1
|
Ng V, Sinha S, Novaj A, Ma J, McDermott N, Pei X, Longhini ALF, Grimsley H, Gardner R, Rosen E, Powell SN, Pareja F, Mandelker D, Khan A, Setton J, Roulston A, Morris S, Koehler M, Lee N, Reis-Filho J, Riaz N. Genotype-Directed Synthetic Cytotoxicity of ATR Inhibition with Radiotherapy. Clin Cancer Res 2024; 30:5643-5656. [PMID: 39109923 DOI: 10.1158/1078-0432.ccr-24-0154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 04/17/2024] [Accepted: 07/03/2024] [Indexed: 12/17/2024]
Abstract
PURPOSE The importance of the DNA damage response in mediating effects of radiotherapy (RT) has galvanized efforts to target this pathway with radiosensitizers. Yet early clinical trials of this approach have failed to yield a benefit in unselected populations. We hypothesized that ataxia-telangiectasia mutated (Atm)-null tumors would demonstrate genotype-specific synergy between RT and an inhibitor of the DNA damage response protein ataxia-telangiectasia and Rad3-related (ATR) kinase. EXPERIMENTAL DESIGN We investigated the synergistic potential of the ATR inhibitor (ATRi) RP-3500 and RT in two Atm-null and isogenic murine models, both in vitro and in vivo. Staining of γ-H2AX foci, characterization of the immune response via flow cytometry, and tumor rechallenge experiments were performed to elucidate the mechanism of interaction. To examine genotype specificity, we tested the interaction of ATRi and RT in a Brca1-null model. Finally, patients with advanced cancer with ATM alterations were enrolled in a phase I/II clinical trial to validate preclinical findings. RESULTS Synergy between RP-3500 and RT was confirmed in Atm-null lines in vitro, characterized by an accumulation of DNA double-strand breaks. In vivo, Atm-null tumor models had higher rates of durable control with RT and ATRi than controls. In contrast, there was no synergy in tumors lacking Brca1. Analysis of the immunologic response indicated that efficacy is largely mediated by cell-intrinsic mechanisms. Lastly, early results from our clinical trial showed complete responses in patients. CONCLUSIONS Genotype-directed radiosensitization with ATRi and RT can unleash significant therapeutic benefit and could represent a novel approach to develop more effective combinatorial synthetic cytotoxic RT-based treatments. See related commentary by Schrank and Colbert, p. 5505.
Collapse
Affiliation(s)
- Victor Ng
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Sonali Sinha
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Ardijana Novaj
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Jennifer Ma
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Niamh McDermott
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Xin Pei
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Ana Leda F Longhini
- Flow Cytometry Core Facility, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Helen Grimsley
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Rui Gardner
- Flow Cytometry Core Facility, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Ezra Rosen
- Department of Medical Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Simon N Powell
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Fresia Pareja
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Diana Mandelker
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Atif Khan
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Jeremy Setton
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | | | | | | | - Nancy Lee
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Jorge Reis-Filho
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Nadeem Riaz
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| |
Collapse
|
2
|
Raymakers L, Demmers TJ, Meijer GJ, Molenaar IQ, van Santvoort HC, Intven MPW, Leusen JHW, Olofsen PA, Daamen LA. The Effect of Radiation Treatment of Solid Tumors on Neutrophil Infiltration and Function: A Systematic Review. Int J Radiat Oncol Biol Phys 2024; 120:845-861. [PMID: 39009323 DOI: 10.1016/j.ijrobp.2024.07.2141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/13/2024] [Accepted: 07/02/2024] [Indexed: 07/17/2024]
Abstract
Radiation therapy (RT) initiates a local and systemic immune response which can induce antitumor immunity and improve immunotherapy efficacy. Neutrophils are among the first immune cells that infiltrate tumors after RT and are suggested to be essential for the initial antitumor immune response. However, neutrophils in tumors are associated with poor outcomes and RT-induced neutrophil infiltration could also change the composition of the tumor microenvironment (TME) in favor of tumor progression. To improve RT efficacy for patients with cancer it is important to understand the interplay between RT and neutrophils. Here, we review the literature on how RT affects the infiltration and function of neutrophils in the TME of solid tumors, using both patients studies and preclinical murine in vivo models. In general, it was found that neutrophil levels increase and reach maximal levels in the first days after RT and can remain elevated up to 3 weeks. Most studies report an immunosuppressive role of neutrophils in the TME after RT, caused by upregulated expression of neutrophil indoleamine 2,3-dioxygenase 1 and arginase 1, as well as neutrophil extracellular trap formation. RT was also associated with increased reactive oxygen species production by neutrophils, which can both improve and inhibit antitumor immunity. In addition, multiple murine models showed improved RT efficacy when depleting neutrophils, suggesting that neutrophils have a protumor phenotype after RT. We conclude that the role of neutrophils should not be overlooked when developing RT strategies and requires further investigation in specific tumor types. In addition, neutrophils can possibly be exploited to enhance RT efficacy by combining RT with neutrophil-targeting therapies.
