1
|
Albert V, Bruss C, Tümen D, Piendl G, Weber F, Dahl E, Seitz S, Ortmann O, Wege AK, Brockhoff G. HER4 Affects Sensitivity to Tamoxifen and Abemaciclib in Luminal Breast Cancer Cells and Restricts Tumor Growth in MCF-7-Based Humanized Tumor Mice. Int J Mol Sci 2024; 25:7475. [PMID: 39000582 PMCID: PMC11242770 DOI: 10.3390/ijms25137475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/28/2024] [Accepted: 07/03/2024] [Indexed: 07/16/2024] Open
Abstract
The impact of the HER4 receptor on the growth and treatment of estrogen receptor-positive breast cancer is widely uncertain. Using CRISPR/Cas9 technology, we generated stable HER4 knockout variants derived from the HER4-positive MCF-7, T-47D, and ZR-75-1 breast cancer cell lines. We investigated tumor cell proliferation as well as the cellular and molecular mechanisms of tamoxifen, abemaciclib, AMG232, and NRG1 treatments as a function of HER4 in vitro. HER4 differentially affects the cellular response to tamoxifen and abemaciclib treatment. Most conspicuous is the increased sensitivity of MCF-7 in vitro upon HER4 knockout and the inhibition of cell proliferation by NRG1. Additionally, we assessed tumor growth and immunological effects as responses to tamoxifen and abemaciclib therapy in humanized tumor mice (HTM) based on MCF-7 HER4-wildtype and the corresponding HER4-knockout cells. Without any treatment, the enhanced MCF-7 tumor growth in HTM upon HER4 knockout suggests a tumor-suppressive effect of HER4 under preclinical but human-like conditions. This phenomenon is associated with an increased HER2 expression in MCF-7 in vivo. Independent of HER4, abemaciclib and tamoxifen treatment considerably inhibited tumor growth in these mice. However, abemaciclib-treated hormone receptor-positive breast cancer patients with tumor-associated mdm2 gene copy gains or pronounced HER4 expression showed a reduced event-free survival. Evidently, the presence of HER4 affects the efficacy of tamoxifen and abemaciclib treatment in different estrogen receptor-positive breast cancer cells, even to different extents, and is associated with unfavorable outcomes in abemaciclib-treated patients.
Collapse
Affiliation(s)
- Veruschka Albert
- Department of Gynecology and Obstetrics, University Medical Center Regensburg, 93935 Regensburg, Germany
- Bavarian Cancer Research Center (BZKF), 93053 Regensburg, Germany
| | - Christina Bruss
- Department of Gynecology and Obstetrics, University Medical Center Regensburg, 93935 Regensburg, Germany
- Bavarian Cancer Research Center (BZKF), 93053 Regensburg, Germany
| | - Deniz Tümen
- Bavarian Cancer Research Center (BZKF), 93053 Regensburg, Germany
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, Rheumatology and Infectious Diseases, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Gerhard Piendl
- Department of Gynecology and Obstetrics, University Medical Center Regensburg, 93935 Regensburg, Germany
- Bavarian Cancer Research Center (BZKF), 93053 Regensburg, Germany
| | - Florian Weber
- Bavarian Cancer Research Center (BZKF), 93053 Regensburg, Germany
- Institute of Pathology, University of Regensburg, 93093 Regensburg, Germany
| | - Edgar Dahl
- Institute of Pathology, Medical Faculty, RWTH Aachen University, 52074 Aachen, Germany
| | - Stephan Seitz
- Department of Gynecology and Obstetrics, University Medical Center Regensburg, 93935 Regensburg, Germany
- Bavarian Cancer Research Center (BZKF), 93053 Regensburg, Germany
| | - Olaf Ortmann
- Department of Gynecology and Obstetrics, University Medical Center Regensburg, 93935 Regensburg, Germany
- Bavarian Cancer Research Center (BZKF), 93053 Regensburg, Germany
| | - Anja K Wege
- Department of Gynecology and Obstetrics, University Medical Center Regensburg, 93935 Regensburg, Germany
- Bavarian Cancer Research Center (BZKF), 93053 Regensburg, Germany
| | - Gero Brockhoff
- Department of Gynecology and Obstetrics, University Medical Center Regensburg, 93935 Regensburg, Germany
- Bavarian Cancer Research Center (BZKF), 93053 Regensburg, Germany
| |
Collapse
|
2
|
Kaneko S, Takasawa K, Asada K, Shiraishi K, Ikawa N, Machino H, Shinkai N, Matsuda M, Masuda M, Adachi S, Takahashi S, Kobayashi K, Kouno N, Bolatkan A, Komatsu M, Yamada M, Miyake M, Watanabe H, Tateishi A, Mizuno T, Okubo Y, Mukai M, Yoshida T, Yoshida Y, Horinouchi H, Watanabe SI, Ohe Y, Yatabe Y, Saloura V, Kohno T, Hamamoto R. Mechanism of ERBB2 gene overexpression by the formation of super-enhancer with genomic structural abnormalities in lung adenocarcinoma without clinically actionable genetic alterations. Mol Cancer 2024; 23:126. [PMID: 38862995 PMCID: PMC11165761 DOI: 10.1186/s12943-024-02035-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 05/30/2024] [Indexed: 06/13/2024] Open
