1
|
Mosalem OM, Abdelhakeem A, Abdel-Razeq NH, Babiker H. Pancreatic ductal adenocarcinoma (PDAC): clinical progress in the last five years. Expert Opin Investig Drugs 2025:1-12. [PMID: 40012027 DOI: 10.1080/13543784.2025.2473698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 02/17/2025] [Accepted: 02/24/2025] [Indexed: 02/28/2025]
Abstract
INTRODUCTION Pancreatic ductal adenocarcinoma (PDAC) remains a highly lethal malignancy with limited therapeutic options and poor overall survival. In recent years, advances in genomic profiling have revealed the complex molecular and cellular heterogeneity of PDAC, offering new avenues for therapeutic intervention. AREAS COVERED This review explores emerging therapeutic strategies targeting dysregulated molecular pathways, along with the tumor microenvironment, that have shown promise in overcoming drug resistance. Novel immunotherapy strategies, such as immune checkpoint inhibitors and CAR T-cell therapies, are currently being explored in an attempt to modulate PDAC immugnosuppressive microenvironment. Additionally, we highlight recent clinical trials over the last 5 years and innovative therapeutic strategies aiming to improve outcomes in PDAC. EXPERT OPINION Significant progress in genomic profiling, targeted therapies, and immunotherapy is shaping the treatment of PDAC. Despite challenges posed by its dense stroma and immune suppressive microenvironment, novel strategies such as IL 6 and CD137 inhibitors, CAR-T, and therapeutic cancer vaccines are promising. KRAS targeted therapies are expanding beyond G12C inhibitors, with novel drugs in development that will further improve treatment options. Additionally, tumor treating fields (TTF) are being investigated in locally advanced PDAC, with the PANOVA-3 trial potentially integrating this modality into future treatment strategies. Continued advancements in these areas will significantly enhance PDAC outcomes.
Collapse
Affiliation(s)
- Osama M Mosalem
- Department of Medicine, Division of Hematology Oncology, Mayo Clinic Comprehensive Cancer Center, Jacksonville, FL, USA
| | - Ahmed Abdelhakeem
- Department of Medicine, Division of Hematology Oncology, Mayo Clinic Comprehensive Cancer Center, Jacksonville, FL, USA
| | - Nayef H Abdel-Razeq
- Department of Medicine, Division of Hematology Oncology, Mayo Clinic Comprehensive Cancer Center, Jacksonville, FL, USA
| | | |
Collapse
|
2
|
Ruan DY, Huang WW, Li Y, Zhao Y, Shi Y, Jia Y, Cang S, Zhang W, Shi J, Chen J, Lin J, Liu Y, Xu J, Ouyang W, Fang J, Zhuang W, Liu C, Bu Q, Li M, Meng X, Sun M, Yang N, Dong X, Pan Y, Li X, Qu X, Zhang T, Yuan X, Hu S, Guo W, Li Y, Li S, Liu D, Song F, Tan L, Yu Y, Yu X, Zang A, Sun C, Zhang Q, Zou K, Dan M, Xu RH, Zhao H. Safety, pharmacokinetics and efficacy of HA121-28 in patients with advanced solid tumors and RET fusion-positive non-small-cell lung cancer: a multicenter, open-label, single-arm phase 1/2 trial. Signal Transduct Target Ther 2025; 10:62. [PMID: 40016191 PMCID: PMC11868595 DOI: 10.1038/s41392-025-02155-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 12/20/2024] [Accepted: 01/22/2025] [Indexed: 03/01/2025] Open
Abstract
HA121-28, a promising multikinase inhibitor, mainly targets rearranged during transfection (RET) fusions and selectively targets vascular endothelial growth factor receptor-2, endothelial growth factor receptor, and fibroblast growth factor receptor 1-3. The safety, pharmacokinetics, and efficacy of HA121-28 were assessed in advanced solid tumors (phase 1, ClinicalTrials.gov NCT03994484) and advanced RET fusion-positive non-small-cell lung cancer (RET-TKI naive NSCLC, phase 2, ClinicalTrials.gov NCT05117658). HA121-28 was administered orally in doses range from 25 to 800 mg under the 21-day on/7-day off scheme for a 28-day cycle in phase 1 trial. The recommended dose identified in phase 1 (450 mg) was administered for patients during phase 2. The primary endpoints were the maximum tolerated dose (MTD) in phase 1 and the objective response rate (ORR) in phase 2. 162 patients were enrolled in phase 1 and 48 in phase 2. A total of 600 mg once daily was set as MTD. Across 100-800 mg, the exposure of HA121-28 increased in a dose-dependent manner. Consistent between both trials, diarrhea, rash, and prolonged QTc interval, were the most reported treatment-emergent adverse events. 