1
|
Afgar A, Ramezani Zadeh Kermani M, Pabarja A, Afgar AR, Kavyani B, Arezoomand H, Zanganeh S, Sanaei MJ, Sattarzadeh Bardsiri M, Vahidi R. 6-Gingerol modulates miRNAs and PODXL gene expression via methyltransferase enzymes in NB4 cells: an in silico and in vitro study. Sci Rep 2024; 14:18356. [PMID: 39112503 PMCID: PMC11306743 DOI: 10.1038/s41598-024-68069-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 07/19/2024] [Indexed: 08/10/2024] Open
Abstract
This investigation delves into the influence of predicted microRNAs on DNA methyltransferases (DNMTs) and the PODXL gene within the NB4 cell line, aiming to elucidate their roles in the pathogenesis of acute myeloid leukemia (AML). A comprehensive methodological framework was adopted to explore the therapeutic implications of 6-gingerol on DNMTs. This encompassed a suite of bioinformatics tools for protein structure prediction, docking, molecular dynamics, and ADMET profiling, alongside empirical assessments of miRNA and PODXL expression levels. Such a multifaceted strategy facilitated an in-depth understanding of 6-gingerol's potential efficacy in DNMT modulation. The findings indicate a nuanced interplay where 6-gingerol administration modulated miRNA expression levels, decreasing in DNMT1 and DNMT3A expression in NB4 cells. This alteration indirectly influenced PODXL expression, contributing to the manifestation of oncogenic phenotypes. The overexpression of DNMT1 and DNMT3A in NB4 cells may contribute to AML, which appears modulable via microRNAs such as miR-193a and miR-200c. Post-treatment with 6-gingerol, DNMT1 and DNMT3A expression alterations were observed, culminating in the upregulation of miR-193a and miR-200c. This cascade effect led to the dysregulation of tumor suppressor genes in cancer cells, including downregulation of PODXL, and the emergence of cancerous traits. These insights underscore the therapeutic promise of 6-gingerol in targeting DNMTs and microRNAs within the AML context.
Collapse
Affiliation(s)
- Ali Afgar
- Research Center for Hydatid Diseases in Iran, Kerman University of Medical Sciences, Kerman, Iran
| | | | - Athareh Pabarja
- Research Center of Tropical and Infectious Diseases, Kerman University of Medical Sciences, Kerman, Iran
| | - Amir Reza Afgar
- Research Center for Hydatid Diseases in Iran, Kerman University of Medical Sciences, Kerman, Iran
| | - Batoul Kavyani
- Department of Medical Microbiology (Bacteriology & Virology), Afzalipour Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Hossein Arezoomand
- Department of Hematology and Laboratory Sciences, Faculty of Allied Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Saeed Zanganeh
- Stem Cells and Regenerative Medicine Innovation Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Javad Sanaei
- School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahla Sattarzadeh Bardsiri
- Stem Cells and Regenerative Medicine Innovation Center, Kerman University of Medical Sciences, Kerman, Iran.
- Student Research Committee, Faculty of Allied Medicine, Kerman University of Medical Sciences, Kerman, Iran.
