1
|
Lu P, Ruan D, Huang M, Tian M, Zhu K, Gan Z, Xiao Z. Harnessing the potential of hydrogels for advanced therapeutic applications: current achievements and future directions. Signal Transduct Target Ther 2024; 9:166. [PMID: 38945949 PMCID: PMC11214942 DOI: 10.1038/s41392-024-01852-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 04/02/2024] [Accepted: 04/28/2024] [Indexed: 07/02/2024] Open
Abstract
The applications of hydrogels have expanded significantly due to their versatile, highly tunable properties and breakthroughs in biomaterial technologies. In this review, we cover the major achievements and the potential of hydrogels in therapeutic applications, focusing primarily on two areas: emerging cell-based therapies and promising non-cell therapeutic modalities. Within the context of cell therapy, we discuss the capacity of hydrogels to overcome the existing translational challenges faced by mainstream cell therapy paradigms, provide a detailed discussion on the advantages and principal design considerations of hydrogels for boosting the efficacy of cell therapy, as well as list specific examples of their applications in different disease scenarios. We then explore the potential of hydrogels in drug delivery, physical intervention therapies, and other non-cell therapeutic areas (e.g., bioadhesives, artificial tissues, and biosensors), emphasizing their utility beyond mere delivery vehicles. Additionally, we complement our discussion on the latest progress and challenges in the clinical application of hydrogels and outline future research directions, particularly in terms of integration with advanced biomanufacturing technologies. This review aims to present a comprehensive view and critical insights into the design and selection of hydrogels for both cell therapy and non-cell therapies, tailored to meet the therapeutic requirements of diverse diseases and situations.
Collapse
Affiliation(s)
- Peilin Lu
- Nanomedicine Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, PR China
- Department of Minimally Invasive Interventional Radiology, and Laboratory of Interventional Radiology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, PR China
| | - Dongxue Ruan
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Department of Respiratory and Critical Care Medicine, Guangzhou Institute for Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, PR China
| | - Meiqi Huang
- Department of Minimally Invasive Interventional Radiology, and Laboratory of Interventional Radiology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, PR China
| | - Mi Tian
- Department of Stomatology, Chengdu Second People's Hospital, Chengdu, 610021, PR China
| | - Kangshun Zhu
- Department of Minimally Invasive Interventional Radiology, and Laboratory of Interventional Radiology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, PR China.
| | - Ziqi Gan
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, 510055, PR China.
| | - Zecong Xiao
- Nanomedicine Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, PR China.
| |
Collapse
|
2
|
You S, Zhang J, Yu L, Li Z, Zhang J, Zhao N, Xie Z, Li Y, Akram Z, Sun S. Construction of SLC16A1/3 Targeted Gallic Acid-Iron-Embelin Nanoparticles for Regulating Glycolysis and Redox Pathways in Cervical Cancer. Mol Pharm 2023; 20:4574-4586. [PMID: 37307591 DOI: 10.1021/acs.molpharmaceut.3c00294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
SLC16A1 and SLC16A3 (SLC16A1/3) are highly expressed in cervical cancers and associated with the malignant biological behavior of cancer. SLC16A1/3 is the critical hub for regulating the internal and external environment, glycolysis, and redox homeostasis in cervical cancer cells. Inhibiting SLC16A1/3 provides a new thought to eliminate cervical cancer effectively. There are few reports on effective treatment strategies to eliminate cervical cancer by simultaneously targeting SLC16A1/3. GEO database analysis and quantitative reverse transcription polymerase chain reaction experiment were used to confirm the high expression of SLC16A1/3. The potential inhibitor of SLC16A1/3 was screened from Siwu Decoction by using network pharmacology and molecular docking technology. The mRNA levels and protein levels of SLC16A1/3 in SiHa and HeLa cells treated by Embelin (EMB) were clarified, respectively. Furthermore, the Gallic acid-iron (GA-Fe) drug delivery system was used to improve its anti-cancer performance. Compared with normal cervical cells, SLC16A1/3 mRNA was over-expressed in SiHa and HeLa cells. Through the analysis of Siwu Decoction, a simultaneously targeted SLC16A1/3 inhibitor EMB was discovered. It was found for the first time that EMB promoted lactic acid accumulation and further induced redox dyshomeostasis and glycolysis disorder by simultaneously inhibiting SLC16A1/3. The gallic acid-iron-Embelin (GA-Fe@EMB) drug delivery system delivered EMB, which had a synergistic anti-cervical cancer effect. Under the irradiation of a near-infrared laser, the GA-Fe@EMB could elevate the temperature of the tumor area effectively. Subsequently, EMB was released and mediated the lactic acid accumulation and the GA-Fe nanoparticle synergistic Fenton reaction to promote ROS accumulation, thereby increasing the lethality of the nanoparticles on cervical cancer cells. GA-Fe@EMB can target cervical cancer marker SLC16A1/3 to regulate glycolysis and redox pathways, synergistically with photothermal therapy, which provides a new avenue for the synergistic treatment of malignant cervical cancer.
