Immunotherapy, Department of General, Visceral, Vascular and Transplantation Surgery, University of Rostock, Rostock, Germany.
| | - Leif H. Dröge
- Department of Radiotherapy and Radiation Oncology, University Medical Center Göttingen, Göttingen, Germany.
| | - Michael Ghadimi
- Department of General, Visceral and Pediatric Surgery, University Medical Center Göttingen, Göttingen, Germany.
| | - Stefan Rieken
- Department of Radiotherapy and Radiation Oncology, University Medical Center Göttingen, Göttingen, Germany.
| | - Lena-Christin Conradi
- Department of General, Visceral and Pediatric Surgery, University Medical Center Göttingen, Göttingen, Germany.
| |
Collapse
|
10
|
Malik T, Fatima B, Hussain D, Jabeen F, Jawad SEZ, Mohyuddin A, Najam-ul-Haq M. Zeolite Functionalized with Magnesium/Aluminum/Lanthanum Ternary Hydroxide for the Phosphometabolite Profiling of Malignant Neoplastic Serum Samples. ACS OMEGA 2024; 9:31335-31343. [PMID: 39072089 PMCID: PMC11270549 DOI: 10.1021/acsomega.3c08610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 03/02/2024] [Accepted: 04/01/2024] [Indexed: 07/30/2024]
Abstract
ATP upregulation is a significant driver of aggressive cancer cell phenotypes. Phosphometabolites participate in metabolic pathways and are overexpressed in cancer cell activity. Therefore, developing novel and accurate methods for detecting phosphometabolites in biological fluids is essential. In this research, a novel zeolite composite comprising magnesium, aluminum, and lanthanum hydroxides (MALZ) is developed and used for the first time to enrich phosphorylated metabolites via its inherent interaction with phosphate groups. SEM micrographs show a crystalline cubic structure with a small diameter of 36.62 nm. FTIR analysis confirms the phosphate adsorption and desorption using AMP and ATP as the standards. XRD analysis of MALZ provides structural information about the synthesized composite. Adsorption-desorption parameters, such as pH, shaking time, and MALZ concentration, are optimized to analyze the binding capacity of the fabricated material for phosphorylated metabolites. A kinetic study reveals the rapid and effective AMP and ATP adsorptions on MALZ. The multiple hydroxyl groups of ternary hydroxides and high affinity of lanthanum toward the phosphate group enrich 26 phosphometabolites from serum samples of malignant neoplastic patients. The LC-MS profile shows characteristic phosphometabolites that may act as signatures of cancer-related abnormal metabolic pathways. This study may provide an experimental pathway for detecting metabolites in human body fluids.
Collapse
Affiliation(s)
- Tasbiha Malik
- Department
of Biochemistry, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Batool Fatima
- Department
of Biochemistry, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Dilshad Hussain
- HEJ
Research Institute of Chemistry, International Center for Chemical
and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Fahmida Jabeen
- Institute
of Chemical Sciences, Bahauddin Zakariya
University, Multan 60800, Pakistan
| | - Shan E Zahra Jawad
- Department
of Biochemistry, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Abrar Mohyuddin
- Department
of Chemistry, The Emerson University Multan, Multan 60000, Pakistan
| | - Muhammad Najam-ul-Haq
- Institute
of Chemical Sciences, Bahauddin Zakariya
University, Multan 60800, Pakistan
| |
Collapse
|
11
|
Sim N, Carter JM, Deka K, Tan BKT, Sim Y, Tan SM, Li Y. TWEAK/Fn14 signalling driven super-enhancer reprogramming promotes pro-metastatic metabolic rewiring in triple-negative breast cancer. Nat Commun 2024; 15:5638. [PMID: 38965263 PMCID: PMC11224303 DOI: 10.1038/s41467-024-50071-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 06/27/2024] [Indexed: 07/06/2024] Open
Abstract
Triple Negative Breast Cancer (TNBC) is the most aggressive breast cancer subtype suffering from limited targeted treatment options. Following recent reports correlating Fibroblast growth factor-inducible 14 (Fn14) receptor overexpression in Estrogen Receptor (ER)-negative breast cancers with metastatic events, we show that Fn14 is specifically overexpressed in TNBC patients and associated with poor survival. We demonstrate that constitutive Fn14 signalling rewires the transcriptomic and epigenomic landscape of TNBC, leading to enhanced tumour growth and metastasis. We further illustrate that such mechanisms activate TNBC-specific super enhancers (SE) to drive the transcriptional activation of cancer dependency genes via chromatin looping. In particular, we uncover the SE-driven upregulation of Nicotinamide phosphoribosyltransferase (NAMPT), which promotes NAD+ and ATP metabolic reprogramming critical for filopodia formation and metastasis. Collectively, our study details the complex mechanistic link between TWEAK/Fn14 signalling and TNBC metastasis, which reveals several vulnerabilities which could be pursued for the targeted treatment of TNBC patients.
Collapse
Affiliation(s)
- Nicholas Sim
- School of Biological Sciences (SBS), Nanyang Technological University (NTU), 60 Nanyang Drive, Singapore, 637551, Singapore
| | - Jean-Michel Carter
- School of Biological Sciences (SBS), Nanyang Technological University (NTU), 60 Nanyang Drive, Singapore, 637551, Singapore
| | - Kamalakshi Deka
- School of Biological Sciences (SBS), Nanyang Technological University (NTU), 60 Nanyang Drive, Singapore, 637551, Singapore
| | - Benita Kiat Tee Tan
- Division of Surgery and Surgical Oncology, Department of Breast Surgery, National Cancer Centre Singapore, 30 Hospital Blvd, Singapore, 168583, Singapore
- Division of Surgery and Surgical Oncology, Department of Breast Surgery, Singapore General Hospital, 31 Third Hospital Ave, Singapore, 168753, Singapore
- SingHealth Duke-NUS Breast Centre, Singapore, Singapore
| | - Yirong Sim
- Division of Surgery and Surgical Oncology, Department of Breast Surgery, National Cancer Centre Singapore, 30 Hospital Blvd, Singapore, 168583, Singapore
- Division of Surgery and Surgical Oncology, Department of Breast Surgery, Singapore General Hospital, 31 Third Hospital Ave, Singapore, 168753, Singapore
- SingHealth Duke-NUS Breast Centre, Singapore, Singapore
| | - Suet-Mien Tan
- School of Biological Sciences (SBS), Nanyang Technological University (NTU), 60 Nanyang Drive, Singapore, 637551, Singapore
| | - Yinghui Li
- School of Biological Sciences (SBS), Nanyang Technological University (NTU), 60 Nanyang Drive, Singapore, 637551, Singapore.
| |
Collapse
|
12
|
Hughes KJ, Cheng J, Iyer KA, Ralhan K, Ganesan M, Hsu CW, Zhan Y, Wang X, Zhu B, Gao M, Wang H, Zhang Y, Huang J, Zhou QA. Unveiling Trends: Nanoscale Materials Shaping Emerging Biomedical Applications. ACS NANO 2024; 18:16325-16342. [PMID: 38888229 DOI: 10.1021/acsnano.4c04514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
The realm of biomedical materials continues to evolve rapidly, driven by innovative research across interdisciplinary domains. Leveraging big data from the CAS Content Collection, this study employs quantitative analysis through natural language processing (NLP) to identify six emerging areas within nanoscale materials for biomedical applications. These areas encompass self-healing, bioelectronic, programmable, lipid-based, protein-based, and antibacterial materials. Our Nano Focus delves into the multifaceted utilization of nanoscale materials in these domains, spanning from augmenting physical and electronic properties for interfacing with human tissue to facilitating intricate functionalities like programmable drug delivery.
Collapse
Affiliation(s)
- Kevin J Hughes
- CAS, a division of the American Chemical Society, Columbus, Ohio 43210, United States
| | - Jianjun Cheng
- Westlake University, 600 Dunyu Rd., Xihu District, Hangzhou, Zhejiang 310030. PR China
| | - Kavita A Iyer
- ACS International India Pvt. Ltd., Pune 411044, India
| | | | | | - Chia-Wei Hsu
- CAS, a division of the American Chemical Society, Columbus, Ohio 43210, United States
| | - Yutao Zhan
- Westlake University, 600 Dunyu Rd., Xihu District, Hangzhou, Zhejiang 310030. PR China
| | - Xinning Wang
- Westlake University, 600 Dunyu Rd., Xihu District, Hangzhou, Zhejiang 310030. PR China
| | - Bowen Zhu
- Westlake University, 600 Dunyu Rd., Xihu District, Hangzhou, Zhejiang 310030. PR China
| | - Menghua Gao
- Westlake University, 600 Dunyu Rd., Xihu District, Hangzhou, Zhejiang 310030. PR China
| | - Huaimin Wang
- Westlake University, 600 Dunyu Rd., Xihu District, Hangzhou, Zhejiang 310030. PR China
| | - Yue Zhang
- Westlake University, 600 Dunyu Rd., Xihu District, Hangzhou, Zhejiang 310030. PR China
| | - Jiaxing Huang
- Westlake University, 600 Dunyu Rd., Xihu District, Hangzhou, Zhejiang 310030. PR China
| | | |
Collapse
|
13
|
Bruserud Ø, Selheim F, Hernandez-Valladares M, Reikvam H. Monocytic Differentiation in Acute Myeloid Leukemia Cells: Diagnostic Criteria, Biological Heterogeneity, Mitochondrial Metabolism, Resistance to and Induction by Targeted Therapies. Int J Mol Sci 2024; 25:6356. [PMID: 38928061 PMCID: PMC11203697 DOI: 10.3390/ijms25126356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 05/31/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024] Open
Abstract
We review the importance of monocytic differentiation and differentiation induction in non-APL (acute promyelocytic leukemia) variants of acute myeloid leukemia (AML), a malignancy characterized by proliferation of immature myeloid cells. Even though the cellular differentiation block is a fundamental characteristic, the AML cells can show limited signs of differentiation. According to the French-American-British (FAB-M4/M5 subset) and the World Health Organization (WHO) 2016 classifications, monocytic differentiation is characterized by morphological signs and the expression of specific molecular markers involved in cellular communication and adhesion. Furthermore, monocytic FAB-M4/M5 patients are heterogeneous with regards to cytogenetic and molecular genetic abnormalities, and monocytic differentiation does not have any major prognostic impact for these patients when receiving conventional intensive cytotoxic therapy. In contrast, FAB-M4/M5 patients have decreased susceptibility to the Bcl-2 inhibitor venetoclax, and this seems to be due to common molecular characteristics involving mitochondrial regulation of the cellular metabolism and survival, including decreased dependency on Bcl-2 compared to other AML patients. Thus, the susceptibility to Bcl-2 inhibition does not only depend on general resistance/susceptibility mechanisms known from conventional AML therapy but also specific mechanisms involving the molecular target itself or the molecular context of the target. AML cell differentiation status is also associated with susceptibility to other targeted therapies (e.g., CDK2/4/6 and bromodomain inhibition), and differentiation induction seems to be a part of the antileukemic effect for several targeted anti-AML therapies. Differentiation-associated molecular mechanisms may thus become important in the future implementation of targeted therapies in human AML.
Collapse
MESH Headings
- Humans
- Cell Differentiation
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/pathology
- Leukemia, Myeloid, Acute/diagnosis
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/genetics
- Mitochondria/metabolism
- Monocytes/metabolism
- Monocytes/pathology
- Drug Resistance, Neoplasm/genetics
- Molecular Targeted Therapy
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/therapeutic use
Collapse
Affiliation(s)
- Øystein Bruserud
- Acute Leukemia Research Group, Department of Clinical Science, University of Bergen, 5007 Bergen, Norway; (M.H.-V.); (H.R.)
