1
|
Baldwin D, Carmichael J, Cook G, Navani N, Peach J, Slater R, Wheatstone P, Wilkins J, Allen-Delingpole N, Kerr CEP, Siddiqui K. UK Stakeholder Perspectives on Surrogate Endpoints in Cancer, and the Potential for UK Real-World Datasets to Validate Their Use in Decision-Making. Cancer Manag Res 2024; 16:791-810. [PMID: 39044745 PMCID: PMC11264281 DOI: 10.2147/cmar.s441359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 06/24/2024] [Indexed: 07/25/2024] Open
Abstract
Duration of overall survival in patients with cancer has lengthened due to earlier detection and improved treatments. However, these improvements have created challenges in assessing the impact of newer treatments, particularly those used early in the treatment pathway. As overall survival remains most decision-makers' preferred primary endpoint, therapeutic innovations may take a long time to be introduced into clinical practice. Moreover, it is difficult to extrapolate findings to heterogeneous populations and address the concerns of patients wishing to evaluate everyday quality and extension of life. There is growing interest in the use of surrogate or interim endpoints to demonstrate robust treatment effects sooner than is possible with measurement of overall survival. It is hoped that they could speed up patients' access to new drugs, combinations, and sequences, and inform treatment decision-making. However, while surrogate endpoints have been used by regulators for drug approvals, this has occurred on a case-by-case basis. Evidence standards are yet to be clearly defined for acceptability in health technology appraisals or to shape clinical practice. This article considers the relevance of the use of surrogate endpoints in cancer in the UK context, and explores whether collection and analysis of real-world UK data and evidence might contribute to validation.
Collapse
Affiliation(s)
- David Baldwin
- Department of Respiratory Medicine, Nottingham University Hospitals NHS Trust and the University of Nottingham, Nottingham, UK
| | - Jonathan Carmichael
- Department of Oncology, The National Institute for Health Research Leeds In Vitro Diagnostics Co-Operative (NIHR Leeds MIC), Leeds, UK
| | - Gordon Cook
- Cancer Research UK Trials Unit, LICTR, University of Leeds & NIHR (Leeds) IVD MIC, Leeds, UK
| | - Neal Navani
- Lungs for Living Research Centre, UCL Respiratory, University College London, London, UK
- Department of Thoracic Medicine, University College London Hospital, London, UK
| | - James Peach
- Human Centric Drug Discovery, Wood Centre for Innovation, Oxford, UK
| | | | - Pete Wheatstone
- Patient and Public Involvement and Engagement Group, DATA-CAN, London, UK
| | | | | | | | | |
Collapse
|
2
|
Abduh MS. An overview of multiple myeloma: A monoclonal plasma cell malignancy's diagnosis, management, and treatment modalities. Saudi J Biol Sci 2024; 31:103920. [PMID: 38283805 PMCID: PMC10818257 DOI: 10.1016/j.sjbs.2023.103920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 12/20/2023] [Accepted: 12/29/2023] [Indexed: 01/30/2024] Open
Abstract
Multiple Myeloma (MM) is a plasma cell cancer with high mortality and morbidity rates. Its incidence rate has increased by 143% since 1975. Adipokines, cytokines, chemokines, and genetic variations influence the development and progression of MM. Chromosomal translocations cause mutations associated with MM. The pathogenesis of MM is complicated by novel issues like miRNAs, RANKL, Wnt/DKK1, Wnt, and OPG. Conventional diagnosis methods include bone marrow biopsy, sPEP or uPEP, sIFE and uIFE, and sFLC assay, along with advanced techniques such as FISH, SNPA, and gene expression technologies. A novel therapeutic strategy has been developed recently. Chemotherapy, hematopoietic stem cell transplantation, and a variety of drug classes in combination are used to treat patients with high-risk diseases. Alkylating agents, PIs, and IMiDs have all been developed as effective treatment options for MM in recent years. This review overviews the current recommendations for managing MGUS, SMM, MM, SP and NSMM and discusses practices in diagnosing and treating MM.