Abstract
BACKGROUND In an extensive genomic analysis of lung adenocarcinomas (LUADs), driver mutations have been recognized as potential targets for molecular therapy. However, there remain cases where target genes are not identified. Super-enhancers and structural variants are frequently identified in several hundred loci per case. Despite this, most cancer research has approached the analysis of these data sets separately, without merging and comparing the data, and there are no examples of integrated analysis in LUAD. METHODS We performed an integrated analysis of super-enhancers and structural variants in a cohort of 174 LUAD cases that lacked clinically actionable genetic alterations. To achieve this, we conducted both WGS and H3K27Ac ChIP-seq analyses using samples with driver gene mutations and those without, allowing for a comprehensive investigation of the potential roles of super-enhancer in LUAD cases. RESULTS We demonstrate that most genes situated in these overlapped regions were associated with known and previously unknown driver genes and aberrant expression resulting from the formation of super-enhancers accompanied by genomic structural abnormalities. Hi-C and long-read sequencing data further corroborated this insight. When we employed CRISPR-Cas9 to induce structural abnormalities that mimicked cases with outlier ERBB2 gene expression, we observed an elevation in ERBB2 expression. These abnormalities are associated with a higher risk of recurrence after surgery, irrespective of the presence or absence of driver mutations. CONCLUSIONS Our findings suggest that aberrant gene expression linked to structural polymorphisms can significantly impact personalized cancer treatment by facilitating the identification of driver mutations and prognostic factors, contributing to a more comprehensive understanding of LUAD pathogenesis.
Collapse
Affiliation(s)
- Syuzo Kaneko
- Division of Medical AI Research and Development, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-Ku, Tokyo, 104-0045, Japan.
- Cancer Translational Research Team, RIKEN Center for Advanced Intelligence Project, Tokyo, 103-0027, Japan.
| | - Ken Takasawa
- Division of Medical AI Research and Development, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-Ku, Tokyo, 104-0045, Japan
- Cancer Translational Research Team, RIKEN Center for Advanced Intelligence Project, Tokyo, 103-0027, Japan
| | - Ken Asada
- Division of Medical AI Research and Development, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-Ku, Tokyo, 104-0045, Japan
- Cancer Translational Research Team, RIKEN Center for Advanced Intelligence Project, Tokyo, 103-0027, Japan
| | - Kouya Shiraishi
- Division of Genome Biology, National Cancer Center Research Institute, Tokyo, 104-0045, Japan
| | - Noriko Ikawa
- Division of Medical AI Research and Development, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-Ku, Tokyo, 104-0045, Japan
| | - Hidenori Machino
- Division of Medical AI Research and Development, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-Ku, Tokyo, 104-0045, Japan
- Cancer Translational Research Team, RIKEN Center for Advanced Intelligence Project, Tokyo, 103-0027, Japan
| | - Norio Shinkai
- Division of Medical AI Research and Development, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-Ku, Tokyo, 104-0045, Japan
- Cancer Translational Research Team, RIKEN Center for Advanced Intelligence Project, Tokyo, 103-0027, Japan
| | - Maiko Matsuda
- Division of Genome Biology, National Cancer Center Research Institute, Tokyo, 104-0045, Japan
| | - Mari Masuda
- Department of Proteomics, National Cancer Center Research Institute, Tokyo, 104-0045, Japan
| | - Shungo Adachi
- Department of Proteomics, National Cancer Center Research Institute, Tokyo, 104-0045, Japan
| | - Satoshi Takahashi
- Division of Medical AI Research and Development, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-Ku, Tokyo, 104-0045, Japan
- Cancer Translational Research Team, RIKEN Center for Advanced Intelligence Project, Tokyo, 103-0027, Japan
| | - Kazuma Kobayashi
- Division of Medical AI Research and Development, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-Ku, Tokyo, 104-0045, Japan
- Cancer Translational Research Team, RIKEN Center for Advanced Intelligence Project, Tokyo, 103-0027, Japan
| | - Nobuji Kouno
- Division of Medical AI Research and Development, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-Ku, Tokyo, 104-0045, Japan
- Cancer Translational Research Team, RIKEN Center for Advanced Intelligence Project, Tokyo, 103-0027, Japan