40.0% (phase 1) and 62.5% (phase 2) patients experienced grade ≥3 treatment-related adverse events, respectively. The overall ORR was 26.8% and the median progression-free survival (PFS) was 5.5 months among 97 NSCLC patients with advanced RET fusion receiving a dose at ≥450 mg once daily. HA121-28 showed encouraging efficacy in advanced RET fusion NSCLC and its toxicity was tolerable in most patients. Nevertheless, cardiotoxicity is a notable concern that warrants careful attention.
Collapse
Affiliation(s)
- Dan-Yun Ruan
- Department of Clinical Research, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Wen-Wen Huang
- Department of Clinical Research, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Yongsheng Li
- Department of Phase 1 Ward, Chongqing University Cancer Hospital, Chongqing Cancer Hospital, Chongqing, People's Republic of China
| | - Yanqiu Zhao
- Department of Respiratory Medicine, Henan Cancer Hospital, Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Yehui Shi
- Department of Breast Oncology, Tianjin Medical University Cancer Institute & Hospital, Tianjin, People's Republic of China
| | - Yuming Jia
- Department of Oncology, The second people's hospital of Yibin, Yibin, Sichuan, People's Republic of China
| | - Shundong Cang
- Department of Medical Oncology, Phase 1 Clinical Research Unit, Department of Medical Oncology, Henan Provincial People's Hospital, Zhengzhou, Hannan, People's Republic of China
| | - Wei Zhang
- Department of Medical Oncology, Phase 1 Clinical Research Unit, Department of Medical Oncology, Henan Provincial People's Hospital, Zhengzhou, Hannan, People's Republic of China
| | - Jianhua Shi
- Department of the Second General Medicine, Linyi Cancer Hospital, Linyi, Shandong, People's Republic of China
| | - Jun Chen
- Department of Pulmonary Oncology, Tianjin Medical University General Hospital, Tianjin, People's Republic of China
| | - Jie Lin
- Department of Oncology, The Second Affiliated hospital of Kunming Medical University, Kunming, Yunnan, People's Republic of China
| | - Yunpeng Liu
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Jianming Xu
- Department of Medical Oncology, The Fifth Medical Center, Chinese PLA General Hospital, Beijing, People's Republic of China
| | - Weiwei Ouyang
- The Phase1 Clinical Center, The Affiliated Cancer Hospital of Guizhou Medical University, Guiyang, Guizhou, People's Republic of China
| | - Jian Fang
- Department of the Second Thoracic Oncology, Beijing Cancer Hospital, Beijing, People's Republic of China
| | - Wu Zhuang
- Department of Respiratory Oncology, Fujian Cancer Hospital, Fuzhou, Fujian, People's Republic of China
| | - Caigang Liu
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Qing Bu
- Department of Medical Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| | - Manxiang Li
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shanxi, People's Republic of China
| | - Xiangjiao Meng
- Department of the Fourth Thoracic Radiotherapy Ward, Shandong Cancer Hospital & Institute, Jinan, Shandong, People's Republic of China
| | - Meili Sun
- Department of Oncology, General Hospital Affiliated Shandong First Medical University, Jinan, Shandong, People's Republic of China
| | - Nong Yang
- Department of Pulmonary and Gastrointestinal Medicine, Hunan Cancer Hospital, Changsha, Hunan, People's Republic of China
| | - Xiaorong Dong
- Department of Cancer Center, Wuhan Union Hospital of China, Wuhan, Hubei, People's Republic of China
| | - Yueyin Pan
- Department of Oncology Chemotherapy, The First Affiliated Hospital of USTC, Hefei, Anhui, People's Republic of China
| | - Xingya Li
- Department of the Second Oncology Ward, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Xiujuan Qu
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Tongmei Zhang
- General Department, Beijing Chest Hospital, Beijing, People's Republic of China
| | - Xianglin Yuan
- Department of Oncology, Tongji Hospital, Tongji Medical College of HUST, Wuhan, Hubei, People's Republic of China
| | - Sheng Hu