| | - Reza Vahidi
- Research Center for Hydatid Diseases in Iran, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
2
|
Cui H, Jin Y, Wang N, Liu H, Shu R, Wang J, Wang X, Jia B, Wang Y, Bian Y, Wen W. Mechanic evaluation of Wu-Mei-Pill on colitis-associated colorectal cancer: An integrated transcriptomics, metabolomics, and experimental validation study. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 128:155509. [PMID: 38452403 DOI: 10.1016/j.phymed.2024.155509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 01/26/2024] [Accepted: 02/29/2024] [Indexed: 03/09/2024]
Abstract
BACKGROUND Chronic intestinal inflammatory diseases play a crucial role in the onset of colorectal cancer (CRC). Effectively impeding the progression of colitis-associated colorectal cancer (CAC) can be instrumental in hindering CRC development. Wu-Mei-Pill (WMP), a formulation comprising various herbal extracts, is clinically employed for CAC treatment, yet the underlying mechanism of WMP's efficacy in CAC remains unclear. Our study firstly demonstrated the effects and mechanisms of WMP on transcriptional and metabolic levels based on integrated transcriptomics and untargeted metabolomics and relative experimental validations. MATERIALS AND METHODS A CAC mouse model was established through a single injection of azoxymethane (AOM) followed by intermittent dextran sodium sulfate (DSS) intervention, with subsequent WMP administration. Initially, the therapeutic impact of WMP on the CAC model was assessed by observing survival rate, body weight change, colon length, tumor number, tumor load, and pathological changes in the colon tissue of CAC mice post-WMP intervention. Subsequently, differential genes and metabolites in the colorectal tissue of CAC mice following WMP intervention were identified through transcriptomics and non-targeted metabolomics. Finally, the influence of WMP on the peroxisome proliferator activated receptor (PPAR) pathway, Wnt pathway, and CC motif chemokine ligand 3 (CCL3)/ CC motif chemokine receptor 1 (CCR1) axis in CAC mice was verified through western blot, immunofluorescence, and ELISA based on the results of transcriptomics and non-targeted metabolomics. RESULTS WMP intervention enhanced survival, alleviated body weight loss, shortened colon length, tumor occurrence, and pathological changes in the colorectal tissue of CAC mice, such as glandular damage, tumourigenesis, and inflammatory cell infiltration. Transcriptomic and non-targeted metabolomic results revealed that WMP intervention up-regulated the expression of key regulatory mechanisms of fatty acid oxidation PPAR pathway-related genes (Pparg, Ppara, Cpt1a, and Acadm) and metabolites (L-carnitine and L-palmitoylcarnitine). Additionally, it down-regulated Wnt pathway-related genes (Wnt3, Axin2, Tcf7, Mmp7, Lgr5, Wnt5a, Fzd6, Wnt7b, Lef1, and Fzd10 etc.) and pro-inflammatory related genes (Il1b, Il6, Il17a, Ccl3, and Ccr1 etc.). Experimental validation demonstrated that WMP up-regulated PPAR pathway-related proteins [PPARγ, PPARα, carnitine palmitoyltransferase 1A (CPT1A), and acyl-CoA dehydrogenase medium chain (ACADM)] in the colorectal tissue of CAC mice. It also down-regulated Wnt pathway-related proteins [β-catenin, T-cell factor (TCF), lymphoid enhancer-binding factor (LEF), and matrix metallopeptidase 7 (MMP7)], inhibited the nuclear translocation of the key transcription factor β-catenin in the Wnt pathway, and suppressed epithelial-to-mesenchymal transition (EMT) activation induced by the Wnt pathway (up-regulated E-cadherin and down-regulated Vimentin). Furthermore, WMP intervention reduced pro-inflammatory factors [interleukin (IL)-6, IL-1β, and IL-17A] and decreased CCL3/CCR1 axis factors, including CCL3 protein levels and diminished F4/80+CCR1+ positive expressed cells. CONCLUSION WMP significantly inhibits CAC tumorigenesis by up-regulating PPARα-mediated fatty acid oxidation, inhibiting the Wnt signaling pathway-mediated EMT, and suppressing CCL3/CCR1-mediated inflammatory responses.
Collapse
Affiliation(s)
- Huantian Cui
- First School of Clinical Medicine, Yunnan University of Chinese Medicine, Kunming 650500, China
| | - Yutong Jin
- College of Integrative Chinese and Western Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Ning Wang
- First School of Clinical Medicine, Yunnan University of Chinese Medicine, Kunming 650500, China
| | - Haizhao Liu
- College of Integrative Chinese and Western Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Rongli Shu
- College of Integrative Chinese and Western Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Jida Wang
- College of Integrative Chinese and Western Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xiangling Wang
- College of Integrative Chinese and Western Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Beitian Jia
- College of Integrative Chinese and Western Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yiyang Wang
- College of Integrative Chinese and Western Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yuhong Bian
- College of Integrative Chinese and Western Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Weibo Wen
- First School of Clinical Medicine, Yunnan University of Chinese Medicine, Kunming 650500, China.