Collapse
Affiliation(s)
- Shiwan You
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, Shihezi University College of Pharmacy, Shihezi 832003, Xinjiang, China
| | - Jing Zhang
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, Shihezi University College of Pharmacy, Shihezi 832003, Xinjiang, China
- School of Medicine, Xinjiang University of Science & Technology, Korla, 841000, China
| | - Lan Yu
- Shanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest Agriculture and Forestry University, Yangling, Shaanxi 712100, China
| | - Zuoping Li
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, Shihezi University College of Pharmacy, Shihezi 832003, Xinjiang, China
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, Shihezi University College of Chemistry and Chemical Engineering, Shihezi 832002, Xinjiang, China
| | - Jiaru Zhang
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, Shihezi University College of Pharmacy, Shihezi 832003, Xinjiang, China
| | - Na Zhao
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, Shihezi University College of Pharmacy, Shihezi 832003, Xinjiang, China
| | - Zhenzhen Xie
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, Shihezi University College of Pharmacy, Shihezi 832003, Xinjiang, China
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, Shihezi University College of Chemistry and Chemical Engineering, Shihezi 832002, Xinjiang, China
| | - Youping Li
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, Shihezi University College of Pharmacy, Shihezi 832003, Xinjiang, China
| | - Zubair Akram
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, Shihezi University College of Chemistry and Chemical Engineering, Shihezi 832002, Xinjiang, China
| | - Shiguo Sun
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, Shihezi University College of Pharmacy, Shihezi 832003, Xinjiang, China
- College of Chemistry and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China
| |
Collapse
|
3
|
Recent advances in augmenting Fenton chemistry of nanoplatforms for enhanced chemodynamic therapy. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.215004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
4
|
Zhang Z, Wang J, Xia W, Cao D, Wang X, Kuang Y, Luo Y, Yuan C, Lu J, Liu X. Application of Hydrogels as Carrier in Tumor Therapy: A Review. Chem Asian J 2022; 17:e202200740. [PMID: 36070227 DOI: 10.1002/asia.202200740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 09/06/2022] [Accepted: 09/07/2022] [Indexed: 11/07/2022]
Abstract
Cancer is one of the most intractable diseases in the world because of its high recurrence rate, high metastasis rate and high lethality rate. Traditional chemotherapy, radiotherapy and surgery have unsatisfactory therapeutic effects and cause many severe side effects at the same time. Hydrogel is a new type of biomaterial with the advantages of good biocompatibility and easy degradation, which can be used as a carrier of functional nanomaterials for tumor therapy. Herein, we represent the progress of hydrogels with different skeletons and their application as carrier in tumor treatment. The hydrogels are listed as polyethylene glycol-based hydrogels, chitosan-based hydrogels, peptide-based hydrogels, hyaluronic acid-based hydrogels, steroid-based hydrogels and other hydrogels by skeletons, and their properties, modifications and toxicities were introduced. Some representative applications of combined hydrogels with nanomaterial for chemotherapy, photodynamic therapy, photothermal therapy, sonodynamic therapy, chemodynamic therapy and synergistic therapy are highlighted.