- Department of Oncology, Hubei Cancer Hospital, Wuhan, Hubei, People's Republic of China
| | - Wei Guo
- Respiratory Department, Shanxi Cancer Hospital, Taiyuan, Shanxi, People's Republic of China
| | - Yalun Li
- Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Shengqing Li
- Respiratory Department, Huashan Hospital Fudan University, Shanghai, People's Republic of China
| | - Dongying Liu
- Department of Breast Oncology, Tianjin Medical University Cancer Institute & Hospital, Tianjin, People's Republic of China
| | - Feixue Song
- Department of Medical Oncology, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, Gansu, People's Republic of China
| | - Liping Tan
- Department of Respiratory Oncology, Guangxi Medical University Cancer Hospital & Guangxi Cancer Institute, Nanning, Guangxi, People's Republic of China
| | - Yan Yu
- Department of the Third Respiratory Medicine, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, People's Republic of China
| | - Xinmin Yu
- Department of Thoracic Oncology, Zhejiang Cancer Hospital, Hangzhou, Zhejiang, People's Republic of China
| | - Aimin Zang
- Department of Medical Oncology, Affiliated Hospital of Hebei University, Baoding, Hebei, People's Republic of China
| | - Chang Sun
- CSPC ZhongQi Pharmaceutical Technology (Shijiazhuang) Co., Ltd., Shijiazhuang, Hebei, People's Republic of China
| | - Qian Zhang
- CSPC ZhongQi Pharmaceutical Technology (Shijiazhuang) Co., Ltd., Shijiazhuang, Hebei, People's Republic of China
| | - Kai Zou
- CSPC ZhongQi Pharmaceutical Technology (Shijiazhuang) Co., Ltd., Shijiazhuang, Hebei, People's Republic of China
| | - Mo Dan
- CSPC ZhongQi Pharmaceutical Technology (Shijiazhuang) Co., Ltd., Shijiazhuang, Hebei, People's Republic of China
| | - Rui-Hua Xu
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University, Guangzhou, People's Republic of China.
- Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou, People's Republic of China.
| | - Hongyun Zhao
- Department of Clinical Research, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University, Guangzhou, People's Republic of China.
| |
Collapse
|
3
|
Shi J, Zhang L. A Multi-omic study integrating plasma protein, multiple tissues, and single-cell identifies RNASET2 as a key gene for lung cancer. Discov Oncol 2025; 16:152. [PMID: 39930075 PMCID: PMC11811349 DOI: 10.1007/s12672-025-01899-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 02/03/2025] [Indexed: 02/13/2025] Open
Abstract
INTRODUCTION Lung cancer (LC) has the highest cancer-related mortality rate. Even though genome-wide association studies (GWAS) have identified numerous loci linked to LC risk, the underlying causal genes and biological processes are still mostly unknown. METHODS The LC GWAS summary data comprised 29,863 cases and 55,586 controls of European ancestry. The weight file and related files of plasma protein, multi-tissue, and single-cell were obtained from Zhang's study, Mancuso lab, and Thompson's study, respectively. We conducted transcriptome association studies (TWAS) employing functional Summary-based Imputation (FUSION) from two levels, which were multiple tissues and single cell. We conducted proteome-wide association studies (PWAS) from plasma protein. Conditional and joint (COJO) analysis and multi-marker analysis of genomic annotation (MAGMA) analysis were used to further screen the PWAS/TWAS results. Summary-data-based Mendelian randomization (SMR) and colocalization analysis were utilized to explain the causal association between variables and results. RESULTS A total of 13, 251, and 16 genes were calculated from the three dimensions, which were plasma protein, multiple tissues, and single cell, respectively. RNASET2 and IREB2 were obtained through intersecting these three sets of genes. COJO analysis and MAGMA analysis were replicated the two genes successfully. Then, RNASET2 was replicated in both eQTL-SMR and mQTL-SMR and following colocalization analysis. CONCLUSION In summary, we conducted a multi-omic studies, which integrated three levels to investigate the novel targets for LC. Through a series of verifications, RNASET2 was identified as the key gene for LC in the current research.