- Section for Hematology, Department of Medicine, Haukeland University Hospital, 5009 Bergen, Norway
| | - Frode Selheim
- Proteomics Unit of University of Bergen (PROBE), University of Bergen, Jonas Lies vei 91, 5009 Bergen, Norway;
| | - Maria Hernandez-Valladares
- Acute Leukemia Research Group, Department of Clinical Science, University of Bergen, 5007 Bergen, Norway; (M.H.-V.); (H.R.)
- Department of Physical Chemistry, University of Granada, Avenida de la Fuente Nueva S/N, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, 18012 Granada, Spain
| | - Håkon Reikvam
- Acute Leukemia Research Group, Department of Clinical Science, University of Bergen, 5007 Bergen, Norway; (M.H.-V.); (H.R.)
- Section for Hematology, Department of Medicine, Haukeland University Hospital, 5009 Bergen, Norway
| |
Collapse
|
14
|
Lin MC, Chen GY, Yu HH, Hsu PL, Lee CW, Cheng CC, Wu SY, Pan BS, Su BC. Repurposing the diuretic benzamil as an anti-osteosarcoma agent that acts by suppressing integrin/FAK/STAT3 signalling and compromising mitochondrial function. Bone Joint Res 2024; 13:157-168. [PMID: 38569602 PMCID: PMC10990635 DOI: 10.1302/2046-3758.134.bjr-2023-0289.r1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/05/2024] Open
Abstract
Aims Osteosarcoma is the most common primary bone malignancy among children and adolescents. We investigated whether benzamil, an amiloride analogue and sodium-calcium exchange blocker, may exhibit therapeutic potential for osteosarcoma in vitro. Methods MG63 and U2OS cells were treated with benzamil for 24 hours. Cell viability was evaluated with the MTS/PMS assay, colony formation assay, and flow cytometry (forward/side scatter). Chromosome condensation, the terminal deoxynucleotidyl transferase dUTP nick end labelling (TUNEL) assay, cleavage of poly-ADP ribose polymerase (PARP) and caspase-7, and FITC annexin V/PI double staining were monitored as indicators of apoptosis. Intracellular calcium was detected by flow cytometry with Fluo-4 AM. The phosphorylation and activation of focal adhesion kinase (FAK) and signal transducer and activator of transcription 3 (STAT3) were measured by western blot. The expression levels of X-linked inhibitor of apoptosis protein (XIAP), B-cell lymphoma 2 (Bcl-2), B-cell lymphoma-extra large (Bcl-xL), SOD1, and SOD2 were also assessed by western blot. Mitochondrial status was assessed with tetramethylrhodamine, ethyl ester (TMRE), and intracellular adenosine triphosphate (ATP) was measured with BioTracker ATP-Red Live Cell Dye. Total cellular integrin levels were evaluated by western blot, and the expression of cell surface integrins was assessed using fluorescent-labelled antibodies and flow cytometry. Results Benzamil suppressed growth of osteosarcoma cells by inducing apoptosis. Benzamil reduced the expression of cell surface integrins α5, αV, and β1 in MG63 cells, while it only reduced the expression of αV in U2OS cells. Benzamil suppressed the phosphorylation and activation of FAK and STAT3. In addition, mitochondrial function and ATP production were compromised by benzamil. The levels of anti-apoptotic proteins XIAP, Bcl-2, and Bcl-xL were reduced by benzamil. Correspondingly, benzamil potentiated cisplatin- and methotrexate-induced apoptosis in osteosarcoma cells. Conclusion Benzamil exerts anti-osteosarcoma activity by inducing apoptosis. In terms of mechanism, benzamil appears to inhibit integrin/FAK/STAT3 signalling, which triggers mitochondrial dysfunction and ATP depletion.
Collapse
Affiliation(s)
- Meng-Chieh Lin
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Guan-Yu Chen
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Hsin-Hsien Yu
- Division of General Surgery, Department of Surgery, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
- Division of General Surgery, Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Pei-Ling Hsu
- Department of Anatomy, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Chu-Wan Lee
- Department of Nursing, National Tainan Junior College of Nursing, Tainan, Taiwan
| | - Chih-Cheng Cheng
- Division of General Surgery, Department of Surgery, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Shih-Ying Wu
- Department of Cancer Biology, Wake Forest Baptist Medical Center, Wake Forest University, Winston-Salem, North Carolina, USA
| | - Bo-Syong Pan
- Department of Pathology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Bor-Chyuan Su
- Department of Anatomy and Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
15
|
Xu R, Huang L, Liu J, Zhang Y, Xu Y, Li R, Su S, Xu X. Remodeling of Mitochondrial Metabolism by a Mitochondria-Targeted RNAi Nanoplatform for Effective Cancer Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305923. [PMID: 37919865 DOI: 10.1002/smll.202305923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/30/2023] [Indexed: 11/04/2023]
Abstract
Emerging evidence has demonstrated the significant contribution of mitochondrial metabolism dysfunction to promote cancer development and progression. Aberrant expression of mitochondrial genome (mtDNA)-encoded proteins widely involves mitochondrial metabolism dysfunction, and targeted regulation of their expression can be an effective strategy for cancer therapy, which however is challenged due to the protection by the mitochondrial double membrane. Herein, a mitochondria-targeted RNAi nanoparticle (NP) platform for effective regulation of mitochondrial metabolism and breast cancer (BCa) therapy is developed. This nanoplatform is composed of a hydrophilic polyethylene glycol (PEG) shell, a hydrophobic poly(2-(diisopropylamino)ethyl methacrylate) (PDPA) core, and charged-mediated complexes of mitochondria-targeting and membrane-penetrating peptide amphiphile (MMPA) and small interfering RNA (siRNA) embedded in the core. After tumor accumulation and internalization by tumor cells, these NPs can respond to the endosomal pH to expose the MMPA/siRNA complexes, which can specifically transport siRNA into the mitochondria to down-regulate mtDNA-encoded protein expression (e.g., ATP6 and CYB). More importantly, because ATP6 down-regulation can suppress ATP production and enhance reactive oxygen species (ROS) generation to induce mitochondrial damage and mtDNA leakage into tumor tissues, the NPs can combinatorially inhibit tumor growth via suppressing ATP production and repolarizing tumor-associated macrophages (TAMs) into tumor-inhibiting M1-like macrophages by mtDNA.
Collapse
Affiliation(s)
- Rui Xu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, P. R. China
- Guangzhou Key Laboratory of Medical Nanomaterials, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, P. R. China
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan, 528200, P. R. China
| | - Linzhuo Huang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, P. R. China
- Guangzhou Key Laboratory of Medical Nanomaterials, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, P. R. China
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan, 528200, P. R. China
| | - Jiayu Liu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, P. R. China
- Guangzhou Key Laboratory of Medical Nanomaterials, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, P. R. China
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan, 528200, P. R. China
| | - Yuxuan Zhang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, P. R. China
- Guangzhou Key Laboratory of Medical Nanomaterials, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, P. R. China
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan, 528200, P. R. China
| | - Ya Xu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, P. R. China
- Guangzhou Key Laboratory of Medical Nanomaterials, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, P. R. China
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan, 528200, P. R. China
| | - Rong Li
- The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, P. R. China
| | - Shicheng Su
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, P. R. China
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan, 528200, P. R. China
| | - Xiaoding Xu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, P. R. China
- Guangzhou Key Laboratory of Medical Nanomaterials, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, P. R. China
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan, 528200, P. R. China
| |
Collapse
|
16
|
Zhang H, Song J, Ward R, Han Y, Hunt A, Shriwas P, Steed A, Edwards C, Cao Y, Co M, Chen X. Diverse temporal and spatial mechanisms work, partially through Stanniocalcin-1, V-ATPase and senescence, to activate the extracellular ATP-mediated drug resistance in human cancer cells. Front Oncol 2024; 14:1276092. [PMID: 38380370 PMCID: PMC10876858 DOI: 10.3389/fonc.2024.1276092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 01/17/2024] [Indexed: 02/22/2024] Open
Abstract
Introduction Resistance to drug therapies is associated with a large majority of cancer-related deaths. ATP-binding cassette (ABC) transporter-mediated drug efflux, epithelial-mesenchymal transition (EMT), cancer stem cells (CSCs), glutathione (GSH), senescence, and vacuole-type ATPase (V-ATPase) all contribute to the resistance. We recently showed that extracellular ATP (eATP) induces and regulates EMT, CSC formation, and ABC transporters in human cancer cells and tumors. eATP also consistently upregulates Stanniocalcin-1 (STC1), a gene that significantly contributes to EMT, CSC formation, and tumor growth. We also found that eATP enhances drug resistance in cancer cells through eATP internalization mediated by macropinocytosis, leading to an elevation of intracellular ATP (iATP) levels, induction of EMT, and CSC formation. However, these factors have never been systematically investigated in the context of eATP-induced drug resistance. Methods In this study, we hypothesized that eATP increases drug resistance via inducing ABC efflux, EMT, CSCs, STC1, and their accompanied processes such as GSH reducing activity, senescence, and V-ATPase. RNA sequencing, metabolomics, gene knockdown and knockout, and functional assays were performed to investigate these pathways and processes. Results and discussion Our study results showed that, in multiple human cancer lines, eATP induced genes involved in drug resistance, elevated ABC transporters' efflux activity of anticancer drugs; generated transcriptomic and metabolic profiles representing a drug resistant state; upregulated activities of GSH, senescence, and V-ATPase to promote drug resistance. Collectively, these newly found players shed light on the mechanisms of eATP-induced as well as STC1- and V-ATPase-mediated drug resistance and offer potential novel targets for combating drug resistance in cancers.
Collapse
Affiliation(s)
- Haiyun Zhang
- Department of Biological Science, Ohio University, Athens, OH, United States
- The Edison Biotechnology Institute, Ohio University, Athens, OH, United States
- The Program of Molecular and Cellular Biology, Ohio University, Athens, OH, United States
| | - Jingwen Song
- Department of Biological Science, Ohio University, Athens, OH, United States
- The Edison Biotechnology Institute, Ohio University, Athens, OH, United States
- The Program of Molecular and Cellular Biology, Ohio University, Athens, OH, United States
| | - Ryan Ward
- The Honor Tutorial College, Ohio University, Athens, OH, United States
| | - Yong Han
- The Edison Biotechnology Institute, Ohio University, Athens, OH, United States
| | - Arabella Hunt
- The Honor Tutorial College, Ohio University, Athens, OH, United States
| | - Pratik Shriwas
- Department of Biological Science, Ohio University, Athens, OH, United States
- The Edison Biotechnology Institute, Ohio University, Athens, OH, United States
- The Program of Molecular and Cellular Biology, Ohio University, Athens, OH, United States
| | - Alexander Steed
- Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, United States
| | - Cory Edwards
- Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, United States
| | - Yanyang Cao
- Department of Biological Science, Ohio University, Athens, OH, United States
- The Edison Biotechnology Institute, Ohio University, Athens, OH, United States
- The Program of Molecular and Cellular Biology, Ohio University, Athens, OH, United States
| | - Milo Co
- Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, United States
| | - Xiaozhuo Chen
- Department of Biological Science, Ohio University, Athens, OH, United States
- The Edison Biotechnology Institute, Ohio University, Athens, OH, United States
- The Program of Molecular and Cellular Biology, Ohio University, Athens, OH, United States
- Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, United States
- Department of Biomedical Science, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, United States
| |
Collapse
|
17
|
Lee C, Park SH, Yoon SK. The E3 ligase HUWE1 increases the sensitivity of CRC to oxaliplatin through TOMM20 degradation. Oncogene 2024; 43:636-649. [PMID: 38184713 DOI: 10.1038/s41388-023-02928-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 12/17/2023] [Accepted: 12/20/2023] [Indexed: 01/08/2024]
Abstract
Continuous administration of oxaliplatin, the most widely used first-line chemotherapy drug for colorectal cancer (CRC), eventually leads to drug resistance. Increasing the sensitivity of CRC cells to oxaliplatin is a key strategy to overcome this issue. Impairment of mitochondrial function is a pivotal mechanism determining the sensitivity of CRC to oxaliplatin. We discovered an inverse correlation between Translocase of Outer Mitochondrial Membrane 20 (TOMM20) and oxaliplatin sensitivity as well as an inverse relationship between TOMM20 and HECT, UBA, and WWE domain containing E3 ligase 1 (HUWE1) expression in CRC. For the first time, we demonstrated that HUWE1 ubiquitinates TOMM20 directly and also regulates TOMM20 degradation via the PARKIN-mediated pathway. Furthermore, we showed that overexpression of HUWE1 in CRC cells has a negative effect on mitochondrial function, including the generation of ATP and maintenance of mitochondrial membrane potential, leading to increased production of ROS and apoptosis. This effect was amplified when cells were treated simultaneously with oxaliplatin. Our study conclusively shows that TOMM20 is a novel target of HUWE1. Our findings indicate that HUWE1 plays a critical role in regulating oxaliplatin sensitivity by degrading TOMM20 and inducing mitochondrial damage in CRC.