Collapse
Affiliation(s)
- Maisa Siddiq Abduh
- Immune Responses in Different Diseases Research Group, Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
3
|
Teo WZY, Ong IYE, Tong JWY, Ong WL, Lin A, Song F, Tai BC, Ooi M, Seokojo CY, Chen Y, Nagarajan C, Chng WJ, de Mel S. Response-Adapted Therapy for Newly Diagnosed Multiple Myeloma. Curr Hematol Malig Rep 2023; 18:190-200. [PMID: 37400631 DOI: 10.1007/s11899-023-00704-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/13/2023] [Indexed: 07/05/2023]
Abstract
PURPOSE OF REVIEW The development of potent novel agents has improved outcomes for patients with multiple myeloma (MM). Heterogeneity of response to therapy, an expanding arsenal of treatment options, and cost are however major challenges for physicians making treatment decisions. Response-adapted therapy is hence an attractive strategy for sequencing of therapy in MM. Despite its successful application in other haematologic malignancies, response-adapted therapy is yet to become a standard of care for MM. We provide our perspective on response-adapted therapeutic strategies evaluated thus far and how they may be implemented and improved on in treatment algorithms of the future. RECENT FINDINGS While older studies suggested that early response based on International Myeloma Working Group response criteria could impact long-term outcomes, recent data have contradicted these findings. The advent of minimal residual disease (MRD) as a powerful prognostic factor in MM has raised the promise of MRD-adapted treatment strategies. The development of more sensitive techniques for paraprotein quantification as well as imaging modalities to detect extramedullary disease is likely to change response assessment in MM. These techniques combined with MRD assessment may provide sensitive and holistic response assessments which could be evaluated in clinical trials. Response-adapted treatment algorithms have the potential to allow an individualised treatment strategy, maximising efficacy, while minimising toxicities and cost. Standardisation of MRD methodology, incorporation of imaging into response assessment, and the optimal management of MRD positive patients are key questions to be addressed in future trials.
Collapse
Affiliation(s)
- Winnie Z Y Teo
- Department of Haematology-Oncology, National University Cancer Science Institute of Singapore (NCIS), National University Health System, Singapore, Singapore
- Fast and Chronic Program, Alexandra Hospital, National University Health System, Singapore, Singapore
| | - Ian Y E Ong
- Department of Internal Medicine, Singapore General Hospital, Singapore, Singapore
| | - Jason W Y Tong
- Department of General Surgery, National University Health System, Singapore, Singapore
| | - Wan Li Ong
- Department of General Surgery, Singapore General Hospital, Singapore, Singapore
| | - Adeline Lin
- Department of Haematology-Oncology, National University Cancer Science Institute of Singapore (NCIS), National University Health System, Singapore, Singapore
| | - Fangfang Song
- Department of Haematology-Oncology, National University Cancer Science Institute of Singapore (NCIS), National University Health System, Singapore, Singapore
| | - Bee Choo Tai
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore
| | - Melissa Ooi
- Department of Haematology-Oncology, National University Cancer Science Institute of Singapore (NCIS), National University Health System, Singapore, Singapore
| | - Cinnie Yentia Seokojo
- Department of Haematology-Oncology, National University Cancer Science Institute of Singapore (NCIS), National University Health System, Singapore, Singapore
| | - Yunxin Chen
- SingHealth Duke-NUS Blood Cancer Centre, Singapore General Hospital, Singapore, Singapore
- Department of Haematology, Singapore General Hospital, Singapore, Singapore
| | - Chandramouli Nagarajan
- SingHealth Duke-NUS Blood Cancer Centre, Singapore General Hospital, Singapore, Singapore
- Department of Haematology, Singapore General Hospital, Singapore, Singapore
| | - Wee Joo Chng
- Department of Haematology-Oncology, National University Cancer Science Institute of Singapore (NCIS), National University Health System, Singapore, Singapore
- Department of Medicine Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Cancer Science Institute, National University of Singapore, Singapore, Singapore
| | - Sanjay de Mel
- Department of Haematology-Oncology, National University Cancer Science Institute of Singapore (NCIS), National University Health System, Singapore, Singapore.