Collapse
Affiliation(s)
- Jiaxin Shi
- Department of Thoracic Surgery, The Second Affiliated Hospital of Harbin Medical University, No.246 Xuefu Road, Nangang District, Harbin, 150081, Heilongjiang, China
| | - Linyou Zhang
- Department of Thoracic Surgery, The Second Affiliated Hospital of Harbin Medical University, No.246 Xuefu Road, Nangang District, Harbin, 150081, Heilongjiang, China.
| |
Collapse
|
4
|
Mullally WJ, O'Leary CG, O'Byrne KJ. Rearranged during transfection (RET) lung cancer - Update on targeted therapies. Lung Cancer 2025; 200:108083. [PMID: 39827484 DOI: 10.1016/j.lungcan.2025.108083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/18/2024] [Accepted: 01/07/2025] [Indexed: 01/22/2025]
Abstract
The enhanced comprehension of the molecular pathways underpinning oncogenesis in non-small cell lung cancer (NSCLC) has led to the advancement of personalized treatment for individuals with actionable mutations using targeted therapies. The rearranged during transfection (RET) proto-oncogene, is critical in the embryonic development of various tissues, including renal, neural, and neuroendocrine tissue. RET fusions have been observed in approximately 1-2% of NSCLC cases. Targeted therapies for NSCLC with RET alterations have progressed significantly over the past decade. While multikinase inhibitors (MKIs) faced limitations in efficacy and tolerability, the introduction of selective RET inhibitors (SRIs) such as selpercatininb and pralsetinib has transformed patient outcomes, resulting in deep and durable responses. Ongoing clinical trials are exploring their potential benefits in the neoadjuvant and adjuvant setting. Early phase clinical trials endeavor to demonstrate next-generation selective RET inhibitors can effectively overcome SRI resistance mechanisms, offer improved safety profiles, and enhance patient outcomes.
Collapse
Affiliation(s)
- W J Mullally
- Department of Medical Oncology, Princess Alexandra Hospital, Woolloongabba, Queensland 4102, Australia.
| | - C G O'Leary
- Department of Medical Oncology, Mater Misericordiae Hospital, South Brisbane, Queensland 4101, Australia
| | - K J O'Byrne
- Department of Medical Oncology, Princess Alexandra Hospital, Woolloongabba, Queensland 4102, Australia; The School of Biomedical Sciences, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland 4059, Australia; Translational Research Institute, Woolloongabba, Queensland 4102, Australia.