Collapse
Affiliation(s)
- Chanhaeng Lee
- Department of Biomedicine & Health Sciences, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul, 065-691, Republic of Korea
- Department of Medical Life Sciences, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul, 065-691, Republic of Korea
| | - Sang-Hee Park
- Department of Medical Life Sciences, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul, 065-691, Republic of Korea
| | - Sungjoo Kim Yoon
- Department of Biomedicine & Health Sciences, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul, 065-691, Republic of Korea.
- Department of Medical Life Sciences, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul, 065-691, Republic of Korea.
| |
Collapse
|
18
|
Yu CX, Peng ZQ, Wang T, Qu XH, Yang P, Huang SR, Jiang LP, Tou FF, Han XJ. p32/OPA1 axis-mediated mitochondrial dynamics contributes to cisplatin resistance in non-small cell lung cancer. Acta Biochim Biophys Sin (Shanghai) 2024; 56:34-43. [PMID: 38151998 PMCID: PMC10875347 DOI: 10.3724/abbs.2023247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 07/27/2023] [Indexed: 12/29/2023] Open
Abstract
Cisplatin resistance is a major obstacle in the treatment of non-small cell lung cancer (NSCLC). p32 and OPA1 are the key regulators of mitochondrial morphology and function. This study aims to investigate the role of the p32/OPA1 axis in cisplatin resistance in NSCLC and its underlying mechanism. The levels of p32 protein and mitochondrial fusion protein OPA1 are higher in cisplatin-resistant A549/DDP cells than in cisplatin-sensitive A549 cells, which facilitates mitochondrial fusion in A549/DDP cells. In addition, the expression of p32 and OPA1 protein is also upregulated in A549 cells during the development of cisplatin resistance. Moreover, p32 knockdown effectively downregulates the expression of OPA1, stimulates mitochondrial fission, decreases ATP generation and sensitizes A549/DDP cells to cisplatin-induced apoptosis. Furthermore, metformin significantly downregulates the expressions of p32 and OPA1 and induces mitochondrial fission and a decrease in ATP level in A549/DDP cells. The co-administration of metformin and cisplatin shows a significantly greater decrease in A549/DDP cell viability than cisplatin treatment alone. Moreover, D-erythro-Sphingosine, a potent p32 kinase activator, counteracts the metformin-induced downregulation of OPA1 and mitochondrial fission in A549/DDP cells. Taken together, these findings indicate that p32/OPA1 axis-mediated mitochondrial dynamics contributes to the acquired cisplatin resistance in NSCLC and that metformin resensitizes NSCLC to cisplatin, suggesting that targeting p32 and mitochondrial dynamics is an effective strategy for the prevention of cisplatin resistance.
Collapse
Affiliation(s)
- Chun-Xia Yu
- Institute of GeriatricsJiangxi Provincial People’s HospitalThe First Affiliated Hospital of Nanchang Medical CollegeNanchang330006China
- Department of PharmacologySchool of Pharmaceutical ScienceNanchang UniversityNanchang330006China
| | - Zhe-Qing Peng
- Institute of GeriatricsJiangxi Provincial People’s HospitalThe First Affiliated Hospital of Nanchang Medical CollegeNanchang330006China
- Department of PharmacologySchool of Pharmaceutical ScienceNanchang UniversityNanchang330006China
| | - Tao Wang
- Institute of GeriatricsJiangxi Provincial People’s HospitalThe First Affiliated Hospital of Nanchang Medical CollegeNanchang330006China
| | - Xin-Hui Qu
- Institute of GeriatricsJiangxi Provincial People’s HospitalThe First Affiliated Hospital of Nanchang Medical CollegeNanchang330006China
- The Second Department of NeurologyJiangxi Provincial People’s Hospitalthe First Affiliated Hospital of Nanchang Medical CollegeNanchang330006China
| | - Ping Yang
- The Second Department of NeurologyJiangxi Provincial People’s Hospitalthe First Affiliated Hospital of Nanchang Medical CollegeNanchang330006China
| | - Shao-Rong Huang
- Institute of GeriatricsJiangxi Provincial People’s HospitalThe First Affiliated Hospital of Nanchang Medical CollegeNanchang330006China
| | - Li-Ping Jiang
- Department of PharmacologySchool of Pharmaceutical ScienceNanchang UniversityNanchang330006China
| | - Fang-Fang Tou
- Institute of GeriatricsJiangxi Provincial People’s HospitalThe First Affiliated Hospital of Nanchang Medical CollegeNanchang330006China
- Department of OncologyJiangxi Provincial People’s HospitalThe First Affiliated Hospital of Nanchang Medical CollegeNanchang330006China
| | - Xiao-Jian Han
- Institute of GeriatricsJiangxi Provincial People’s HospitalThe First Affiliated Hospital of Nanchang Medical CollegeNanchang330006China
- Department of PharmacologySchool of Pharmaceutical ScienceNanchang UniversityNanchang330006China
- The Second Department of NeurologyJiangxi Provincial People’s Hospitalthe First Affiliated Hospital of Nanchang Medical CollegeNanchang330006China
| |
Collapse
|
19
|
Selheim F, Aasebø E, Bruserud Ø, Hernandez-Valladares M. High Mitochondrial Protein Expression as a Potential Predictor of Relapse Risk in Acute Myeloid Leukemia Patients with the Monocytic FAB Subtypes M4 and M5. Cancers (Basel) 2023; 16:8. [PMID: 38201437 PMCID: PMC10778527 DOI: 10.3390/cancers16010008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/08/2023] [Accepted: 12/12/2023] [Indexed: 01/12/2024] Open
Abstract
AML is a highly aggressive and heterogeneous form of hematological cancer. Proteomics-based stratification of patients into more refined subgroups may contribute to a more precise characterization of the patient-derived AML cells. Here, we reanalyzed liquid chromatography-tandem mass spectrometry (LC-MS/MS) generated proteomic and phosphoproteomic data from 26 FAB-M4/M5 patients. The patients achieved complete hematological remission after induction therapy. Twelve of them later developed chemoresistant relapse (RELAPSE), and 14 patients were relapse-free (REL_FREE) long-term survivors. We considered not only the RELAPSE and REL_FREE characteristics but also integrated the French-American-British (FAB) classification, along with considering the presence of nucleophosmin 1 (NPM1) mutation and cytogenetically normal AML. We found a significant number of differentially enriched proteins (911) and phosphoproteins (257) between the various FAB subtypes in RELAPSE patients. Patients with the myeloblastic M1/M2 subtype showed higher levels of RNA processing-related routes and lower levels of signaling related to terms like translation and degranulation when compared with the M4/M5 subtype. Moreover, we found that a high abundance of proteins associated with mitochondrial translation and oxidative phosphorylation, particularly observed in the RELAPSE M4/M5 NPM1 mutated subgroup, distinguishes relapsing from non-relapsing AML patient cells with the FAB subtype M4/M5. Thus, the discovery of subtype-specific biomarkers through proteomic profiling may complement the existing classification system for AML and potentially aid in selecting personalized treatment strategies for individual patients.
Collapse
Affiliation(s)
- Frode Selheim
- Proteomics Unit of University of Bergen (PROBE), University of Bergen, Jonas Lies vei 91, 5009 Bergen, Norway
| | - Elise Aasebø
- Acute Leukemia Research Group, Department of Clinical Science, University of Bergen, Jonas Lies vei 91, 5009 Bergen, Norway; (E.A.); (Ø.B.)
| | - Øystein Bruserud
- Acute Leukemia Research Group, Department of Clinical Science, University of Bergen, Jonas Lies vei 91, 5009 Bergen, Norway; (E.A.); (Ø.B.)
- Section for Hematology, Department of Medicine, Haukeland University Hospital, 5009 Bergen, Norway
| | - Maria Hernandez-Valladares
- Proteomics Unit of University of Bergen (PROBE), University of Bergen, Jonas Lies vei 91, 5009 Bergen, Norway
- Department of Physical Chemistry, Institute of Biotechnology, Excellence Unit in Chemistry Applied to Biomedicine and Environment, School of Sciences, University of Granada, Campus Fuentenueva s/n, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, 18012 Granada, Spain
| |
Collapse
|
20
|
Castillo SP, Rebolledo RA, Arim M, Hochberg ME, Marquet PA. Metastatic cells exploit their stoichiometric niche in the network of cancer ecosystems. SCIENCE ADVANCES 2023; 9:eadi7902. [PMID: 38091399 PMCID: PMC10848726 DOI: 10.1126/sciadv.adi7902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 11/10/2023] [Indexed: 12/18/2023]
Abstract
Metastasis is a nonrandom process with varying degrees of organotropism-specific source-acceptor seeding. Understanding how patterns between source and acceptor tumors emerge remains a challenge in oncology. We hypothesize that organotropism results from the macronutrient niche of cells in source and acceptor organs. To test this, we constructed and analyzed a metastatic network based on 9303 records across 28 tissue types. We found that the topology of the network is nested and modular with scale-free degree distributions, reflecting organotropism along a specificity/generality continuum. The variation in topology is significantly explained by the matching of metastatic cells to their stoichiometric niche. Specifically, successful metastases are associated with higher phosphorus content in the acceptor compared to the source organ, due to metabolic constraints in proliferation crucial to the invasion of new tissues. We conclude that metastases are codetermined by processes at source and acceptor organs, where phosphorus content is a limiting factor orchestrating tumor ecology.