- Department of Medicine Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
4
|
Belotti A, Ribolla R, Crippa C, Chiarini M, Giustini V, Ferrari S, Peli A, Cattaneo C, Roccaro A, Frittoli B, Grazioli L, Rossi G, Tucci A. Predictive role of sustained imaging MRD negativity assessed by diffusion-weighted whole-body MRI in multiple myeloma. Am J Hematol 2023; 98:E230-E232. [PMID: 37317959 DOI: 10.1002/ajh.26995] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 04/30/2023] [Accepted: 06/07/2023] [Indexed: 06/16/2023]
Affiliation(s)
- Angelo Belotti
- Department of Hematology, ASST Spedali Civili, Brescia, Italy
| | | | - Claudia Crippa
- Department of Hematology, ASST Spedali Civili, Brescia, Italy
| | - Marco Chiarini
- Clinical Chemistry Laboratory/Diagnostic Department, ASST Spedali Civili, Brescia, Italy
| | - Viviana Giustini
- Clinical Chemistry Laboratory/Diagnostic Department, ASST Spedali Civili, Brescia, Italy
| | | | - Annalisa Peli
- Department of Hematology, ASST Spedali Civili, Brescia, Italy
| | - Chiara Cattaneo
- Department of Hematology, ASST Spedali Civili, Brescia, Italy
| | - Aldo Roccaro
- Clinical Trial Center, Translational Research and Phase I Unit, ASST Spedali Civili, Brescia, Italy
| | | | - Luigi Grazioli
- Department of Radiology, ASST Spedali Civili, Brescia, Italy
| | - Giuseppe Rossi
- Department of Hematology, ASST Spedali Civili, Brescia, Italy
| | | |
Collapse
|
5
|
Marx A, Osváth M, Szikora B, Pipek O, Csabai I, Nagy Á, Bödör C, Matula Z, Nagy G, Bors A, Uher F, Mikala G, Vályi-Nagy I, Kacskovics I. Liquid biopsy-based monitoring of residual disease in multiple myeloma by analysis of the rearranged immunoglobulin genes-A feasibility study. PLoS One 2023; 18:e0285696. [PMID: 37235573 DOI: 10.1371/journal.pone.0285696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 04/28/2023] [Indexed: 05/28/2023] Open
Abstract
The need for sensitive monitoring of minimal/measurable residual disease (MRD) in multiple myeloma emerged as novel therapies led to deeper responses. Moreover, the potential benefits of blood-based analyses, the so-called liquid biopsy is prompting more and more studies to assess its feasibility. Considering these recent demands, we aimed to optimize a highly sensitive molecular system based on the rearranged immunoglobulin (Ig) genes to monitor MRD from peripheral blood. We analyzed a small group of myeloma patients with the high-risk t(4;14) translocation, using next-generation sequencing of Ig genes and droplet digital PCR of patient-specific Ig heavy chain (IgH) sequences. Moreover, well established monitoring methods such as multiparametric flow cytometry and RT-qPCR of the fusion transcript IgH::MMSET (IgH and multiple myeloma SET domain-containing protein) were utilized to evaluate the feasibility of these novel molecular tools. Serum measurements of M-protein and free light chains together with the clinical assessment by the treating physician served as routine clinical data. We found significant correlation between our molecular data and clinical parameters, using Spearman correlations. While the comparisons of the Ig-based methods and the other monitoring methods (flow cytometry, qPCR) were not statistically evaluable, we found common trends in their target detection. Regarding longitudinal disease monitoring, the applied methods yielded complementary information thus increasing the reliability of MRD evaluation. We also detected indications of early relapse before clinical signs, although this implication needs further verification in a larger patient cohort.