| | - Amina Bolatkan
- Division of Medical AI Research and Development, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-Ku, Tokyo, 104-0045, Japan
- Cancer Translational Research Team, RIKEN Center for Advanced Intelligence Project, Tokyo, 103-0027, Japan
| | - Masaaki Komatsu
- Division of Medical AI Research and Development, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-Ku, Tokyo, 104-0045, Japan
- Cancer Translational Research Team, RIKEN Center for Advanced Intelligence Project, Tokyo, 103-0027, Japan
| | - Masayoshi Yamada
- Endoscopy Division, National Cancer Center Hospital, Tokyo, 104-0045, Japan
| | - Mototaka Miyake
- Department of Diagnostic Radiology, National Cancer Center Hospital, Tokyo, 104-0045, Japan
| | - Hirokazu Watanabe
- Department of Diagnostic Radiology, National Cancer Center Hospital, Tokyo, 104-0045, Japan
| | - Akiko Tateishi
- Department of Thoracic Oncology, National Cancer Center Hospital, Tokyo, 104-0045, Japan
| | - Takaaki Mizuno
- Division of Genome Biology, National Cancer Center Research Institute, Tokyo, 104-0045, Japan
- Department of Thoracic Oncology, National Cancer Center Hospital, Tokyo, 104-0045, Japan
- Department of Experimental Therapeutics, National Cancer Center Hospital, Tokyo, 104-0045, Japan
| | - Yu Okubo
- Department of Thoracic Surgery, National Cancer Center Hospital, Tokyo, 104-0045, Japan
| | - Masami Mukai
- Division of Medical Informatics, National Cancer Center Hospital, Tokyo, 104-0045, Japan
| | - Tatsuya Yoshida
- Department of Thoracic Oncology, National Cancer Center Hospital, Tokyo, 104-0045, Japan
| | - Yukihiro Yoshida
- Department of Thoracic Surgery, National Cancer Center Hospital, Tokyo, 104-0045, Japan
| | - Hidehito Horinouchi
- Department of Thoracic Oncology, National Cancer Center Hospital, Tokyo, 104-0045, Japan
| | - Shun-Ichi Watanabe
- Department of Thoracic Surgery, National Cancer Center Hospital, Tokyo, 104-0045, Japan
| | - Yuichiro Ohe
- Department of Thoracic Oncology, National Cancer Center Hospital, Tokyo, 104-0045, Japan
| | - Yasushi Yatabe
- Department of Diagnostic Pathology, National Cancer Center Hospital, Tokyo, 104-0045, Japan
| | - Vassiliki Saloura
- Center for Cancer Research, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Takashi Kohno
- Division of Genome Biology, National Cancer Center Research Institute, Tokyo, 104-0045, Japan
| | - Ryuji Hamamoto
- Division of Medical AI Research and Development, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-Ku, Tokyo, 104-0045, Japan.
- Cancer Translational Research Team, RIKEN Center for Advanced Intelligence Project, Tokyo, 103-0027, Japan.
| |
Collapse
|
3
|
Lozon L, Ramadan WS, Kawaf RR, Al-Shihabi AM, El-Awady R. Decoding cell death signalling: Impact on the response of breast cancer cells to approved therapies. Life Sci 2024; 342:122525. [PMID: 38423171 DOI: 10.1016/j.lfs.2024.122525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 02/04/2024] [Accepted: 02/21/2024] [Indexed: 03/02/2024]
Abstract
Breast cancer is a principal cause of cancer-related mortality in female worldwide. While many approved therapies have shown promising outcomes in treating breast cancer, understanding the intricate signalling pathways controlling cell death is crucial for optimizing the treatment outcome. A growing body of evidence has unveiled the aberrations in multiple cell death pathways across diverse cancer types, highlighting these pathways as appealing targets for therapeutic interventions. In this review, we provide a comprehensive overview of the current state of knowledge on the cell death signalling mechanisms with a particular focus on their impact on the response of breast cancer cells to approved therapies. Additionally, we discuss the potentials of combination therapies that exploit the synergy between approved drugs and therapeutic agents targeting modulators of cell death pathways.
Collapse
Affiliation(s)
- Lama Lozon
- College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates; Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates.
| | - Wafaa S Ramadan
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates.
| | - Rawan R Kawaf
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates; College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates.
| | - Aya M Al-Shihabi
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates; College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates.
| | - Raafat El-Awady
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates; College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates.