Collapse
Affiliation(s)
- Simon P. Castillo
- Departamento de Ecología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, C.P. 8331150, Santiago, Chile
| | - Rolando A. Rebolledo
- Instituto de Ingeniería Biológica y Médica (IIBM), Pontificia Universidad Católica de Chile, Santiago, Chile
- Hepato-Pancreato-Biliary Surgery Unit, Surgery Service, Complejo Asistencial Dr. Sótero Del Río, Santiago, Chile
| | - Matías Arim
- Departamento de Ecologia y Gestion Ambiental, Centro Universitario Regional Este (CURE), Universidad de la República, Maldonado, Uruguay
| | - Michael E. Hochberg
- ISEM, University of Montpellier, Montpellier, France
- Santa Fe Institute, Santa Fe, NM 87501, USA
| | - Pablo A. Marquet
- Departamento de Ecología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, C.P. 8331150, Santiago, Chile
- Santa Fe Institute, Santa Fe, NM 87501, USA
- Centro de Modelamiento Matemático, Universidad de Chile, International Research Laboratory 2807, CNRS, C.P. 8370456, Santiago, Chile
- Instituto de Sistemas Complejos de Valparaíso (ISCV), Valparaíso, Chile
| |
Collapse
|
21
|
Ritu, Chandra P, Das A. Immune checkpoint targeting antibodies hold promise for combinatorial cancer therapeutics. Clin Exp Med 2023; 23:4297-4322. [PMID: 37804358 DOI: 10.1007/s10238-023-01201-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 09/19/2023] [Indexed: 10/09/2023]
Abstract
Through improving the immune system's ability to recognize and combat tumor cells as well as its receptivity to changes in the tumor microenvironment, immunotherapy has emerged as a highly successful addition to the treatment of cancer. However, tumor heterogeneity poses a significant challenge in cancer therapy as it can undermine the anti-tumor immune response through the manipulation of the extracellular matrix. To address these challenges and improve targeted therapies and combination treatments, the food and drug administration has approved several immunomodulatory antibodies to suppress immunological checkpoints. Combinatorial therapies necessitate the identification of multiple targets that regulate the intricate communication between immune cells, cytokines, chemokines, and cellular responses within the tumor microenvironment. The purpose of this study is to provide a comprehensive overview of the ongoing clinical trials involving immunomodulatory antibodies in various cancer types. It explores the potential of these antibodies to modulate the immune system and enhance anti-tumor responses. Additionally, it discusses the perspectives and prospects of immunomodulatory therapeutics in cancer treatment. Although immunotherapy shows great promise in cancer treatment, it is not exempt from side effects that can arise due to hyperactivity of the immune system. Therefore, understanding the intricate balance between immune activation and regulation is crucial for minimizing these adverse effects and optimizing treatment outcomes. This study aims to contribute to the growing body of knowledge surrounding immunomodulatory antibodies and their potential as effective therapeutic options in cancer treatment, ultimately paving the way for improved patient outcomes and deepening our perception of the intricate interactivity between the immune system and tumors.
Collapse
Affiliation(s)
- Ritu
- Department of Biotechnology, Delhi Technological University, Main Bawana Road, New Delhi, 110042, India
| | - Prakash Chandra
- Department of Biotechnology, Delhi Technological University, Main Bawana Road, New Delhi, 110042, India
| | - Asmita Das
- Department of Biotechnology, Delhi Technological University, Main Bawana Road, New Delhi, 110042, India.
| |
Collapse
|
22
|
Righetti R, Grillini S, Del Dotto V, Costanzini A, Liuzzi F, Zanna C, Sgarbi G, Solaini G, Baracca A. The Pro-Oncogenic Protein IF 1 Promotes Proliferation of Anoxic Cancer Cells during Re-Oxygenation. Int J Mol Sci 2023; 24:14624. [PMID: 37834071 PMCID: PMC10572598 DOI: 10.3390/ijms241914624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/15/2023] [Accepted: 09/23/2023] [Indexed: 10/15/2023] Open
Abstract
Cancer cells overexpress IF1, the endogenous protein that inhibits the hydrolytic activity of ATP synthase when mitochondrial membrane potential (ΔμH+) falls, as in ischemia. Other roles have been ascribed to IF1, but the associated molecular mechanisms are still under debate. We investigated the ability of IF1 to promote survival and proliferation in osteosarcoma and colon carcinoma cells exposed to conditions mimicking ischemia and reperfusion, as occurs in vivo, particularly in solid tumors. IF1-silenced and parental cells were exposed to the FCCP uncoupler to collapse ΔμH+ and the bioenergetics of cell models were validated. All the uncoupled cells preserved mitochondrial mass, but the implemented mechanisms differed in IF1-expressing and IF1-silenced cells. Indeed, the membrane potential collapse and the energy charge preservation allowed an increase in both mitophagy and mitochondrial biogenesis in IF1-expressing cells only. Interestingly, the presence of IF1 also conferred a proliferative advantage to cells highly dependent on oxidative phosphorylation when the uncoupler was washed out, mimicking cell re-oxygenation. Overall, our results indicate that IF1, by allowing energy preservation and promoting mitochondrial renewal, can favor proliferation of anoxic cells and tumor growth. Therefore, hindering the action of IF1 may be promising for the therapy of tumors that rely on oxidative phosphorylation for energy production.
Collapse
Affiliation(s)
- Riccardo Righetti
- Laboratory of Biochemistry and Mitochondrial Pathophysiology, Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy; (R.R.); (S.G.); (V.D.D.); (C.Z.); (G.S.); (A.B.)
| | - Silvia Grillini
- Laboratory of Biochemistry and Mitochondrial Pathophysiology, Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy; (R.R.); (S.G.); (V.D.D.); (C.Z.); (G.S.); (A.B.)
| | - Valentina Del Dotto
- Laboratory of Biochemistry and Mitochondrial Pathophysiology, Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy; (R.R.); (S.G.); (V.D.D.); (C.Z.); (G.S.); (A.B.)
| | - Anna Costanzini
- Department of Translational Medicine, St. Anna University Hospital, University of Ferrara, 44124 Ferrara, Italy;
| | - Francesca Liuzzi
- Department of Medical and Surgical Sciences Maternal-Infantile and Adult, University of Modena and Reggio-Emilia, 41125 Modena, Italy;
| | - Claudia Zanna
- Laboratory of Biochemistry and Mitochondrial Pathophysiology, Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy; (R.R.); (S.G.); (V.D.D.); (C.Z.); (G.S.); (A.B.)
| | - Gianluca Sgarbi
- Laboratory of Biochemistry and Mitochondrial Pathophysiology, Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy; (R.R.); (S.G.); (V.D.D.); (C.Z.); (G.S.); (A.B.)
| | - Giancarlo Solaini
- Laboratory of Biochemistry and Mitochondrial Pathophysiology, Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy; (R.R.); (S.G.); (V.D.D.); (C.Z.); (G.S.); (A.B.)
| | - Alessandra Baracca
- Laboratory of Biochemistry and Mitochondrial Pathophysiology, Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy; (R.R.); (S.G.); (V.D.D.); (C.Z.); (G.S.); (A.B.)
| |
Collapse
|
23
|
Rocca C, Soda T, De Francesco EM, Fiorillo M, Moccia F, Viglietto G, Angelone T, Amodio N. Mitochondrial dysfunction at the crossroad of cardiovascular diseases and cancer. J Transl Med 2023; 21:635. [PMID: 37726810 PMCID: PMC10507834 DOI: 10.1186/s12967-023-04498-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 09/01/2023] [Indexed: 09/21/2023] Open
Abstract
A large body of evidence indicates the existence of a complex pathophysiological relationship between cardiovascular diseases and cancer. Mitochondria are crucial organelles whose optimal activity is determined by quality control systems, which regulate critical cellular events, ranging from intermediary metabolism and calcium signaling to mitochondrial dynamics, cell death and mitophagy. Emerging data indicate that impaired mitochondrial quality control drives myocardial dysfunction occurring in several heart diseases, including cardiac hypertrophy, myocardial infarction, ischaemia/reperfusion damage and metabolic cardiomyopathies. On the other hand, diverse human cancers also dysregulate mitochondrial quality control to promote their initiation and progression, suggesting that modulating mitochondrial homeostasis may represent a promising therapeutic strategy both in cardiology and oncology. In this review, first we briefly introduce the physiological mechanisms underlying the mitochondrial quality control system, and then summarize the current understanding about the impact of dysregulated mitochondrial functions in cardiovascular diseases and cancer. We also discuss key mitochondrial mechanisms underlying the increased risk of cardiovascular complications secondary to the main current anticancer strategies, highlighting the potential of strategies aimed at alleviating mitochondrial impairment-related cardiac dysfunction and tumorigenesis. It is hoped that this summary can provide novel insights into precision medicine approaches to reduce cardiovascular and cancer morbidities and mortalities.
Collapse
Affiliation(s)
- Carmine Rocca
- Cellular and Molecular Cardiovascular Pathophysiology Laboratory, Department of Biology, E and E.S. (DiBEST), University of Calabria, Arcavacata di Rende, 87036, Cosenza, Italy
| | - Teresa Soda
- Department of Health Science, University Magna Graecia of Catanzaro, 88100, Catanzaro, Italy
| | - Ernestina Marianna De Francesco
- Endocrinology Unit, Department of Clinical and Experimental Medicine, University of Catania, Garibaldi-Nesima Hospital, 95122, Catania, Italy
| | - Marco Fiorillo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036, Rende, Italy
| | - Francesco Moccia
- Laboratory of General Physiology, Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, 27100, Pavia, Italy
| | - Giuseppe Viglietto
- Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, 88100, Catanzaro, Italy
| | - Tommaso Angelone
- Cellular and Molecular Cardiovascular Pathophysiology Laboratory, Department of Biology, E and E.S. (DiBEST), University of Calabria, Arcavacata di Rende, 87036, Cosenza, Italy.
- National Institute of Cardiovascular Research (I.N.R.C.), 40126, Bologna, Italy.
| | - Nicola Amodio
- Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, 88100, Catanzaro, Italy.
| |
Collapse
|
24
|
Kawanabe A, Takeshita K, Takata M, Fujiwara Y. ATP modulates the activity of the voltage-gated proton channel through direct binding interaction. J Physiol 2023; 601:4073-4089. [PMID: 37555355 DOI: 10.1113/jp284175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 07/27/2023] [Indexed: 08/10/2023] Open
Abstract
ATP is an important molecule implicated in diverse biochemical processes, including the modulation of ion channel and transporter activity. The voltage-gated proton channel (Hv1) controls proton flow through the transmembrane pathway in response to membrane potential, and various molecules regulate its activity. Although it is believed that ATP is not essential for Hv1 activity, a report has indicated that cytosolic ATP may modulate Hv1. However, the detailed molecular mechanism underlying the effect of ATP on Hv1 is unknown, and whether ATP is involved in the physiological regulation of Hv1 activity remains unclear. Here, we report that cytosolic ATP is required to maintain Hv1 activity. To gain insight into the underlying mechanism, we analysed the effects of ATP on the mouse Hv1 channel (mHv1) using electrophysiological and microscale thermophoresis (MST) methods. Intracellular ATP accelerated the activation kinetics of mHv1, thereby increasing the amplitude of the proton current within the physiological concentration range. The increase in proton current was reproduced with a non-hydrolysable ATP analogue, indicating that ATP directly influences Hv1 activity without an enzymatic reaction. The direct molecular interaction between the purified mHv1 protein and ATP was analysed and demonstrated through MST. In addition, ATP facilitation was observed for the endogenous proton current flowing through Hv1 in the physiological concentration range of ATP. These results suggest that ATP influences Hv1 activity via direct molecular interactions and is required for the physiological function of Hv1. KEY POINTS: We found that ATP is required to maintain the activity of voltage-gated proton channels (Hv1) and investigated the underlying molecular mechanism. Application of intracellular ATP increased the amplitude of the proton current flowing through Hv1, accompanied by an acceleration of activation kinetics. The direct interaction between purified Hv1 protein and ATP was quantitatively analysed using microscale thermophoresis. ATP enhanced endogenous proton currents in breast cancer cell lines. These results suggest that ATP influences Hv1 activity via direct molecular interactions and that its functional characteristics are required for the physiological activity of Hv1.