| |
Collapse
|
3
|
Saikia L, Gogoi B, Sen S, Tonk RK, Kumar D, Dutta PP. The recent update and advancements of natural products in targeting the Wnt/β-Catenin pathway for cancer prevention and therapeutics. Med Oncol 2024; 41:164. [PMID: 38816663 DOI: 10.1007/s12032-024-02387-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 04/19/2024] [Indexed: 06/01/2024]
Abstract
The Wnt/β-Catenin pathway (Wnt/β-CatP) is implicated in accelerating carcinogenesis and cancer progression, contributing to increased morbidity and treatment resistance. Even though it holds promise as a focus for cancer treatment, its intricate nature and diverse physiological effects pose significant challenges. Recent years have witnessed significant advancements in this domain, with numerous natural products demonstrating promising preclinical anti-tumor effects and identified as inhibitors of the Wnt/β-CatP through various upstream and downstream mechanisms. This study provides a comprehensive overview of the current landscape of Wnt/β-Cat-targeted cancer therapy, examining the impact of natural products on Wnt/β-Cat signaling in both cancer prevention and therapeutic contexts. A comprehensive search was conducted on scientific databases like SciFinder, PubMed, and Google Scholar to retrieve relevant literature on Wnt-signaling, natural products, β-Catenin (β-Cat), and cancer from 2020 to January 2024. As per the analysis of the relevant reference within the specified period, it has been noted that a total of 58 phytoconstituents, predominantly phenolics, followed by triterpenoids and several other classes, along with a limited number of plant extracts, have exhibited activity targeting the Wnt/β-CatP. Most β-Cat regulating modulators restrict cancer cell development by suppressing β-Cat expression, facilitating proteasomal degradation, and inhibiting nuclear translocation. Multiple approaches have been devised to block the activity of β-Cat in cancer therapy, a key factor in cancer progression, leading to the discovery of various Wnt/β-CatP regulators. However, their exploration remains limited, necessitating further research using clinical models for potential clinical use in cancer prevention and therapeutics.
Collapse
Affiliation(s)
- Lunasmrita Saikia
- Faculty of Pharmaceutical Science, Assam Down Town University, Guwahati, Assam, 781026, India
| | - Bhaskarjyoti Gogoi
- Department of Biotechnology, The Assam Royal Global University, Guwahati, Assam, 781035, India
| | - Saikat Sen
- Faculty of Pharmaceutical Science, Assam Down Town University, Guwahati, Assam, 781026, India
| | - Rajiv K Tonk
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi, 110017, India
| | - Deepak Kumar
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Shoolini University, Solan, Himachal Pradesh, 173229, India.
| | - Partha Pratim Dutta
- Faculty of Pharmaceutical Science, Assam Down Town University, Guwahati, Assam, 781026, India.
| |
Collapse
|
4
|
Zou W, Wang X, Xia X, Zhang T, Nie M, Xiong J, Fang X. Resveratrol protected against the development of endometriosis by promoting ferroptosis through miR-21-3p/p53/SLC7A11 signaling pathway. Biochem Biophys Res Commun 2024; 692:149338. [PMID: 38043156 DOI: 10.1016/j.bbrc.2023.149338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 11/15/2023] [Accepted: 11/24/2023] [Indexed: 12/05/2023]
Abstract
Resveratrol is involved in regulating ferroptosis, but its role in Endometriosis (EMS) is not clear. In this study, we aim to investigate the effect of ferroptosis and resveratrol intervention in the pathogenesis of EMS cyst. Cell proliferation, migration, and oxidative stress level were analyzed. The interaction of miR-21-3p and p53 was analyzed by dual luciferase assay. The interaction between p53 and SLC7A11 were analyzed by chromatin immunoprecipitation (CHIP). The miR-21-3p, GPX4, ACSL4, FTH1, p53, SLC7A11, Ptgs2 and Chac1 expression were analyzed by RT-qPCR or Western blot. The Fe3+ deposition and miR-21-3p, GPX4, FTH1 and SLC7A11 expressions were increased, and ACSL4, p53, Ptgs2 and Chac1 expression were decreased in EMS patients. Resveratrol inhibited migration, induced Ptgs2 and Chac1 expression in EESCs. Overexpression of miR-21-3p inhibited p53, Ptgs2 and Chac1 expression, and promoted SLC7A11 expression, which was reversed by resveratrol. miR-21-3p bound to p53, which interacted with SLC7A11. Resveratrol promoted Ptgs2 and Chac1 expression in the sh-p53 EESCs. Resveratrol reduced miR-21-3p and SLC7A11 expressions, and increased p53, Ptgs2 and Chac1 expressions, and Fe3+ deposition in the lesion tissues of EMS mice, which were reversed by miR-21-3p mimics. Resveratrol activated p53/SLC7A11 pathway by down-regulating miR-21-3p to promote ferroptosis and prevent the development of EMS.