| |
Collapse
|
5
|
Echeverría-Garcés G, Ramos-Medina MJ, González A, Vargas R, Cabrera-Andrade A, Armendáriz-Castillo I, García-Cárdenas JM, Ramírez-Sánchez D, Altamirano-Colina A, Echeverría-Espinoza P, Freire MP, Ocaña-Paredes B, Rivera-Orellana S, Guerrero S, Quiñones LA, López-Cortés A. Worldwide analysis of actionable genomic alterations in lung cancer and targeted pharmacogenomic strategies. Heliyon 2024; 10:e37488. [PMID: 39296198 PMCID: PMC11409134 DOI: 10.1016/j.heliyon.2024.e37488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 08/29/2024] [Accepted: 09/04/2024] [Indexed: 09/21/2024] Open
Abstract
Based on data from the Global Cancer Statistics 2022, lung cancer stands as the most lethal cancer worldwide, with age-adjusted incidence and mortality rates of 23.6 and 16.9 per 100,000 people, respectively. Despite significant strides in precision oncology driven by large-scale international research consortia, there remains a critical need to deepen our understanding of the genomic landscape across diverse racial and ethnic groups. To address this challenge, we performed comprehensive in silico analyses and data mining to identify pathogenic variants in genes that drive lung cancer. We subsequently calculated the allele frequencies and assessed the deleteriousness of these oncogenic variants among populations such as African, Amish, Ashkenazi Jewish, East and South Asian, Finnish and non-Finnish European, Latino, and Middle Eastern. Our analysis examined 117,707 variants within 86 lung cancer-associated genes across 75,109 human genomes, uncovering 8042 variants that are known or predicted to be pathogenic. We prioritized variants based on their allele frequencies and deleterious scores, and identified those with potential significance for response to anti-cancer therapies through in silico drug simulations, current clinical pharmacogenomic guidelines, and ongoing late-stage clinical trials targeting lung cancer-driving proteins. In conclusion, it is crucial to unite global efforts to create public health policies that emphasize prevention strategies and ensure access to clinical trials, pharmacogenomic testing, and cancer research for these groups in developed nations.
Collapse
Affiliation(s)
- Gabriela Echeverría-Garcés
- Centro de Referencia Nacional de Genómica, Secuenciación y Bioinformática, Instituto Nacional de Investigación en Salud Pública "Leopoldo Izquieta Pérez", Quito, Ecuador
- Latin American Network for the Implementation and Validation of Clinical Pharmacogenomics Guidelines (RELIVAF-CYTED), Santiago, Chile
| | - María José Ramos-Medina
- German Cancer Research Center (DKFZ), Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Ariana González
- Latin American Network for the Implementation and Validation of Clinical Pharmacogenomics Guidelines (RELIVAF-CYTED), Santiago, Chile
- Dasa Genómica Latam, Buenos Aires, Argentina
| | - Rodrigo Vargas
- Latin American Network for the Implementation and Validation of Clinical Pharmacogenomics Guidelines (RELIVAF-CYTED), Santiago, Chile
- Department of Molecular Biology, Galileo University, Guatemala City, Guatemala
| | - Alejandro Cabrera-Andrade
- Escuela de Enfermería, Facultad de Ciencias de la Salud, Universidad de Las Américas, Quito, Ecuador
- Grupo de Bio-Quimioinformática, Universidad de Las Américas, Quito, Ecuador
| | - Isaac Armendáriz-Castillo
- Latin American Network for the Implementation and Validation of Clinical Pharmacogenomics Guidelines (RELIVAF-CYTED), Santiago, Chile
| | - Jennyfer M García-Cárdenas
- Latin American Network for the Implementation and Validation of Clinical Pharmacogenomics Guidelines (RELIVAF-CYTED), Santiago, Chile
- Laboratorio de Ciencia de Datos Biomédicos, Escuela de Medicina, Facultad de Ciencias Médicas de la Salud y de la Vida, Universidad Internacional del Ecuador, Quito, Ecuador
| | - David Ramírez-Sánchez
- Cancer Research Group (CRG), Faculty of Medicine, Universidad de Las Américas, Quito, Ecuador
| | | | | | - María Paula Freire
- Cancer Research Group (CRG), Faculty of Medicine, Universidad de Las Américas, Quito, Ecuador
| | - Belén Ocaña-Paredes
- Cancer Research Group (CRG), Faculty of Medicine, Universidad de Las Américas, Quito, Ecuador
| | | | - Santiago Guerrero
- Latin American Network for the Implementation and Validation of Clinical Pharmacogenomics Guidelines (RELIVAF-CYTED), Santiago, Chile
- Laboratorio de Ciencia de Datos Biomédicos, Escuela de Medicina, Facultad de Ciencias Médicas de la Salud y de la Vida, Universidad Internacional del Ecuador, Quito, Ecuador