Collapse
Affiliation(s)
- Akira Kawanabe
- Laboratory of Molecular Physiology & Biophysics, Faculty of Medicine, Kagawa University, Miki-cho, Kagawa, Japan
| | | | - Maki Takata
- Laboratory of Molecular Physiology & Biophysics, Faculty of Medicine, Kagawa University, Miki-cho, Kagawa, Japan
| | - Yuichiro Fujiwara
- Laboratory of Molecular Physiology & Biophysics, Faculty of Medicine, Kagawa University, Miki-cho, Kagawa, Japan
| |
Collapse
|
25
|
Tarazi D, Maynes JT. Impact of Opioids on Cellular Metabolism: Implications for Metabolic Pathways Involved in Cancer. Pharmaceutics 2023; 15:2225. [PMID: 37765194 PMCID: PMC10534826 DOI: 10.3390/pharmaceutics15092225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/23/2023] [Accepted: 08/24/2023] [Indexed: 09/29/2023] Open
Abstract
Opioid utilization for pain management is prevalent among cancer patients. There is significant evidence describing the many effects of opioids on cancer development. Despite the pivotal role of metabolic reprogramming in facilitating cancer growth and metastasis, the specific impact of opioids on crucial oncogenic metabolic pathways remains inadequately investigated. This review provides an understanding of the current research on opioid-mediated changes to cellular metabolic pathways crucial for oncogenesis, including glycolysis, the tricarboxylic acid cycle, glutaminolysis, and oxidative phosphorylation (OXPHOS). The existing literature suggests that opioids affect energy production pathways via increasing intracellular glucose levels, increasing the production of lactic acid, and reducing ATP levels through impediment of OXPHOS. Opioids modulate pathways involved in redox balance which may allow cancer cells to overcome ROS-mediated apoptotic signaling. The majority of studies have been conducted in healthy tissue with a predominant focus on neuronal cells. To comprehensively understand the impact of opioids on metabolic pathways critical to cancer progression, research must extend beyond healthy tissue and encompass patient-derived cancer tissue, allowing for a better understanding in the context of the metabolic reprogramming already undergone by cancer cells. The current literature is limited by a lack of direct experimentation exploring opioid-induced changes to cancer metabolism as they relate to tumor growth and patient outcome.
Collapse
Affiliation(s)
- Doorsa Tarazi
- Department of Biochemistry, University of Toronto, Toronto, ON M5G 1A8, Canada;
- Program in Molecular Medicine, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
| | - Jason T. Maynes
- Department of Biochemistry, University of Toronto, Toronto, ON M5G 1A8, Canada;
- Program in Molecular Medicine, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
- Department of Anesthesia and Pain Medicine, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
- Department of Anesthesiology and Pain Medicine, University of Toronto, Toronto, ON M5G 1E2, Canada
| |
Collapse
|
26
|
van Niekerk A, Wrzesinski K, Steyn D, Gouws C. A Novel NCI-H69AR Drug-Resistant Small-Cell Lung Cancer Mini-Tumor Model for Anti-Cancer Treatment Screening. Cells 2023; 12:1980. [PMID: 37566059 PMCID: PMC10416941 DOI: 10.3390/cells12151980] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/20/2023] [Accepted: 07/24/2023] [Indexed: 08/12/2023] Open
Abstract
Small-cell lung cancer is a fast-growing carcinoma with a poor prognosis and a high level of relapse due to multi-drug resistance (MDR). Genetic mutations that lead to the overexpression of efflux transporter proteins can contribute to MDR. In vitro cancer models play a tremendous role in chemotherapy development and the screening of possible anti-cancer molecules. Low-cost and simple in vitro models are normally used. Traditional two-dimensional (2D) models have numerous shortcomings when considering the physiological resemblance of an in vivo setting. Three-dimensional (3D) models aim to bridge the gap between conventional 2D models and the in vivo setting. Some of the advantages of functional 3D spheroids include better representation of the in vivo physiology and tumor characteristics when compared to traditional 2D cultures. During this study, an NCI-H69AR drug-resistant mini-tumor model (MRP1 hyperexpressive) was developed by making use of a rotating clinostat bioreactor system (ClinoStar®; CelVivo ApS, Odense, Denmark). Spheroid growth and viability were assessed over a 25-day period to determine the ideal experimental period with mature and metabolically stable constructs. The applicability of this model for anti-cancer research was evaluated through treatment with irinotecan, paclitaxel and cisplatin for 96 h, followed by a 96 h recovery period. Parameters measured included planar surface area measurements, estimated glucose consumption, soluble protein content, intracellular adenosine triphosphate levels, extracellular adenylate kinase levels, histology and efflux transporter gene expression. The established functional spheroid model proved viable and stable during the treatment period, with retained relative hyperexpression of the MRP1 efflux transporter gene but increased expression of the P-gp transporter gene compared to the cells cultured in 2D. As expected, treatment with the abovementioned anti-cancer drugs at clinical doses (100 mg/m2 irinotecan, 80 mg/m2 paclitaxel and 75 mg/m2 cisplatin) had minimal impact on the drug-resistant mini-tumors, and the functional spheroid models were able to recover following the removal of treatment.
Collapse
Affiliation(s)
- Alandi van Niekerk
- Centre of Excellence for Pharmaceutical Sciences (Pharmacen™), North-West University, Potchefstroom 2520, South Africa; (A.v.N.); (K.W.); (D.S.)
| | - Krzysztof Wrzesinski
- Centre of Excellence for Pharmaceutical Sciences (Pharmacen™), North-West University, Potchefstroom 2520, South Africa; (A.v.N.); (K.W.); (D.S.)
- CelVivo ApS, 5491 Blommenslyst, Denmark
| | - Dewald Steyn
- Centre of Excellence for Pharmaceutical Sciences (Pharmacen™), North-West University, Potchefstroom 2520, South Africa; (A.v.N.); (K.W.); (D.S.)
| | - Chrisna Gouws
- Centre of Excellence for Pharmaceutical Sciences (Pharmacen™), North-West University, Potchefstroom 2520, South Africa; (A.v.N.); (K.W.); (D.S.)
| |
Collapse
|
27
|
Domínguez-Zorita S, Cuezva JM. The Mitochondrial ATP Synthase/IF1 Axis in Cancer Progression: Targets for Therapeutic Intervention. Cancers (Basel) 2023; 15:3775. [PMID: 37568591 PMCID: PMC10417293 DOI: 10.3390/cancers15153775] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/18/2023] [Accepted: 07/21/2023] [Indexed: 08/13/2023] Open
Abstract
Cancer poses a significant global health problem with profound personal and economic implications on National Health Care Systems. The reprograming of metabolism is a major trait of the cancer phenotype with a clear potential for developing effective therapeutic strategies to combat the disease. Herein, we summarize the relevant role that the mitochondrial ATP synthase and its physiological inhibitor, ATPase Inhibitory Factor 1 (IF1), play in metabolic reprogramming to an enhanced glycolytic phenotype. We stress that the interplay in the ATP synthase/IF1 axis has additional functional roles in signaling mitohormetic programs, pro-oncogenic or anti-metastatic phenotypes depending on the cell type. Moreover, the same axis also participates in cell death resistance of cancer cells by restrained mitochondrial permeability transition pore opening. We emphasize the relevance of the different post-transcriptional mechanisms that regulate the specific expression and activity of ATP synthase/IF1, to stimulate further investigations in the field because of their potential as future targets to treat cancer. In addition, we review recent findings stressing that mitochondria metabolism is the primary altered target in lung adenocarcinomas and that the ATP synthase/IF1 axis of OXPHOS is included in the most significant signature of metastatic disease. Finally, we stress that targeting mitochondrial OXPHOS in pre-clinical mouse models affords a most effective therapeutic strategy in cancer treatment.
Collapse
Affiliation(s)
- Sonia Domínguez-Zorita
- Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), 28049 Madrid, Spain;
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER) ISCIII, 28029 Madrid, Spain
- Instituto de Investigación Hospital 12 de Octubre, Universidad Autónoma de Madrid, 28041 Madrid, Spain
| | - José M. Cuezva
- Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), 28049 Madrid, Spain;
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER) ISCIII, 28029 Madrid, Spain
- Instituto de Investigación Hospital 12 de Octubre, Universidad Autónoma de Madrid, 28041 Madrid, Spain
| |
Collapse
|
28
|
Pouliquen DL, Ortone G, Rumiano L, Boissard A, Henry C, Blandin S, Guette C, Riganti C, Kopecka J. Long-Chain Acyl Coenzyme A Dehydrogenase, a Key Player in Metabolic Rewiring/Invasiveness in Experimental Tumors and Human Mesothelioma Cell Lines. Cancers (Basel) 2023; 15:cancers15113044. [PMID: 37297007 DOI: 10.3390/cancers15113044] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 05/30/2023] [Accepted: 05/31/2023] [Indexed: 06/12/2023] Open
Abstract
Cross-species investigations of cancer invasiveness are a new approach that has already identified new biomarkers which are potentially useful for improving tumor diagnosis and prognosis in clinical medicine and veterinary science. In this study, we combined proteomic analysis of four experimental rat malignant mesothelioma (MM) tumors with analysis of ten patient-derived cell lines to identify common features associated with mitochondrial proteome rewiring. A comparison of significant abundance changes between invasive and non-invasive rat tumors gave a list of 433 proteins, including 26 proteins reported to be exclusively located in mitochondria. Next, we analyzed the differential expression of genes encoding the mitochondrial proteins of interest in five primary epithelioid and five primary sarcomatoid human MM cell lines; the most impressive increase was observed in the expression of the long-chain acyl coenzyme A dehydrogenase (ACADL). To evaluate the role of this enzyme in migration/invasiveness, two epithelioid and two sarcomatoid human MM cell lines derived from patients with the highest and lowest overall survival were studied. Interestingly, sarcomatoid vs. epithelioid cell lines were characterized by higher migration and fatty oxidation rates, in agreement with ACADL findings. These results suggest that evaluating mitochondrial proteins in MM specimens might identify tumors with higher invasiveness.
Collapse
Affiliation(s)
- Daniel L Pouliquen
- Université d'Angers, Inserm, CNRS, Nantes Université, CRCI2NA, F-49000 Angers, France
| | - Giacomo Ortone
- Department of Oncology, University of Torino, via Santena 5/bis, 10126 Torino, Italy
| | - Letizia Rumiano
- Department of Oncology, University of Torino, via Santena 5/bis, 10126 Torino, Italy
| | - Alice Boissard
- Université d'Angers, ICO, Inserm, CNRS, Nantes Université, CRCI2NA, F-49000 Angers, France
| | - Cécile Henry
- Université d'Angers, ICO, Inserm, CNRS, Nantes Université, CRCI2NA, F-49000 Angers, France
| | - Stéphanie Blandin
- CHU Nantes, CNRS, Inserm, BioCore, US16, SFR Bonamy, Nantes Université, F-44000 Nantes, France
| | - Catherine Guette
- Université d'Angers, ICO, Inserm, CNRS, Nantes Université, CRCI2NA, F-49000 Angers, France
| | - Chiara Riganti
- Department of Oncology, University of Torino, via Santena 5/bis, 10126 Torino, Italy
| | - Joanna Kopecka
- Department of Oncology, University of Torino, via Santena 5/bis, 10126 Torino, Italy
| |
Collapse
|
29
|
Ratajczak K, Stobiecka M. DNA Aptamer Beacon Probe (ABP) for Monitoring of Adenosine Triphosphate Level in SW480 Cancer Cells Treated with Glycolysis Inhibitor 2-Deoxyglucose. Int J Mol Sci 2023; 24:ijms24119295. [PMID: 37298245 DOI: 10.3390/ijms24119295] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 05/20/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023] Open
Abstract
Early cancer screening enables timely detection of carcinogenesis, and aids in prompt clinical intervention. Herein, we report on the development of a simple, sensitive, and rapid fluorometric assay based on the aptamer probe (aptamer beacon probe, ABP) for monitoring the energy-demand biomarker adenosine triphosphate (ATP), an essential energy source that is released into the tumor microenvironment. Its level plays a significant role in risk assessment of malignancies. The operation of the ABP for ATP was examined using solutions of ATP and other nucleotides (UTP, GTP, CTP), followed by monitoring of ATP production in SW480 cancer cells. Then, the effect of a glycolysis inhibitor, 2-deoxyglucose (2-DG), on SW480 cells was investigated. The stability of predominant ABP conformations in the temperature range of 23-91 °C and the effects of temperature on ABP interactions with ATP, UTP, GTP, and CTP were evaluated based on quenching efficiencies (QE) and Stern-Volmer constants (KSV). The optimized temperature for best selectivity of ABP toward ATP was 40 °C (KSV = 1093 M-1, QE = 42%). We have found that the inhibition of glycolysis in SW480 cancer cells by 2-deoxyglucose resulted in lowering of ATP production by 31.7%. Therefore, monitoring and modulation of ATP concentration may aid in future cancer treatment.