Collapse
Affiliation(s)
- Anita Marx
- Department of Immunology, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary
- Doctoral School of Biology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Magdolna Osváth
- Department of Immunology, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary
- Doctoral School of Biology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Bence Szikora
- Department of Immunology, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Orsolya Pipek
- Department of Physics of Complex Systems, ELTE Eötvös Loránd University, Budapest, Hungary
| | - István Csabai
- Department of Physics of Complex Systems, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Ákos Nagy
- Department of Pathology and Experimental Cancer Research, HCEMM-SE Molecular Oncohematology Research Group, Semmelweis University, Budapest, Hungary
| | - Csaba Bödör
- Department of Pathology and Experimental Cancer Research, HCEMM-SE Molecular Oncohematology Research Group, Semmelweis University, Budapest, Hungary
| | - Zsolt Matula
- National Institute of Hematology and Infectious Diseases, Central Hospital of Southern Pest, Budapest, Hungary
| | - Ginette Nagy
- National Institute of Hematology and Infectious Diseases, Central Hospital of Southern Pest, Budapest, Hungary
| | - András Bors
- National Institute of Hematology and Infectious Diseases, Central Hospital of Southern Pest, Budapest, Hungary
| | - Ferenc Uher
- National Institute of Hematology and Infectious Diseases, Central Hospital of Southern Pest, Budapest, Hungary
| | - Gábor Mikala
- National Institute of Hematology and Infectious Diseases, Central Hospital of Southern Pest, Budapest, Hungary
| | - István Vályi-Nagy
- National Institute of Hematology and Infectious Diseases, Central Hospital of Southern Pest, Budapest, Hungary
| | - Imre Kacskovics
- Department of Immunology, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary
| |
Collapse
|
6
|
Kriegsmann K, Manta C, Schwab R, Mai EK, Raab MS, Salwender HJ, Fenk R, Besemer B, Dürig J, Schroers R, von Metzler I, Hänel M, Mann C, Asemissen AM, Heilmeier B, Bertsch U, Huhn S, Müller-Tidow C, Goldschmidt H, Hundemer M. Comparison of bone marrow and peripheral blood aberrant plasma cell assessment by NGF in patients with MM. Blood Adv 2023; 7:379-383. [PMID: 35914229 PMCID: PMC9898596 DOI: 10.1182/bloodadvances.2022008005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 07/11/2022] [Accepted: 07/15/2022] [Indexed: 02/01/2023] Open
Affiliation(s)
- Katharina Kriegsmann
- Department of Hematology, Oncology, and Rheumatology, Heidelberg University Hospital, Heidelberg, Germany
| | - Calin Manta
- Department of Hematology, Oncology, and Rheumatology, Heidelberg University Hospital, Heidelberg, Germany
| | - Ricarda Schwab
- Department of Hematology, Oncology, and Rheumatology, Heidelberg University Hospital, Heidelberg, Germany
| | - Elias K. Mai
- Department of Hematology, Oncology, and Rheumatology, Heidelberg University Hospital, Heidelberg, Germany
| | - Marc S. Raab
- Department of Hematology, Oncology, and Rheumatology, Heidelberg University Hospital, Heidelberg, Germany
| | - Hans J. Salwender
- Asklepios Tumorzentrum Hamburg, AK Altona and AK St. Georg, Hamburg, Germany
| | - Roland Fenk
- Department of Hematology, Oncology and Clinical Immunology, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Britta Besemer
- Department of Internal Medicine II, University Hospital Tübingen, Tübingen, Germany
| | - Jan Dürig
- Department for Hematology and Stem Cell Transplantation, University Hospital Essen, Essen, Germany
| | - Roland Schroers
- Department of Hematology and Oncology, Ruhr-University Bochum, Bochum, Germany
| | - Ivana von Metzler
- Department of Medicine, Hematology/Oncology, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
| | - Mathias Hänel
- Department of Internal Medicine III, Clinic Chemnitz, Chemnitz, Germany
| | - Christoph Mann
- Department for Hematology, Oncology and Immunology, University Hospital Gießen and Marburg, Marburg, Germany
| | - Anne M. Asemissen
- Department of Oncology, Hematology and Bone Marrow Transplant, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Bernhard Heilmeier
- Clinic for Oncology and Hematology, Hospital Barmherzige Brueder Regensburg, Regensburg, Germany
| | - Uta Bertsch
- Department of Hematology, Oncology, and Rheumatology, Heidelberg University Hospital, Heidelberg, Germany
- National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany
| | - Stefanie Huhn
- Department of Hematology, Oncology, and Rheumatology, Heidelberg University Hospital, Heidelberg, Germany
| | - Carsten Müller-Tidow
- Department of Hematology, Oncology, and Rheumatology, Heidelberg University Hospital, Heidelberg, Germany
| | - Hartmut Goldschmidt
- Department of Hematology, Oncology, and Rheumatology, Heidelberg University Hospital, Heidelberg, Germany
- National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany
| | - Michael Hundemer
- Department of Hematology, Oncology, and Rheumatology, Heidelberg University Hospital, Heidelberg, Germany
- Medizinisches Versorgungszentrum am Kreiskrankenhaus Bergstraße gGmbH, Heppenheim, Germany
| |
Collapse
|
7
|
Ho M, Kourelis T. The burden of myeloma: novel approaches to disease assessment. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2022; 2022:356-362. [PMID: 36485143 PMCID: PMC9820131 DOI: 10.1182/hematology.2022000348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Novel therapies in multiple myeloma (MM) have increased the rates of conventional complete remission (CR) in patients. However, patients in CR can have highly heterogeneous outcomes. Novel and more sensitive methods of assessing residual disease burden after therapy will help prognosticate this group better and, ideally, allow individualized therapy adjustments based on response depth in the future. Here, we review novel bone marrow, peripheral blood, and imaging methods for assessing myeloma burden and discuss the opportunities and limitations of incorporating these in everyday clinical practice.