Collapse
Affiliation(s)
- Wen Zou
- Department of Obstetrics and Gynecology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Xi Wang
- Department of Obstetrics and Gynecology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Xiaomeng Xia
- Department of Obstetrics and Gynecology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Tingting Zhang
- Department of Obstetrics and Gynecology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Meifang Nie
- Department of Obstetrics and Gynecology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Jing Xiong
- Department of Obstetrics and Gynecology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Xiaoling Fang
- Department of Obstetrics and Gynecology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China.
| |
Collapse
|
5
|
Kang DY, Park S, Song KS, Bae SW, Lee JS, Jang KJ, Park YM. Anticancer Effects of 6-Gingerol through Downregulating Iron Transport and PD-L1 Expression in Non-Small Cell Lung Cancer Cells. Cells 2023; 12:2628. [PMID: 37998363 PMCID: PMC10670414 DOI: 10.3390/cells12222628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/05/2023] [Accepted: 11/13/2023] [Indexed: 11/25/2023] Open
Abstract
Iron homeostasis is considered a key factor in human metabolism, and abrogation in the system could create adverse effects, including cancer. Moreover, 6-gingerol is a widely used bioactive phenolic compound with anticancer activity, and studies on its exact mechanisms on non-small cell lung cancer (NSCLC) cells are still undergoing. This study aimed to find the mechanism of cell death induction by 6-gingerol in NSCLC cells. Western blotting, real-time polymerase chain reaction, and flow cytometry were used for molecular signaling studies, and invasion and tumorsphere formation assay were also used with comet assay for cellular processes. Our results show that 6-gingerol inhibited cancer cell proliferation and induced DNA damage response, cell cycle arrest, and apoptosis in NSCLC cells, and cell death induction was found to be the mitochondrial-dependent intrinsic apoptosis pathway. The role of iron homeostasis in the cell death induction of 6-gingerol was also investigated, and iron metabolism played a vital role in the anticancer ability of 6-gingerol by downregulating EGFR/JAK2/STAT5b signaling or upregulating p53 and downregulating PD-L1 expression. Also, 6-gingerol induced miR-34a and miR-200c expression, which may indicate regulation of PD-L1 expression by 6-gingerol. These results suggest that 6-gingerol could be a candidate drug against NSCLC cells and that 6-gingerol could play a vital role in cancer immunotherapy.
Collapse
Affiliation(s)
- Dong Young Kang
- Department of Immunology, School of Medicine, Konkuk University, Chungju 27478, Republic of Korea
| | - Sanghyeon Park
- Department of Immunology, School of Medicine, Konkuk University, Chungju 27478, Republic of Korea
| | - Kyoung Seob Song
- Department of Medical Science, Kosin University College of Medicine, Busan 49267, Republic of Korea
| | - Se Won Bae
- Department of Chemistry and Cosmetics, Jeju National University, Jeju 63243, Republic of Korea
| | - Jeong-Sang Lee
- Department of Functional Foods and Biotechnology, College of Medical Sciences, Jeonju University, Jeonju 55069, Republic of Korea
| | - Kyoung-Jin Jang
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| | - Yeong-Min Park
- Department of Integrative Biological Sciences and Industry, Sejong University, Seoul 05006, Republic of Korea
| |
Collapse
|
6
|
Wang C, Ji Y, Zhang H, Ye Y, Zhang G, Zhang S, Zhao C, Wang Y. Increased level of exosomal miR-20b-5p derived from hypothermia-treated microglia promotes neurite outgrowth and synapse recovery after traumatic brain injury. Neurobiol Dis 2023; 179:106042. [PMID: 36804284 DOI: 10.1016/j.nbd.2023.106042] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 02/01/2023] [Accepted: 02/12/2023] [Indexed: 02/18/2023] Open
Abstract