Collapse
Affiliation(s)
- Katarzyna Ratajczak
- Department of Physics and Biophysics, Warsaw University of Life Sciences, 159 Nowoursynowska Street, 02776 Warsaw, Poland
| | - Magdalena Stobiecka
- Department of Physics and Biophysics, Warsaw University of Life Sciences, 159 Nowoursynowska Street, 02776 Warsaw, Poland
| |
Collapse
|
30
|
Carli ALE, Hardy JM, Hoblos H, Ernst M, Lucet IS, Buchert M. Structure-Guided Prediction of the Functional Impact of DCLK1 Mutations on Tumorigenesis. Biomedicines 2023; 11:biomedicines11030990. [PMID: 36979969 PMCID: PMC10046695 DOI: 10.3390/biomedicines11030990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/16/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
Doublecortin-like kinase 1 (DCLK1) is a functional serine/threonine (S/T)-kinase and a member of the doublecortin family of proteins which are characterized by their ability to bind to microtubules (MTs). DCLK1 is a proposed cancer driver gene, and its upregulation is associated with poor overall survival in several solid cancer types. However, how DCLK1 associates with MTs and how its kinase function contributes to pro-tumorigenic processes is poorly understood. This review builds on structural models to propose not only the specific functions of the domains but also attempts to predict the impact of individual somatic missense mutations on DCLK1 functions. Somatic missense mutations in DCLK1 are most frequently located within the N-terminal MT binding region and likely impact on the ability of DCLK1 to bind to αβ-tubulin and to polymerize and stabilize MTs. Moreover, the MT binding affinity of DCLK1 is negatively regulated by its auto-phosphorylation, and therefore mutations that affect kinase activity are predicted to indirectly alter MT dynamics. The emerging picture portrays DCLK1 as an MT-associated protein whose interactions with tubulin heterodimers and MTs are tightly controlled processes which, when disrupted, may confer pro-tumorigenic properties.
Collapse
Affiliation(s)
- Annalisa L E Carli
- Cancer Inflammation Laboratory, Olivia Newton-John Cancer Research Institute, Heidelberg, VIC 3084, Australia
- School of Cancer Medicine, La Trobe University, Bundoora, VIC 3086, Australia
| | - Joshua M Hardy
- ACRF Chemical Biology Division, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Hanadi Hoblos
- ACRF Chemical Biology Division, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Matthias Ernst
- Cancer Inflammation Laboratory, Olivia Newton-John Cancer Research Institute, Heidelberg, VIC 3084, Australia
- School of Cancer Medicine, La Trobe University, Bundoora, VIC 3086, Australia
| | - Isabelle S Lucet
- ACRF Chemical Biology Division, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Michael Buchert
- Cancer Inflammation Laboratory, Olivia Newton-John Cancer Research Institute, Heidelberg, VIC 3084, Australia
- School of Cancer Medicine, La Trobe University, Bundoora, VIC 3086, Australia
| |
Collapse
|
31
|
Ding Y, Liu J. Pushing Adenosine and ATP SELEX for DNA Aptamers with Nanomolar Affinity. J Am Chem Soc 2023; 145:7540-7547. [PMID: 36947745 DOI: 10.1021/jacs.3c00848] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2023]
Abstract
The classical DNA aptamer for adenosine and ATP has been the most used small molecule binding aptamer for biosensing, imaging, and DNA nanotechnology. This sequence has recurred multiple times in previous aptamer selections, and all previous selections used a high concentration of ATP as the target. Herein, two separate selections were performed using adenosine and ATP as targets. By pushing the target concentrations down to the low micromolar range, two new aptamers with Kd as low as 230 nM were obtained, showing around 30-fold higher affinity compared to the classical aptamer. The classical aptamer sequence still dominated the library in the early rounds of the selections, but it was suppressed in the later rounds. The new aptamers bind to one target molecule instead of two. Mutation studies confirmed their secondary structures and specific binding. Using the deep sequencing data from the selections, long-standing questions such as the existence of one-site aptamers and mutation distribution in the classical aptamer were addressed. Comparisons were made with previously reported DNA aptamers for ATP. Finally, a strand-displacement biosensor was tested showing selectivity for adenosine and its nucleotides.
Collapse
Affiliation(s)
- Yuzhe Ding
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Juewen Liu
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|
32
|
Moreno-Sánchez R, Robledo-Cadena DX, Pacheco-Velázquez SC, Vargas Navarro JL, Padilla-Flores JA, Rodríguez-Enríquez S. Estimation of energy pathway fluxes in cancer cells - Beyond the Warburg effect. Arch Biochem Biophys 2023; 739:109559. [PMID: 36906097 DOI: 10.1016/j.abb.2023.109559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 02/15/2023] [Accepted: 03/04/2023] [Indexed: 03/11/2023]
Abstract
Glycolytic and respiratory fluxes were analyzed in cancer and non-cancer cells. The steady-state fluxes in energy metabolism were used to estimate the contributions of aerobic glycolytic and oxidative phosphorylation (OxPhos) pathways to the cellular ATP supply. The rate of lactate production - corrected for the fraction generated by glutaminolysis - is proposed as the appropriate way to estimate glycolytic flux. In general, the glycolytic rates estimated for cancer cells are higher than those found in non-cancer cells, as originally observed by Otto Warburg. The rate of basal or endogenous cellular O2 consumption corrected for non-ATP synthesizing O2 consumption, measured after inhibition by oligomycin (a specific, potent and permeable ATP synthase inhibitor), has been proposed as the appropriate way to estimate mitochondrial ATP synthesis-linked O2 flux or net OxPhos flux in living cells. Detecting non-negligible oligomycin-sensitive O2 consumption rates in cancer cells has revealed that the mitochondrial function is not impaired, as claimed by the Warburg effect. Furthermore, when calculating the relative contributions to cellular ATP supply, under a variety of environmental conditions and for different types of cancer cells, it was found that OxPhos pathway was the main ATP provider over glycolysis. Hence, OxPhos pathway targeting can be successfully used to block in cancer cells ATP-dependent processes such as migration. These observations may guide the re-design of novel targeted therapies.
Collapse
Affiliation(s)
- Rafael Moreno-Sánchez
- Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Carrera de Biología, Laboratorio de Control Metabólico, Los Reyes Ixtacala, Hab. Los Reyes Ixtacala Barrio de los Árboles/Barrio de los Héroes, Tlalnepantla, 54090, Mexico.
| | | | | | - Jorge Luis Vargas Navarro
- Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Carrera de Biología, Laboratorio de Control Metabólico, Los Reyes Ixtacala, Hab. Los Reyes Ixtacala Barrio de los Árboles/Barrio de los Héroes, Tlalnepantla, 54090, Mexico
| | - Joaquín Alberto Padilla-Flores
- Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Carrera de Biología, Laboratorio de Control Metabólico, Los Reyes Ixtacala, Hab. Los Reyes Ixtacala Barrio de los Árboles/Barrio de los Héroes, Tlalnepantla, 54090, Mexico
| | - Sara Rodríguez-Enríquez
- Instituto Nacional de Cardiología, Departamento de Bioquímica, Ciudad de México, 14080, Mexico; Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Carrera de Medicina, Laboratorio de Control Metabólico, Los Reyes Ixtacala, Hab. Los Reyes Ixtacala Barrio de los Árboles/Barrio de los Héroes, Tlalnepantla, 54090, Mexico.
| |
Collapse
|
33
|
Su Z, Xi D, Chen Y, Wang R, Zeng X, Xiong T, Xia X, Rong X, Liu T, Liu W, Du J, Fan J, Peng X, Sun W. Carrier-Free ATP-Activated Nanoparticles for Combined Photodynamic Therapy and Chemotherapy under Near-Infrared Light. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2205825. [PMID: 36587982 DOI: 10.1002/smll.202205825] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/29/2022] [Indexed: 06/17/2023]
Abstract
The combination of photodynamic therapy (PDT) and chemotherapy (chemo-photodynamic therapy) for enhancing cancer therapeutic efficiency has attracted tremendous attention in the recent years. However, limitations, such as low local concentration, non-suitable treatment light source, and uncontrollable release of therapeutic agents, result in reduced combined treatment efficacy. This study considered adenosine triphosphate (ATP), which is highly upregulated in tumor cells, as a biomarker and developed ingenious ATP-activated nanoparticles (CDNPs) that are directly self-assembled from near-infrared photosensitizer (Cy-I) and amphiphilic Cd(II) complex (DPA-Cd). After selective entry into tumor cells, the positively charged CDNPs would escape from lysosomes and be disintegrated by the high ATP concentration in the cytoplasm. The released Cy-I is capable of producing single oxygen (1 O2 ) for PDT with 808 nm irradiation and DPA-Cd can concurrently function for chemotherapy. Irradiation with 808 nm light can lead to tumor ablation in tumor-bearing mice after intravenous injection of CDNPs. This carrier-free nanoparticle offers a new platform for chemo-photodynamic therapy.
Collapse
Affiliation(s)
- Zehou Su
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
- Ningbo Institute of Dalian University of Technology, Ningbo, 315016, China
| | - Dongmei Xi
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Yingchao Chen
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Ran Wang
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Xiaolong Zeng
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Tao Xiong
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Xiang Xia
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Xiang Rong
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Ting Liu
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Wenkai Liu
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Jianjun Du
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Jiangli Fan
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
- Ningbo Institute of Dalian University of Technology, Ningbo, 315016, China
| | - Xiaojun Peng
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Wen Sun
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
- Ningbo Institute of Dalian University of Technology, Ningbo, 315016, China
| |
Collapse
|
34
|
Chelakkot C, Chelakkot VS, Shin Y, Song K. Modulating Glycolysis to Improve Cancer Therapy. Int J Mol Sci 2023; 24:2606. [PMID: 36768924 PMCID: PMC9916680 DOI: 10.3390/ijms24032606] [Citation(s) in RCA: 99] [Impact Index Per Article: 49.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/18/2023] [Accepted: 01/20/2023] [Indexed: 01/31/2023] Open
Abstract
Cancer cells undergo metabolic reprogramming and switch to a 'glycolysis-dominant' metabolic profile to promote their survival and meet their requirements for energy and macromolecules. This phenomenon, also known as the 'Warburg effect,' provides a survival advantage to the cancer cells and make the tumor environment more pro-cancerous. Additionally, the increased glycolytic dependence also promotes chemo/radio resistance. A similar switch to a glycolytic metabolic profile is also shown by the immune cells in the tumor microenvironment, inducing a competition between the cancer cells and the tumor-infiltrating cells over nutrients. Several recent studies have shown that targeting the enhanced glycolysis in cancer cells is a promising strategy to make them more susceptible to treatment with other conventional treatment modalities, including chemotherapy, radiotherapy, hormonal therapy, immunotherapy, and photodynamic therapy. Although several targeting strategies have been developed and several of them are in different stages of pre-clinical and clinical evaluation, there is still a lack of effective strategies to specifically target cancer cell glycolysis to improve treatment efficacy. Herein, we have reviewed our current understanding of the role of metabolic reprogramming in cancer cells and how targeting this phenomenon could be a potential strategy to improve the efficacy of conventional cancer therapy.