Collapse
Affiliation(s)
- Matthew Ho
- Department of Internal Medicine, Division of Hematology, Mayo Clinic, Rochester, MN
| | - Taxiarchis Kourelis
- Department of Internal Medicine, Division of Hematology, Mayo Clinic, Rochester, MN
| |
Collapse
|
8
|
Pacelli P, Raspadori D, Bestoso E, Gozzetti A, Bocchia M. "Friends and foes" of multiple myeloma measurable/minimal residual disease evaluation by next generation flow. Front Oncol 2022; 12:1057713. [PMID: 36518304 PMCID: PMC9742464 DOI: 10.3389/fonc.2022.1057713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 11/14/2022] [Indexed: 09/19/2023] Open
Abstract
Next Generation Flow (NGF) represents a gold standard for the evaluation of Minimal Residual Disease (MRD) in Multiple Myeloma (MM) patients at any stage of treatment. Although the assessment of MRD is still not universally employed in clinical practice, numerous studies have demonstrated the strength of MRD as a reliable predictor of long-term outcome, and its potential to supersede the prognostic value of CR. The possibility to acquire millions of events, in combination with the use of standard reagents and a good expertise in the analysis of rare populations, led to high chance of success and a sensitivity of 10-6 that is superimposable to the one of Next Generation Sequencing molecular techniques. Some minor bias, correlated to the protocols applied, to the quality of samples and to the high heterogeneity of plasma cells phenotype, may be overcome using standard protocols and having at disposition personnel expertise for MRD analysis. With the use of NGF we can today enter a new phase of the quantification of residual disease, switching from the definition of "minimal" residual disease to "measurable" residual disease. This review takes account of the principle "friends and foes" of Myeloma "Measurable" Residual Disease evaluation by NGF, to give insights into the potentiality of this technique. The optimization of the quality of BM samples and the analytic expertise that permits to discriminate properly the rare pathologic clones, are the keys for obtaining results with a high clinical value that could be of great impact and relevance in the future.
Collapse
Affiliation(s)
- Paola Pacelli
- Hematology Unit, Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | | | - Elena Bestoso
- Hematology Unit, Siena University Hospital, Siena, Italy
| | - Alessandro Gozzetti
- Hematology Unit, Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
- Hematology Unit, Siena University Hospital, Siena, Italy
| | - Monica Bocchia
- Hematology Unit, Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
- Hematology Unit, Siena University Hospital, Siena, Italy
| |
Collapse
|
9
|
Hou Z, Jiang P, Su S, Zhou H. Hotspots and trends in multiple myeloma bone diseases: A bibliometric visualization analysis. Front Pharmacol 2022; 13:1003228. [PMID: 36313356 PMCID: PMC9614215 DOI: 10.3389/fphar.2022.1003228] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 09/23/2022] [Indexed: 11/27/2022] Open
Abstract
Objective: This study aims to explore the research hotspots and trends of multiple myeloma bone disease in the past 20 years by bibliometric visualization analysis. Methods: With the Web of Science Core Collection database as the data source, the relevant publications of multiple myeloma bone disease from 2002 to 2021 are retrieved. These data are analyzed using software CiteSpace 5.8.R3 and Scimago Graphica 1.0.24, together with the Online Analysis Platform of Literature Metrology. Results: A total of 6,168 published research papers, including 4668 articles and 1500 review papers, are included in this study. Generally speaking, annual publications and citations are on the rise, especially in recent 2 years. The majority of these papers are published in the United States, with Mayo Clinic being the greatest contributor. The most productive journal and author are Blood and Terpos E, respectively, while the most frequently co-cited reference, author and journal are Rajkumar et al., 2014, Lancet Oncol, Kyle RA and Blood, respectively. The major research subject categories are oncology and hematology. The “disease diagnosis”, “prognosis evaluation”, “pathogenesis”, “imaging technology” and “targeted therapy” are recent research frontiers. The burst keywords “transplantation”, “progression”, “activation”, “lenalidomide”, “flow cytometry”, “drug resistance”, “management” and “mesenchymal stem cell” reflect the latest research hotspots. Conclusion: This study reveals the research hotspots and trends of multiple myeloma bone disease through bibliometric visualization analysis, and provides a valuable reference for further research.