Mild hypothermia has been proven to inhibit microglia activation after TBI. Exosomal microRNA derived from microglia played a critical role in promoting neurite outgrowth and synapse recovery. Here, we aimed to investigate the role of microRNAs in microglial exosomes after hypothermia treatment on neuronal regeneration after TBI. For in vitro study, stretch-injured neurons were co-cultured with microglial exosomes. For in vivo study, C57BL/6 mice were under controlled cortical impact and injected with microglial exosomes. The results showed that MG-LPS-EXOHT increased the number of dendrite branches and total length of dendrites both in vitro and in vivo, elevated the expression levels of PSD-95 and GluR1 in stretch-injured neurons, and increased spine density in the pericontusion region. Moreover, MG-LPS-EXOHT improved motor function and motor coordination. A high-throughput sequencing showed that miR-20b-5p was upregulated in MG-LPS-EXOHT. Elevating miR-20b-5p promoted neurite outgrowth and synapse recovery of injured neurons both in vitro and in vivo. Following mechanistic study demonstrated that miR-20b-5p might promote neurite outgrowth and synapse recovery by directly targeting PTEN and activating PI3K-AKT pathway. In conclusion, mild hypothermia could modify the microRNA prolife of exosomes derived from LPS activated BV2 cells. Furthermore, high level of microglial exosomal miR-20b-5p induced by mild hypothermia could transfer into injured neurons and promote neurite outgrowth and synapse recovery after TBI via activating the PI3K-AKT pathway by suppressing PTEN expression.
Collapse
Affiliation(s)
- Chuanfang Wang
- Department of Neurosurgery and Neurosurgical Disease Research Centre, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China; Department of Neurosurgery, the First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, Guangdong, China
| | - Yunxiang Ji
- Department of Neurosurgery and Neurosurgical Disease Research Centre, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Huabin Zhang
- Department of Neurosurgery and Neurosurgical Disease Research Centre, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Yongyi Ye
- Department of Neurosurgery and Neurosurgical Disease Research Centre, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Guilong Zhang
- Department of Neurosurgery and Neurosurgical Disease Research Centre, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Shizhen Zhang
- Department of Neurosurgery and Neurosurgical Disease Research Centre, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Chengcheng Zhao
- Department of Neurosurgery, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, Guangdong, China; Department of Neurosurgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.
| | - Yezhong Wang
- Department of Neurosurgery and Neurosurgical Disease Research Centre, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
7
|
Antitumor Effects of Natural Bioactive Ursolic Acid in Embryonic Cancer Stem Cells. JOURNAL OF ONCOLOGY 2022; 2022:6737248. [PMID: 35222644 PMCID: PMC8866021 DOI: 10.1155/2022/6737248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 01/22/2022] [Indexed: 11/17/2022]
Abstract
Embryonic cancer cells (CSCs) could cause different types of cancer, a skill that makes them even more dangerous than other cancer cells. Identifying CSCs using natural products is a good option as it inhibits the recurrence of cancer with moderate various effects. Ursolic acid (UA) is a pentacyclic triterpenoid extracted from fruit and herbal remedies and has known anticancer functions against various cancer cells. However, its potential against CSCs remains uncertain. This study was planned to examine the induction of cell apoptosis by the UA. For cell signaling studies, we performed experiments, which are real-time qPCR and immunoblotting. Also, various cellular processes were analyzed using flow cytometry. The results raised a barrier to cell proliferation by the UA in NTERA-2 and NCCIT cells. Morphological studies also confirmed the UA's ability to cause cell death in embryonic CSCs. Examination of cell death importation showed that the UA formed the expression of the iNOS and thus the cell generation and mitochondrial reactive oxygen generation, which created a reaction to cellular DNA damage by raising the protein levels of phospho-histone ATR and ATM. In addition, the UA created the binding of the G0/G1 cell cycle to NTERA-2 and NCCIT cells, improved the expression levels of p21 and p27, and reduced the expression levels of CDK4, cyclin D1, and cyclin E, confirming the UA's ability to initiate cell cycle arrest. Finally, the UA created an internal mechanism of apoptosis in the embryonic CSC using BAX and cytochrome c regulation as well as the regulation of BCL-xL and BCL-2 proteins. Therefore, UA could be the best candidate for targeting CSCs and thus suppressing the emergence of cancer.
Collapse
|