Collapse
Affiliation(s)
| | - Vipin Shankar Chelakkot
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Youngkee Shin
- Laboratory of Molecular Pathology and Cancer Genomics, Research Institute of Pharmaceutical Science, Department of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Republic of Korea
| | - Kyoung Song
- College of Pharmacy, Duksung Women’s University, Seoul 01366, Republic of Korea
| |
Collapse
|
35
|
A Mutation in Mouse MT-ATP6 Gene Induces Respiration Defects and Opposed Effects on the Cell Tumorigenic Phenotype. Int J Mol Sci 2023; 24:ijms24021300. [PMID: 36674816 PMCID: PMC9865613 DOI: 10.3390/ijms24021300] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 12/23/2022] [Accepted: 01/06/2023] [Indexed: 01/10/2023] Open
Abstract
As the last step of the OXPHOS system, mitochondrial ATP synthase (or complex V) is responsible for ATP production by using the generated proton gradient, but also has an impact on other important functions linked to this system. Mutations either in complex V structural subunits, especially in mtDNA-encoded ATP6 gene, or in its assembly factors, are the molecular cause of a wide variety of human diseases, most of them classified as neurodegenerative disorders. The role of ATP synthase alterations in cancer development or metastasis has also been postulated. In this work, we reported the generation and characterization of the first mt-Atp6 pathological mutation in mouse cells, an m.8414A>G transition that promotes an amino acid change from Asn to Ser at a highly conserved residue of the protein (p.N163S), located near the path followed by protons from the intermembrane space to the mitochondrial matrix. The phenotypic consequences of the p.N163S change reproduce the effects of MT-ATP6 mutations in human diseases, such as dependence on glycolysis, defective OXPHOS activity, ATP synthesis impairment, increased ROS generation or mitochondrial membrane potential alteration. These observations demonstrate that this mutant cell line could be of great interest for the generation of mouse models with the aim of studying human diseases caused by alterations in ATP synthase. On the other hand, mutant cells showed lower migration capacity, higher expression of MHC-I and slightly lower levels of HIF-1α, indicating a possible reduction of their tumorigenic potential. These results could suggest a protective role of ATP synthase inhibition against tumor transformation that could open the door to new therapeutic strategies in those cancer types relying on OXPHOS metabolism.
Collapse
|
36
|
Giordano A, Rucci N, Falone S. Editorial: Extracellular vesicles as modulators of cancer cell adaptive responses linked to therapy resistance. Front Oncol 2022; 12:1101103. [DOI: 10.3389/fonc.2022.1101103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 11/18/2022] [Indexed: 11/30/2022] Open
|
37
|
Cancer Stem Cell Formation Induced and Regulated by Extracellular ATP and Stanniocalcin-1 in Human Lung Cancer Cells and Tumors. Int J Mol Sci 2022; 23:ijms232314770. [PMID: 36499099 PMCID: PMC9740946 DOI: 10.3390/ijms232314770] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/13/2022] [Accepted: 11/15/2022] [Indexed: 11/29/2022] Open
Abstract
Cancer stem cells (CSCs) are closely associated with metastasis and epithelial mesenchymal transition (EMT). We previously reported that extracellular ATP (eATP) induces and regulates EMT in cancer cells. We recently found that the gene stanniocalcin 1 (STC1) is significantly upregulated by eATP in human non-small lung cancer (NSCLC) A549 cells; however, the relationships among eATP, CSCs, and STC1 were largely unknown. In this study, we performed gene knockdown and knockout, and a wide variety of functional assays to determine if and how eATP and STC1 induce CSCs in NSCLC A549 and H1299 cells. Our data show that, in both cultured cells and tumors, eATP increased the number of CSCs in the cancer cell population and upregulated CSC-related genes and protein markers. STC1 deletion led to drastically slower cell and tumor growth, reduced intracellular ATP levels and CSC markers, and metabolically shifted STC1-deficient cells from an energetic state to a quiescent state. These findings indicate that eATP induces and regulates CSCs at transcriptional, translational, and metabolic levels, and these activities are mediated through STC1 via mitochondria-associated ATP synthesis. These novel findings offer insights into eATP-induced CSCs and identify new targets for inhibiting CSCs.
Collapse
|
38
|
Gelsomino L, Barone I, Caruso A, Giordano F, Brindisi M, Morello G, Accattatis FM, Panza S, Cappello AR, Bonofiglio D, Andò S, Catalano S, Giordano C. Proteomic Profiling of Extracellular Vesicles Released by Leptin-Treated Breast Cancer Cells: A Potential Role in Cancer Metabolism. Int J Mol Sci 2022; 23:12941. [PMID: 36361728 PMCID: PMC9659287 DOI: 10.3390/ijms232112941] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 10/20/2022] [Accepted: 10/24/2022] [Indexed: 07/30/2023] Open
Abstract
Tumor extracellular vesicles (EVs), as endocytic vesicles able to transport nucleic acids, proteins, and metabolites in recipient cells, have been recognized fundamental mediators of cell-to-cell communication in breast cancer. The biogenesis and release of EVs are highly regulated processes and both the quantity of EVs and their molecular cargo might reflect the metabolic state of the producing cells. We recently demonstrated that the adipokine leptin, whose circulating levels correlate with adipose tissue expansion, is an inducer of EV release from breast cancer cells. Here, we show a specific proteomic signature of EVs released by MCF-7 breast cancer cells grown in the presence of leptin (Lep-EVs), in attempt to find additional molecular effectors linking obesity to breast cancer biology. An analysis of the proteomic profile of Lep-EVs by LC-MS/MS revealed a significant enrichment in biological processes, molecular functions, and cellular components mainly related to mitochondrial machineries and activity, compared to protein content of EVs from untreated breast cancer cells. Metabolic investigations, carried out to assess the autocrine effects of these vesicles on breast cancer cells, revealed that Lep-EVs were able to increase ATP levels in breast cancer cells. This result is associated with increased mitochondrial respiration evaluated by Seahorse analyzer, supporting the concept that Lep-EVs can modulate MCF-7 breast cancer cell oxidative metabolism. Moreover, taking into account the relevance of tumor immune cell crosstalk in the tumor microenvironment (TME), we analyzed the impact of these vesicles on macrophage polarization, the most abundant immune component in the breast TME. We found that tumor-derived Lep-EVs sustain the polarization of M0 macrophages, derived from the human THP-1 monocytic cells, into M2-like tumor-associated macrophages, in terms of metabolic features, phagocytic activity, and increased expression of CD206-positive population. Overall, our results indicate that leptin by inducing the release of EV-enriched in mitochondrial proteins may control the metabolism of MCF-7 breast cancer cells as well as that of macrophages. Characterization of tumor-derived EV protein cargo in an obesity-associated milieu, such as in the presence of elevated leptin levels, might allow identifying unique features and specific metabolic mechanisms useful to develop novel therapeutic approaches for treatment of breast cancer, especially in obese patients.
Collapse
Affiliation(s)
- Luca Gelsomino
- Department of Pharmacy, Health and Nutritional Sciences, Via P. Bucci, University of Calabria, Arcavacata di Rende (CS), 87036 Cosenza, Italy
- Centro Sanitario, Via P. Bucci, University of Calabria, Arcavacata di Rende (CS), 87036 Cosenza, Italy
| | - Ines Barone
- Department of Pharmacy, Health and Nutritional Sciences, Via P. Bucci, University of Calabria, Arcavacata di Rende (CS), 87036 Cosenza, Italy
| | - Amanda Caruso
- Department of Pharmacy, Health and Nutritional Sciences, Via P. Bucci, University of Calabria, Arcavacata di Rende (CS), 87036 Cosenza, Italy
| | - Francesca Giordano
- Department of Pharmacy, Health and Nutritional Sciences, Via P. Bucci, University of Calabria, Arcavacata di Rende (CS), 87036 Cosenza, Italy
| | - Matteo Brindisi
- Cell Adhesion Unit, San Raffaele Vita-Salute University, 20132 Milan, Italy
| | - Giovanna Morello
- Institute for Biomedical Research and Innovation, National Research Council, 95121 Catania, Italy
| | - Felice Maria Accattatis
- Department of Pharmacy, Health and Nutritional Sciences, Via P. Bucci, University of Calabria, Arcavacata di Rende (CS), 87036 Cosenza, Italy
| | - Salvatore Panza
- Department of Pharmacy, Health and Nutritional Sciences, Via P. Bucci, University of Calabria, Arcavacata di Rende (CS), 87036 Cosenza, Italy
| | - Anna Rita Cappello
- Department of Pharmacy, Health and Nutritional Sciences, Via P. Bucci, University of Calabria, Arcavacata di Rende (CS), 87036 Cosenza, Italy
| | - Daniela Bonofiglio
- Department of Pharmacy, Health and Nutritional Sciences, Via P. Bucci, University of Calabria, Arcavacata di Rende (CS), 87036 Cosenza, Italy
- Centro Sanitario, Via P. Bucci, University of Calabria, Arcavacata di Rende (CS), 87036 Cosenza, Italy
| | - Sebastiano Andò
- Department of Pharmacy, Health and Nutritional Sciences, Via P. Bucci, University of Calabria, Arcavacata di Rende (CS), 87036 Cosenza, Italy
- Centro Sanitario, Via P. Bucci, University of Calabria, Arcavacata di Rende (CS), 87036 Cosenza, Italy
| | - Stefania Catalano
- Department of Pharmacy, Health and Nutritional Sciences, Via P. Bucci, University of Calabria, Arcavacata di Rende (CS), 87036 Cosenza, Italy
- Centro Sanitario, Via P. Bucci, University of Calabria, Arcavacata di Rende (CS), 87036 Cosenza, Italy
| | - Cinzia Giordano
- Department of Pharmacy, Health and Nutritional Sciences, Via P. Bucci, University of Calabria, Arcavacata di Rende (CS), 87036 Cosenza, Italy
- Centro Sanitario, Via P. Bucci, University of Calabria, Arcavacata di Rende (CS), 87036 Cosenza, Italy
| |
Collapse
|
39
|
Shim JK, Choi S, Yoon SJ, Choi RJ, Park J, Lee EH, Cho HJ, Lee S, Teo WY, Moon JH, Kim HS, Kim EH, Cheong JH, Chang JH, Yook JI, Kang SG. Etomoxir, a carnitine palmitoyltransferase 1 inhibitor, combined with temozolomide reduces stemness and invasiveness in patient-derived glioblastoma tumorspheres. Cancer Cell Int 2022; 22:309. [PMID: 36221088 PMCID: PMC9552483 DOI: 10.1186/s12935-022-02731-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 09/22/2022] [Indexed: 11/24/2022] Open
Abstract
Introduction The importance of fatty acid oxidation (FAO) in the bioenergetics of glioblastoma (GBM) is being realized. Etomoxir (ETO), a carnitine palmitoyltransferase 1 (CPT1) inhibitor exerts cytotoxic effects in GBM, which involve interrupting the FAO pathway. We hypothesized that FAO inhibition could affect the outcomes of current standard temozolomide (TMZ) chemotherapy against GBM. Methods The FAO-related gene expression was compared between GBM and the tumor-free cortex. Using four different GBM tumorspheres (TSs), the effects of ETO and/or TMZ was analyzed on cell viability, tricarboxylate (TCA) cycle intermediates and adenosine triphosphate (ATP) production to assess metabolic changes. Alterations in tumor stemness, invasiveness, and associated transcriptional changes were also measured. Mouse orthotopic xenograft model was used to elucidate the combinatory effect of TMZ and ETO. Results GBM tissues exhibited overexpression of FAO-related genes, especially CPT1A, compared to the tumor-free cortex. The combined use of ETO and TMZ further inhibited TCA cycle and ATP production than single uses. This combination treatment showed superior suppression effects compared to treatment with individual agents on the viability, stemness, and invasiveness of GBM TSs, as well as better downregulation of FAO-related gene expression. The results of in vivo study showed prolonged survival outcomes in the combination treatment group. Conclusion ETO, an FAO inhibitor, causes a lethal energy reduction in the GBM TSs. When used in combination with TMZ, ETO effectively reduces GBM cell stemness and invasiveness and further improves survival. These results suggest a potential novel treatment option for GBM. Supplementary Information The online version contains supplementary material available at 10.1186/s12935-022-02731-7.