Collapse
Affiliation(s)
- Zhaomeng Hou
- Guangxi University of Chinese Medicine, Nanning, China
- Yancheng TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Yancheng, China
| | - Ping Jiang
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shaoting Su
- Guangxi University of Chinese Medicine, Nanning, China
| | - Honghai Zhou
- Guangxi University of Chinese Medicine, Nanning, China
- The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, China
- *Correspondence: Honghai Zhou,
| |
Collapse
|
10
|
Allegra A, Cancemi G, Mirabile G, Tonacci A, Musolino C, Gangemi S. Circulating Tumour Cells, Cell Free DNA and Tumour-Educated Platelets as Reliable Prognostic and Management Biomarkers for the Liquid Biopsy in Multiple Myeloma. Cancers (Basel) 2022; 14:cancers14174136. [PMID: 36077672 PMCID: PMC9454477 DOI: 10.3390/cancers14174136] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/24/2022] [Accepted: 08/25/2022] [Indexed: 12/14/2022] Open
Abstract
Simple Summary Even though the presently employed biomarkers in the detection and management of multiple myeloma are demonstrating encouraging results, the mortality percentage of the malignancy is still elevated. Thus, searching for new diagnostic or prognostic markers is pivotal. Liquid biopsy allows the examination of circulating tumour DNA, cell-free DNA, extracellular RNA, and cell free proteins, which are released into the bloodstream due to the breakdown of tumour cells or exosome delivery. Liquid biopsy can now be applied in clinical practice to diagnose, and monitor multiple myeloma, probably allowing a personalized treatment of the disease. Abstract Liquid biopsy is one of the fastest emerging fields in cancer evaluation. Circulating tumour cells and tumour-originated DNA in plasma have become the new targets for their possible employ in tumour diagnosis, and liquid biopsy can define tumour burden without invasive procedures. Multiple Myeloma, one of the most frequent hematologic tumors, has been the target of therapeutic progresses in the last few years. Bone marrow aspirate is the traditional tool for diagnosis, prognosis, and genetic evaluation in multiple myeloma patients. However, this painful procedure presents a relevant drawback for regular disease examination as it requires an invasive practice. Moreover, new data demonstrated that a sole bone marrow aspirate is incapable of expressing the multifaceted multiple myeloma genetic heterogeneity. In this review, we report the emerging usefulness of the assessment of circulating tumour cells, cell-free DNA, extracellular RNA, cell-free proteins, extracellular vesicles, and tumour-educated platelets to evaluate the changing mutational profile of multiple myeloma, as early markers of disease, reliable predictors of prognosis, and as useful tools to perform less invasive monitoring in multiple myeloma.
Collapse
Affiliation(s)
- Alessandro Allegra
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, University of Messina, 98125 Messina, Italy
- Correspondence:
| | - Gabriella Cancemi
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, University of Messina, 98125 Messina, Italy
| | - Giuseppe Mirabile
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, University of Messina, 98125 Messina, Italy
| | - Alessandro Tonacci
- Clinical Physiology Institute, National Research Council of Italy (IFC-CNR), 56124 Pisa, Italy
| | - Caterina Musolino
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, University of Messina, 98125 Messina, Italy
| | - Sebastiano Gangemi
- Allergy and Clinical Immunology Unit, Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy
| |
Collapse
|
11
|
Dadzie TG, Green AC. The role of the bone microenvironment in regulating myeloma residual disease and treatment. Front Oncol 2022; 12:999939. [PMID: 36072809 PMCID: PMC9441696 DOI: 10.3389/fonc.2022.999939] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 08/08/2022] [Indexed: 11/28/2022] Open
Abstract
Multiple myeloma is an incurable haematological cancer. The increase in targeted therapies has improved the number of myeloma patients achieving a complete response and improved progression-free survival following therapy. However, a low level of disease or minimal residual disease (MRD) still persists which contributes to the inevitable relapse in myeloma patients. MRD has been attributed to the presence of dormant myeloma cells and their subsequent reactivation, which is controlled by the microenvironment and specialised niches within the bone marrow. This contributes to the evasion of the immune system and chemotherapy, eventually leading to relapse. The growth of myeloma tumours are heavily dependent on environmental stimuli from the bone marrow microenvironment, and this plays a key role in myeloma progression. The bone microenvironment also plays a critical role in myeloma bone disease and the development of skeletal-related events. This review focuses on the bone marrow microenvironment in relation to myeloma pathogenesis and cancer dormancy. Moreover, it reviews the current therapies targeting the bone microenvironment to treat myeloma and myeloma bone disease. Lastly, it identifies novel therapeutic targets for myeloma treatment and the associated bone disease.