| | - Luis A Quiñones
- Latin American Network for the Implementation and Validation of Clinical Pharmacogenomics Guidelines (RELIVAF-CYTED), Santiago, Chile
- Laboratory of Chemical Carcinogenesis and Pharmacogenetics, Department of Basic-Clinical Oncology (DOBC), Faculty of Medicine, University of Chile, Santiago, Chile
- Department of Pharmaceutical Sciences and Technology, Faculty of Chemical and Pharmaceutical Sciences, University of Chile, Santiago, Chile
| | - Andrés López-Cortés
- Cancer Research Group (CRG), Faculty of Medicine, Universidad de Las Américas, Quito, Ecuador
| |
Collapse
|
6
|
Nie S, Zhou J, Zheng X, Wei X, Zhang J, Shen X, Zhang W. CD133 ligand-enhanced etoposide-liposome complex for targeted killing of lung cancer cells. Biotechnol Prog 2024; 40:e3460. [PMID: 38558545 DOI: 10.1002/btpr.3460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/04/2024] [Accepted: 03/15/2024] [Indexed: 04/04/2024]
Abstract
Lung cancer has a high incidence rate and a low cure rate, hence the urgent need for effective treatment methods. Current lung cancer drugs have several drawbacks, including low specificity, poor targeting, drug resistance, and irreversible damage to normal tissues. Therefore, there is a need to develop a safe and effective new drug that can target and kill tumor cells. In this study, we combined nanotechnology and biotechnology to develop a CD133 ligand-modified etoposide-liposome complex (Lipo@ETP-CD133) for targeted therapy of lung cancer. The CD133 ligand targeted lung cancer stem cells, causing the composite material to aggregate at the tumor site, where high levels of ETP liposomes could exert a strong tumor-killing effect. Our research results demonstrated that this nano-drug had efficient targeting and tumor-killing effects, indicating its potential for clinical application.
Collapse
Affiliation(s)
- Shiwei Nie
- Department of Thoracic Surgery, Anyang Tumor Hospital, The Affiliated Anyang Tumor Hospital of Henan University of Science and Technology, Anyang City, Henan Province, China
| | - Junzheng Zhou
- Department of Thoracic Surgery, Anyang Tumor Hospital, The Affiliated Anyang Tumor Hospital of Henan University of Science and Technology, Anyang City, Henan Province, China
| | - Xiaodong Zheng
- Department of Thoracic Surgery, Anyang Tumor Hospital, The Affiliated Anyang Tumor Hospital of Henan University of Science and Technology, Anyang City, Henan Province, China
| | - Xudong Wei
- Department of Thoracic Surgery, Anyang Tumor Hospital, The Affiliated Anyang Tumor Hospital of Henan University of Science and Technology, Anyang City, Henan Province, China
| | - Jinrui Zhang
- Supply House, Anyang Tumor Hospital, The Affiliated Anyang Tumor Hospital of Henan University of Science and Technology, Anyang City, Henan Province, China
| | - Xiaojuan Shen
- Department of Thoracic Surgery, Anyang Tumor Hospital, The Affiliated Anyang Tumor Hospital of Henan University of Science and Technology, Anyang City, Henan Province, China
| | - Weimin Zhang
- Department of Thoracic Surgery, Anyang Tumor Hospital, The Affiliated Anyang Tumor Hospital of Henan University of Science and Technology, Anyang City, Henan Province, China
| |
Collapse
|
7
|
Dessai A, Nayak UY, Nayak Y. Precision nanomedicine to treat non-small cell lung cancer. Life Sci 2024; 346:122614. [PMID: 38604287 DOI: 10.1016/j.lfs.2024.122614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/30/2024] [Accepted: 04/03/2024] [Indexed: 04/13/2024]
Abstract
Lung cancer is a major cause of death worldwide, being often detected at a later stage due to the non-appearance of early symptoms. Therefore, specificity of the treatment is of utmost importance for its effective treatment. Precision medicine is a personalized therapy based on the genomics of the patient to design a suitable drug approach. Genetic mutations render the tumor resistant to specific mutations and the therapy is in vain even though correct medications are prescribed. Therefore, Precision medicine needs to be explored for the treatment of Non-small cell lung cancer (NSCLC). Nanoparticles are widely explored to give personalized interventions to treat lung cancer due to their various advantages like the ability to reach cancer cells, enhanced permeation through tissues, specificity, increased bioavailability, etc. Various nanoparticles (NPs) including gold nanoparticles, carbon nanotubes, aptamer-based NPs