Collapse
Affiliation(s)
- Jin-Kyoung Shim
- Department of Neurosurgery, Brain Tumor Center, Severance Hospital, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea.,Brain Tumor Translational Research Laboratory, Severance Biomedical Research Institute, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Seonah Choi
- Department of Neurosurgery, Brain Tumor Center, Severance Hospital, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Seon-Jin Yoon
- Department of Neurosurgery, Brain Tumor Center, Severance Hospital, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea.,Brain Tumor Translational Research Laboratory, Severance Biomedical Research Institute, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Ran Joo Choi
- Department of Neurosurgery, Brain Tumor Center, Severance Hospital, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea.,Brain Tumor Translational Research Laboratory, Severance Biomedical Research Institute, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Junseong Park
- Department of Neurosurgery, Brain Tumor Center, Severance Hospital, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea.,Brain Tumor Translational Research Laboratory, Severance Biomedical Research Institute, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea.,Precision Medicine Research Center, College of Medicine, The Catholic University of Korea, Seoul, 03722, Republic of Korea
| | - Eun Hee Lee
- Department of Neurosurgery, Brain Tumor Center, Severance Hospital, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea.,Brain Tumor Translational Research Laboratory, Severance Biomedical Research Institute, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Hye Joung Cho
- Department of Neurosurgery, Brain Tumor Center, Severance Hospital, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea.,Brain Tumor Translational Research Laboratory, Severance Biomedical Research Institute, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Suji Lee
- Department of Medical Science, BK21 Plus Project for Medical Science, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Wan-Yee Teo
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore, 169857, Singapore.,Institute of Molecular and Cell Biology, A*STAR, Singapore, 169857, Singapore
| | - Ju Hyung Moon
- Department of Neurosurgery, Brain Tumor Center, Severance Hospital, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Hyun Sil Kim
- Department of Oral Pathology, Yonsei University College of Dentistry, Seoul, 03722, Republic of Korea
| | - Eui Hyun Kim
- Department of Neurosurgery, Brain Tumor Center, Severance Hospital, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea.,Brain Tumor Translational Research Laboratory, Severance Biomedical Research Institute, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Jae-Ho Cheong
- Department of Surgery, BK21 Plus Project for Medical Science, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Jong Hee Chang
- Department of Neurosurgery, Brain Tumor Center, Severance Hospital, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Jong In Yook
- Department of Oral Pathology, Yonsei University College of Dentistry, Seoul, 03722, Republic of Korea
| | - Seok-Gu Kang
- Department of Neurosurgery, Brain Tumor Center, Severance Hospital, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea. .,Brain Tumor Translational Research Laboratory, Severance Biomedical Research Institute, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea. .,Departments of Medical Science, Yonsei University Graduate School, Seoul, 03722, Republic of Korea.
| |
Collapse
|
40
|
Passaniti A, Kim MS, Polster BM, Shapiro P. Targeting mitochondrial metabolism for metastatic cancer therapy. Mol Carcinog 2022; 61:827-838. [PMID: 35723497 PMCID: PMC9378505 DOI: 10.1002/mc.23436] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 05/18/2022] [Accepted: 05/27/2022] [Indexed: 02/06/2023]
Abstract
Primary tumors evolve metabolic mechanisms favoring glycolysis for adenosine triphosphate (ATP) generation and antioxidant defenses. In contrast, metastatic cells frequently depend on mitochondrial respiration and oxidative phosphorylation (OxPhos). This reliance of metastatic cells on OxPhos can be exploited using drugs that target mitochondrial metabolism. Therefore, therapeutic agents that act via diverse mechanisms, including the activation of signaling pathways that promote the production of reactive oxygen species (ROS) and/or a reduction in antioxidant defenses may elevate oxidative stress and inhibit tumor cell survival. In this review, we will provide (1) a mechanistic analysis of function-selective extracellular signal-regulated kinase-1/2 (ERK1/2) inhibitors that inhibit cancer cells through enhanced ROS, (2) a review of the role of mitochondrial ATP synthase in redox regulation and drug resistance, (3) a rationale for inhibiting ERK signaling and mitochondrial OxPhos toward the therapeutic goal of reducing tumor metastasis and treatment resistance. Recent reports from our laboratories using metastatic melanoma and breast cancer models have shown the preclinical efficacy of novel and rationally designed therapeutic agents that target ERK1/2 signaling and mitochondrial ATP synthase, which modulate ROS events that may prevent or treat metastatic cancer. These findings and those of others suggest that targeting a tumor's metabolic requirements and vulnerabilities may inhibit metastatic pathways and tumor growth. Approaches that exploit the ability of therapeutic agents to alter oxidative balance in tumor cells may be selective for cancer cells and may ultimately have an impact on clinical efficacy and safety. Elucidating the translational potential of metabolic targeting could lead to the discovery of new approaches for treatment of metastatic cancer.
Collapse
Affiliation(s)
- Antonino Passaniti
- Research Health Scientist, The Veteran's Health Administration Research & Development Service (VAMHCS), VA Maryland Health Care System (VAMHCS), Baltimore VA Medical Center, Baltimore, Maryland, USA
- Department of Pathology and Department of Biochemistry & Molecular Biology, the Program in Molecular Medicine and the Marlene & Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland USA
| | - Myoung Sook Kim
- Department of Pathology and Department of Biochemistry & Molecular Biology, the Program in Molecular Medicine and the Marlene & Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland USA
| | - Brian M. Polster
- Department of Anesthesiology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Paul Shapiro
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore Maryland, USA
| |
Collapse
|
41
|
Agnoletto C, Volinia S. Mitochondria dysfunction in circulating tumor cells. Front Oncol 2022; 12:947479. [PMID: 35992829 PMCID: PMC9386562 DOI: 10.3389/fonc.2022.947479] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 07/11/2022] [Indexed: 12/16/2022] Open
Abstract
Circulating tumor cells (CTCs) represent a subset of heterogeneous cells, which, once released from a tumor site, have the potential to give rise to metastasis in secondary sites. Recent research focused on the attempt to detect and characterize these rare cells in the circulation, and advancements in defining their molecular profile have been reported in diverse tumor species, with potential implications for clinical applications. Of note, metabolic alterations, involving mitochondria, have been implicated in the metastatic process, as key determinants in the transition of tumor cells to a mesenchymal or stemness-like phenotype, in drug resistance, and in induction of apoptosis. This review aimed to briefly analyse the most recent knowledge relative to mitochondria dysfunction in CTCs, and to envision implications of altered mitochondria in CTCs for a potential utility in clinics.
Collapse
Affiliation(s)
- Chiara Agnoletto
- Rete Oncologica Veneta (ROV), Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| | - Stefano Volinia
- Laboratorio per le Tecnologie delle Terapie Avanzate (LTTA), Department of Translational Medicine, University of Ferrara, Ferrara, Italy
- Biological and Chemical Research Centre (CNBCh UW), University of Warsaw, Warsaw, Poland
- Center of New Technologies, University of Warsaw, Warsaw, Poland
| |
Collapse
|
42
|
Recent insights into the effects of metabolism on breast cancer cell dormancy. Br J Cancer 2022; 127:1385-1393. [PMID: 35715635 PMCID: PMC9553927 DOI: 10.1038/s41416-022-01869-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/06/2022] [Accepted: 05/25/2022] [Indexed: 02/07/2023] Open
Abstract
Breast cancer (BC) remains the most common cancer, as well as the leading cause of cancer mortality in women worldwide [1]. Approximately 30% of patients with early-stage BC experience metastasis or a recurrent form of the disease [2]. The phenomenon of BC dormancy, where metastasised cancer cells remain in a quiescent phase at their disseminated location and for unknown reasons can become actively proliferative again, further adds to BC’s clinical burden with treatment at this secondary stage typically proving futile. An emerging avenue of research focuses on the metabolic properties of dormant BC cells (BCCs) and potential metabolic changes causing BCCs to enter/exit their quiescent state. Here we explore several studies that have uncovered changes in carbon metabolism underlying a dormant state, with conflicting studies uncovering shifts towards both glycolysis and/or oxidative phosphorylation. This review highlights that the metabolic states/shifts of dormant BCCs seem to be dependent on different BC subtypes and receptor status; however, more work needs to be done to fully map these differences. Building on the research that this review outlines could provide new personalised therapeutic possibilities for BC patients.
Collapse
|
43
|
Computational Design of Inhibitors Targeting the Catalytic β Subunit of Escherichia coli FOF1-ATP Synthase. Antibiotics (Basel) 2022; 11:antibiotics11050557. [PMID: 35625201 PMCID: PMC9138118 DOI: 10.3390/antibiotics11050557] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 03/22/2022] [Accepted: 03/25/2022] [Indexed: 01/27/2023] Open
Abstract
With the uncontrolled growth of multidrug-resistant bacteria, there is an urgent need to search for new therapeutic targets, to develop drugs with novel modes of bactericidal action. FoF1-ATP synthase plays a crucial role in bacterial bioenergetic processes, and it has emerged as an attractive antimicrobial target, validated by the pharmaceutical approval of an inhibitor to treat multidrug-resistant tuberculosis. In this work, we aimed to design, through two types of in silico strategies, new allosteric inhibitors of the ATP synthase, by targeting the catalytic β subunit, a centerpiece in communication between rotor subunits and catalytic sites, to drive the rotary mechanism. As a model system, we used the F1 sector of Escherichia coli, a bacterium included in the priority list of multidrug-resistant pathogens. Drug-like molecules and an IF1-derived peptide, designed through molecular dynamics simulations and sequence mining approaches, respectively, exhibited in vitro micromolar inhibitor potency against F1. An analysis of bacterial and Mammalia sequences of the key structural helix-turn-turn motif of the C-terminal domain of the β subunit revealed highly and moderately conserved positions that could be exploited for the development of new species-specific allosteric inhibitors. To our knowledge, these inhibitors are the first binders computationally designed against the catalytic subunit of FOF1-ATP synthase.
Collapse
|
44
|
Dual key co-activated nanoplatform for switchable MRI monitoring accurate ferroptosis-based synergistic therapy. Chem 2022. [DOI: 10.1016/j.chempr.2022.03.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
45
|
Lelcu T, Bînă AM, Avram VF, Arghirescu ST, Borza C, Muntean MD. A permeable succinate improved platelet mitochondrial respiration in paediatric acute lymphoblastic leukaemia in remission: Case report. SCRIPTA MEDICA 2022. [DOI: 10.5937/scriptamed53-37038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
Acute lymphoblastic leukaemia (ALL) is the most common childhood malignancy. In the last decades, the survival rate of paediatric patients diagnosed with ALL has been significantly improved due to standardised treatment protocols based on risk stratification. Platelet mitochondrial dysfunction has been recently reported to occur in most chronic diseases, including malignancies. Permeable succinate (NV118) is a novel mitochondria-targeted compound capable to alleviate disease and drug-induced mitochondrial dysfunction. It is reported here that ex vivo incubation with NV811 elicited an increase in platelet mitochondrial respiration in a paediatric patient with acute lymphoblastic leukaemia in remission.
Collapse
|