Collapse
Affiliation(s)
- Ziwen Zhang
- School of Chemistry and Chemical Engineering, Shanghai Engineering Technology Research Center for Pharmaceutical Intelligent Equipment, Shanghai Frontiers Science Research Center for Druggability of Cardiovascular noncoding RNA, Institute for Frontier Medical Technology, Shanghai University of Engineering Science, Shanghai, 201620, P. R. China
| | - Jinxia Wang
- School of Chemistry and Chemical Engineering, Shanghai Engineering Technology Research Center for Pharmaceutical Intelligent Equipment, Shanghai Frontiers Science Research Center for Druggability of Cardiovascular noncoding RNA, Institute for Frontier Medical Technology, Shanghai University of Engineering Science, Shanghai, 201620, P. R. China
| | - Wei Xia
- School of Chemistry and Chemical Engineering, Shanghai Engineering Technology Research Center for Pharmaceutical Intelligent Equipment, Shanghai Frontiers Science Research Center for Druggability of Cardiovascular noncoding RNA, Institute for Frontier Medical Technology, Shanghai University of Engineering Science, Shanghai, 201620, P. R. China
| | - Dongmiao Cao
- School of Chemistry and Chemical Engineering, Shanghai Engineering Technology Research Center for Pharmaceutical Intelligent Equipment, Shanghai Frontiers Science Research Center for Druggability of Cardiovascular noncoding RNA, Institute for Frontier Medical Technology, Shanghai University of Engineering Science, Shanghai, 201620, P. R. China
| | - Xingyan Wang
- School of Chemistry and Chemical Engineering, Shanghai Engineering Technology Research Center for Pharmaceutical Intelligent Equipment, Shanghai Frontiers Science Research Center for Druggability of Cardiovascular noncoding RNA, Institute for Frontier Medical Technology, Shanghai University of Engineering Science, Shanghai, 201620, P. R. China
| | - Yunqi Kuang
- School of Chemistry and Chemical Engineering, Shanghai Engineering Technology Research Center for Pharmaceutical Intelligent Equipment, Shanghai Frontiers Science Research Center for Druggability of Cardiovascular noncoding RNA, Institute for Frontier Medical Technology, Shanghai University of Engineering Science, Shanghai, 201620, P. R. China
| | - Yu Luo
- School of Chemistry and Chemical Engineering, Shanghai Engineering Technology Research Center for Pharmaceutical Intelligent Equipment, Shanghai Frontiers Science Research Center for Druggability of Cardiovascular noncoding RNA, Institute for Frontier Medical Technology, Shanghai University of Engineering Science, Shanghai, 201620, P. R. China
| | - Chunping Yuan
- School of Chemistry and Chemical Engineering, Shanghai Engineering Technology Research Center for Pharmaceutical Intelligent Equipment, Shanghai Frontiers Science Research Center for Druggability of Cardiovascular noncoding RNA, Institute for Frontier Medical Technology, Shanghai University of Engineering Science, Shanghai, 201620, P. R. China
| | - Jie Lu
- School of Chemistry and Chemical Engineering, Shanghai Engineering Technology Research Center for Pharmaceutical Intelligent Equipment, Shanghai Frontiers Science Research Center for Druggability of Cardiovascular noncoding RNA, Institute for Frontier Medical Technology, Shanghai University of Engineering Science, Shanghai, 201620, P. R. China
| | - Xijian Liu
- School of Chemistry and Chemical Engineering, Shanghai Engineering Technology Research Center for Pharmaceutical Intelligent Equipment, Shanghai Frontiers Science Research Center for Druggability of Cardiovascular noncoding RNA, Institute for Frontier Medical Technology, Shanghai University of Engineering Science, Shanghai, 201620, P. R. China
| |
Collapse
|
5
|
Hou K, Ning Z, Chen H, Wu Y. Nanomaterial Technology and Triple Negative Breast Cancer. Front Oncol 2022; 11:828810. [PMID: 35096628 PMCID: PMC8790081 DOI: 10.3389/fonc.2021.828810] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Accepted: 12/23/2021] [Indexed: 12/25/2022] Open
Abstract
Triple negative breast cancer (TNBC) is a malignant breast cancer subtype that is prone to progression, with high associated metastasis and five-year mortality rates and an overall poor prognosis. Chemotherapy is usually administered to treat TNBC without additional targeted therapies. Novel nanomaterials have a variety of excellent physical and chemical properties and biological functions (including targeting specificity), and contrast agents and drug delivery vectors based on nanotechnology are progressing towards a more accurate and targeted direction. This review discusses the mechanisms of action and prospects for the use of nanotechnology in the treatment of TNBC, thus providing potential new strategies for the diagnosis and treatment of TNBC.
Collapse
Affiliation(s)
- Kai Hou
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zeng Ning
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hongbo Chen
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yiping Wu
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|