etc. were conjugated with biomarkers/diagnostic agents specific to cancer type and were delivered. Various biomarker genes have been identified through precision techniques for the diagnosis and treatment of NSCLC like EGFR, RET, KRAS, ALK, ROS-1, NTRK-1, etc. By incorporating of drug with the nanoparticle through bioconjugation, the specificity of the treatment can be enhanced with this revolutionary treatment. Additionally, integration of theranostic cargos in the nanoparticle would allow diagnosis as well as treatment by targeting the site of disease progression. Therefore, to target NSCLC effectively precision nanomedicine has been adopted in recent times. Here, we present different nanoparticles that are used as precision nanomedicine and their effectiveness against NSCLC disease.
Collapse
Affiliation(s)
- Akanksha Dessai
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Usha Yogendra Nayak
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India.
| | - Yogendra Nayak
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| |
Collapse
|
8
|
Xu J, Tian L, Qi W, Lv Q, Wang T. Advancements in NSCLC: From Pathophysiological Insights to Targeted Treatments. Am J Clin Oncol 2024; 47:291-303. [PMID: 38375734 PMCID: PMC11107893 DOI: 10.1097/coc.0000000000001088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
With the global incidence of non-small cell lung cancer (NSCLC) on the rise, the development of innovative treatment strategies is increasingly vital. This review underscores the pivotal role of precision medicine in transforming NSCLC management, particularly through the integration of genomic and epigenomic insights to enhance treatment outcomes for patients. We focus on the identification of key gene mutations and examine the evolution and impact of targeted therapies. These therapies have shown encouraging results in improving survival rates and quality of life. Despite numerous gene mutations being identified in association with NSCLC, targeted treatments are available for only a select few. This paper offers an exhaustive analysis of the pathogenesis of NSCLC and reviews the latest advancements in targeted therapeutic approaches. It emphasizes the ongoing necessity for research and development in this domain. In addition, we discuss the current challenges faced in the clinical application of these therapies and the potential directions for future research, including the identification of novel targets and the development of new treatment modalities.
Collapse
Affiliation(s)
- Jianan Xu
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine
| | - Lin Tian
- Pulmonology Department, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, P.R. China
| | - Wenlong Qi
- Pulmonology Department, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, P.R. China
| | - Qingguo Lv
- Pulmonology Department, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, P.R. China
| | - Tan Wang
- Pulmonology Department, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, P.R. China
| |
Collapse
|
9
|
Russo GL, Bironzo P, Bennati C, Bonanno L, Catino A, Metro G, Petrini I, Russano M, Passaro A. Clinical evidence and adverse event management update of patients with RET- rearranged advanced non-small-cell lung cancer (NSCLC) treated with pralsetinib. Crit Rev Oncol Hematol 2024; 194:104243. [PMID: 38135019 DOI: 10.1016/j.critrevonc.2023.104243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/12/2023] [Accepted: 12/17/2023] [Indexed: 12/24/2023] Open
Abstract
Current non-small cell lung cancer (NSCLC) management relies on genome-driven precision oncology thus shifting treatment paradigm towards biomarker-guided tumor-agnostic approaches. Recently, rearranged during transfection (RET) has been endorsed as tissue-agnostic target with sensitivity to RET inhibition. There are currently two selective RET tyrosine kinase inhibitors, pralsetinib and selpercatinib. The recent introduction of pralsetinib in the treatment algorithm of RET-rearranged tumor along with the mounting clinical evidence of pralsetinib durable activity from both randomized and observational studies holds the potential to disclose new avenues in the management of RET fusion positive NSCLC patients. Our narrative review aims to discuss the available clinical evidence on pralsetinib efficacy, particularly on brain metastases, and tolerability profile. In addition, our work explores the relevance of detecting RET fusions upfront in the disease history of patients with NSCLC.