| |
Collapse
|
4
|
Villa F, Crippa A, Pelizzoni D, Ardizzoia A, Scartabellati G, Corbetta C, Cipriani E, Lavitrano M, Ardizzoia A. Progression after First-Line Cyclin-Dependent Kinase 4/6 Inhibitor Treatment: Analysis of Molecular Mechanisms and Clinical Data. Int J Mol Sci 2023; 24:14427. [PMID: 37833875 PMCID: PMC10572355 DOI: 10.3390/ijms241914427] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/31/2023] [Accepted: 09/08/2023] [Indexed: 10/15/2023] Open
Abstract
Cyclin-dependent kinase 4/6 inhibitors (CDK4/6iss) are widely used in first-line metastatic breast cancer. For patients with progression under CDK4/6is, there is currently no standard treatment recommended at the category 1 level in international guidelines. The purpose of this article is to review the cellular mechanisms underlying the resistance to CDK4/6is, as well as treatment strategies and the clinical data about the efficacy of subsequent treatments after CDK4/6is-based therapy. In the first part, this review mainly discusses cell-cycle-specific and cell-cycle-non-specific resistance to CDK4/6is, with a focus on early and late progression. In the second part, this review analyzes potential therapeutic approaches and the available clinical data on them: switching to other CDK4/6is, to another single hormonal therapy, to other target therapies (PI3K, mTOR and AKT) and to chemotherapy.
Collapse
Affiliation(s)
- Federica Villa
- Medical Oncology, Oncology Department ASST Lecco, 23900 Lecco, Italy; (A.C.); (D.P.); (C.C.); (E.C.); (A.A.)
| | - Alessandra Crippa
- Medical Oncology, Oncology Department ASST Lecco, 23900 Lecco, Italy; (A.C.); (D.P.); (C.C.); (E.C.); (A.A.)
| | - Davide Pelizzoni
- Medical Oncology, Oncology Department ASST Lecco, 23900 Lecco, Italy; (A.C.); (D.P.); (C.C.); (E.C.); (A.A.)
| | - Alessandra Ardizzoia
- School of Medicine and Surgery, University of Milano-Bicocca, 20126 Milano, Italy; (A.A.); (M.L.)
| | - Giulia Scartabellati
- Medical Oncology, Fondazione IRCCS San Gerardo dei Tintori, 20900 Monza, Italy;
- Department of Medical and Surgical Specialties, Medical Oncology, University of Brescia, 25121 Brescia, Italy
| | - Cristina Corbetta
- Medical Oncology, Oncology Department ASST Lecco, 23900 Lecco, Italy; (A.C.); (D.P.); (C.C.); (E.C.); (A.A.)
| | - Eleonora Cipriani
- Medical Oncology, Oncology Department ASST Lecco, 23900 Lecco, Italy; (A.C.); (D.P.); (C.C.); (E.C.); (A.A.)
| | - Marialuisa Lavitrano
- School of Medicine and Surgery, University of Milano-Bicocca, 20126 Milano, Italy; (A.A.); (M.L.)
| | - Antonio Ardizzoia
- Medical Oncology, Oncology Department ASST Lecco, 23900 Lecco, Italy; (A.C.); (D.P.); (C.C.); (E.C.); (A.A.)
| |
Collapse
|
5
|
Treeck O, Haerteis S, Ortmann O. Non-Coding RNAs Modulating Estrogen Signaling and Response to Endocrine Therapy in Breast Cancer. Cancers (Basel) 2023; 15:cancers15061632. [PMID: 36980520 PMCID: PMC10046587 DOI: 10.3390/cancers15061632] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 02/28/2023] [Accepted: 03/02/2023] [Indexed: 03/09/2023] Open
Abstract
The largest part of human DNA is transcribed into RNA that does not code for proteins. These non-coding RNAs (ncRNAs) are key regulators of protein-coding gene expression and have been shown to play important roles in health, disease and therapy response. Today, endocrine therapy of ERα-positive breast cancer (BC) is a successful treatment approach, but resistance to this therapy is a major clinical problem. Therefore, a deeper understanding of resistance mechanisms is important to overcome this resistance. An increasing amount of evidence demonstrate that ncRNAs affect the response to endocrine therapy. Thus, ncRNAs are considered versatile biomarkers to predict or monitor therapy response. In this review article, we intend to give a summary and update on the effects of microRNAs (miRNAs), long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs) on estrogen signaling in BC cells, this pathway being the target of endocrine therapy, and their role in therapy resistance. For this purpose, we reviewed articles on these topics listed in the PubMed database. Finally, we provide an assessment regarding the clinical use of these ncRNA types, particularly their circulating forms, as predictive BC biomarkers and their potential role as therapy targets to overcome endocrine resistance.
Collapse
Affiliation(s)
- Oliver Treeck
- Department of Gynecology and Obstetrics, University Medical Center Regensburg, 93053 Regensburg, Germany
- Correspondence:
| | - Silke Haerteis
- Institute for Molecular and Cellular Anatomy, University of Regensburg, 93053 Regensburg, Germany
| | - Olaf Ortmann
- Department of Gynecology and Obstetrics, University Medical Center Regensburg, 93053 Regensburg, Germany
| |
Collapse
|