Collapse
|
12
|
Ferla V, Antonini E, Perini T, Farina F, Masottini S, Malato S, Marktel S, Lupo Stanghellini MT, Tresoldi C, Ciceri F, Marcatti M. Minimal residual disease detection by next-generation sequencing in multiple myeloma: Promise and challenges for response-adapted therapy. Front Oncol 2022; 12:932852. [PMID: 36052251 PMCID: PMC9426755 DOI: 10.3389/fonc.2022.932852] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 07/06/2022] [Indexed: 11/18/2022] Open
Abstract
Assessment of minimal residual disease (MRD) is becoming a standard diagnostic tool for curable hematological malignancies such as chronic and acute myeloid leukemia. Multiple myeloma (MM) remains an incurable disease, as a major portion of patients even in complete response eventually relapse, suggesting that residual disease remains. Over the past decade, the treatment landscape of MM has radically changed with the introduction of new effective drugs and the availability of immunotherapy, including targeted antibodies and adoptive cell therapy. Therefore, conventional serological and morphological techniques have become suboptimal for the evaluation of depth of response. Recently, the International Myeloma Working Group (IMWG) introduced the definition of MRD negativity as the absence of clonal Plasma cells (PC) with a minimum sensitivity of <10−5 either by next-generation sequencing (NGS) using the LymphoSIGHT platform (Sequenta/Adaptative) or by next-generation flow cytometry (NGF) using EuroFlow approaches as the reference methods. While the definition of the LymphoSIGHT platform (Sequenta/Adaptive) as the standard method derives from its large use and validation in clinical studies on the prognostic value of NGS-based MRD, other commercially available options exist. Recently, the LymphoTrack assay has been evaluated in MM, demonstrating a sensitivity level of 10−5, hence qualifying as an alternative effective tool for MRD monitoring in MM. Here, we will review state-of-the-art methods for MRD assessment by NGS. We will summarize how MRD testing supports clinical trials as a useful tool in dynamic risk-adapted therapy. Finally, we will also discuss future promise and challenges of NGS-based MRD determination for clinical decision-making. In addition, we will present our real-life single-center experience with the commercially available NGS strategy LymphoTrack-MiSeq. Even with the limitation of a limited number of patients, our results confirm the LymphoTrack-MiSeq platform as a cost-effective, readily available, and standardized workflow with a sensitivity of 10−5. Our real-life data also confirm that achieving MRD negativity is an important prognostic factor in MM.
Collapse
Affiliation(s)
- Valeria Ferla
- Hematology and Bone Marrow Transplantation, San Raffaele Scientific Institute, Milan, Italy
- *Correspondence: Valeria Ferla,
| | - Elena Antonini
- Molecular Hematology Laboratory, San Raffaele Scientific Institute, Milan, Italy
| | - Tommaso Perini
- Hematology and Bone Marrow Transplantation, San Raffaele Scientific Institute, Milan, Italy
- Age Related Diseases Laboratory, Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Milan, Italy
| | - Francesca Farina
- Hematology and Bone Marrow Transplantation, San Raffaele Scientific Institute, Milan, Italy
| | - Serena Masottini
- Molecular Hematology Laboratory, San Raffaele Scientific Institute, Milan, Italy
| | - Simona Malato
- Hematology and Bone Marrow Transplantation, San Raffaele Scientific Institute, Milan, Italy
| | - Sarah Marktel
- Hematology and Bone Marrow Transplantation, San Raffaele Scientific Institute, Milan, Italy
| | | | - Cristina Tresoldi
- Molecular Hematology Laboratory, San Raffaele Scientific Institute, Milan, Italy
| | - Fabio Ciceri
- Hematology and Bone Marrow Transplantation, San Raffaele Scientific Institute, Milan, Italy
- University Vita-Salute San Raffaele, Milan, Italy
| | - Magda Marcatti
- Hematology and Bone Marrow Transplantation, San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|