Collapse
Affiliation(s)
- Giuseppe Lo Russo
- Medical Oncology Department, Thoracic Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Paolo Bironzo
- Department of Oncology, University of Torino, Ospedale San Luigi Gonzaga, Orbassano, TO, Italy
| | - Chiara Bennati
- Department of Onco-Hematology, AUSL della Romagna, Ravenna, Italy
| | - Laura Bonanno
- Medical Oncology 2, Istituto Oncologico Veneto IOV IRCCS, Padova, Italy
| | - Annamaria Catino
- Thoracic Oncology Unit, IRCCS Istituto Tumori "Giovanni Paolo II", Bari, Italy
| | - Giulio Metro
- Medical Oncology, Santa Maria della Misericordia Hospital, Azienda Ospedaliera Perugia, Italy
| | - Iacopo Petrini
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Marco Russano
- Medical Oncology, Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy
| | - Antonio Passaro
- Division of Thoracic Oncology, European Institute of Oncology IRCCS, Milano, Italy.
| |
Collapse
|
10
|
Salokas K, Dashi G, Varjosalo M. Decoding Oncofusions: Unveiling Mechanisms, Clinical Impact, and Prospects for Personalized Cancer Therapies. Cancers (Basel) 2023; 15:3678. [PMID: 37509339 PMCID: PMC10377698 DOI: 10.3390/cancers15143678] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/13/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
Cancer-associated gene fusions, also known as oncofusions, have emerged as influential drivers of oncogenesis across a diverse range of cancer types. These genetic events occur via chromosomal translocations, deletions, and inversions, leading to the fusion of previously separate genes. Due to the drastic nature of these mutations, they often result in profound alterations of cellular behavior. The identification of oncofusions has revolutionized cancer research, with advancements in sequencing technologies facilitating the discovery of novel fusion events at an accelerated pace. Oncofusions exert their effects through the manipulation of critical cellular signaling pathways that regulate processes such as proliferation, differentiation, and survival. Extensive investigations have been conducted to understand the roles of oncofusions in solid tumors, leukemias, and lymphomas. Large-scale initiatives, including the Cancer Genome Atlas, have played a pivotal role in unraveling the landscape of oncofusions by characterizing a vast number of cancer samples across different tumor types. While validating the functional relevance of oncofusions remains a challenge, even non-driver mutations can hold significance in cancer treatment. Oncofusions have demonstrated potential value in the context of immunotherapy through the production of neoantigens. Their clinical importance has been observed in both treatment and diagnostic settings, with specific fusion events serving as therapeutic targets or diagnostic markers. However, despite the progress made, there is still considerable untapped potential within the field of oncofusions. Further research and validation efforts are necessary to understand their effects on a functional basis and to exploit the new targeted treatment avenues offered by oncofusions. Through further functional and clinical studies, oncofusions will enable the advancement of precision medicine and the drive towards more effective and specific treatments for cancer patients.
Collapse
Affiliation(s)
- Kari Salokas
- Institute of Biotechnology, HiLIFE, University of Helsinki, 00790 Helsinki, Finland
| | - Giovanna Dashi
- Institute of Biotechnology, HiLIFE, University of Helsinki, 00790 Helsinki, Finland
| | - Markku Varjosalo
- Institute of Biotechnology, HiLIFE, University of Helsinki, 00790 Helsinki, Finland
| |
Collapse
|