Collapse
Affiliation(s)
- Léon Raymakers
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands; Department of Radiation Oncology, University Medical Center Utrecht, UMC Utrecht Cancer Center, Utrecht, The Netherlands
| | - Thijs J Demmers
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Gert J Meijer
- Department of Radiation Oncology, University Medical Center Utrecht, UMC Utrecht Cancer Center, Utrecht, The Netherlands
| | - I Quintus Molenaar
- Department of Surgery, Regional Academic Cancer Center Utrecht, UMC Utrecht Cancer Center and St. Antonius Hospital Nieuwegein, Utrecht University, Utrecht, The Netherlands
| | - Hjalmar C van Santvoort
- Department of Surgery, Regional Academic Cancer Center Utrecht, UMC Utrecht Cancer Center and St. Antonius Hospital Nieuwegein, Utrecht University, Utrecht, The Netherlands
| | - Martijn P W Intven
- Department of Radiation Oncology, University Medical Center Utrecht, UMC Utrecht Cancer Center, Utrecht, The Netherlands
| | - Jeanette H W Leusen
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Patricia A Olofsen
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Lois A Daamen
- Department of Radiation Oncology, University Medical Center Utrecht, UMC Utrecht Cancer Center, Utrecht, The Netherlands; Department of Surgery, Regional Academic Cancer Center Utrecht, UMC Utrecht Cancer Center and St. Antonius Hospital Nieuwegein, Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
3
|
Qiao K, Pan Y, Zhang S, Shi G, Yang J, Zhang Z, Wang K, Chen X, Ning S. Cold Exposure Therapy Sensitizes Nanodrug-Mediated Radioimmunotherapy of Breast Cancer. ACS NANO 2024; 18:29689-29703. [PMID: 39401104 DOI: 10.1021/acsnano.4c09021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
Cold exposure (CE) therapy can quickly induce tumor starvation by brown adipose tissue (BAT) thermogenesis. Exploring the combined antitumor mechanism of CE and traditional therapies (such as radiotherapy (RT)) is exciting and promising. In this study, we investigated the effect of CE in combination with nitric oxide (NO) gas therapy on sensitizing tumors to RT and promoting tumor radio-immunotherapy. We first constructed a liposome (SL) loaded with the NO prodrug S-nitroso-N-acetylpenicillamine (SNAP). When SL is injected, the glutathione (GSH) within the tumor region promotes the release of NO from SNAP. Subsequently, the superoxide anion produced by RT reacts with NO to generate peroxynitrite (ONOO-), which has strong oxidative properties and induces cell death. Meanwhile, the mice were exposed to a CE environment of 4 °C. CE-mediated BAT thermogenesis induced tumor starvation, which led to a decrease in ATP and GSH content within the tumor as well as an improvement in the hypoxic microenvironment and a decrease in myeloid-derived suppressor cells. All of the above have promoted the effectiveness of RT and activated the systemic antitumor immunity. In the bilateral tumor experiment, treatment of the primary tumor inhibited the growth of the distant tumor and promoted the infiltration of CD8+ T cells into the tumor. These findings reveal that the synergy of CE, NO gas therapy, and RT could confer high effective anticancer effects, providing possibilities in personalized cancer treatment.
Collapse
Affiliation(s)
- Kun Qiao
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin 150081, China
| | - You Pan
- Department of Breast Surgery, The Second Affiliated Hospital of Guangxi Medical University, Nanning 530000, China
| | - Shiyuan Zhang
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin 150081, China
| | - Guangfu Shi
- Department of Breast Surgery, The Second Affiliated Hospital of Guangxi Medical University, Nanning 530000, China
| | - Jinglin Yang
- Department of Breast Surgery, The Second Affiliated Hospital of Guangxi Medical University, Nanning 530000, China
| | - Zhenlin Zhang
- Department of Breast Surgery, The Second Affiliated Hospital of Guangxi Medical University, Nanning 530000, China
| | - Kaiyuan Wang
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, P. R. China
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore 119074, Singapore
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore 119074, Singapore
- Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
- Theranostics Center of Excellence (TCE), Yong Loo Lin School of Medicine, National University of Singapore, 11 Biopolis Way, Helios, Singapore 138667, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore
| | - Shipeng Ning
- Department of Breast Surgery, The Second Affiliated Hospital of Guangxi Medical University, Nanning 530000, China
| |
Collapse
|
4
|
Wang X, Zhang H, XinZhang, Liu Y. Abscopal effect: from a rare phenomenon to a new frontier in cancer therapy. Biomark Res 2024; 12:98. [PMID: 39228005 PMCID: PMC11373306 DOI: 10.1186/s40364-024-00628-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 07/30/2024] [Indexed: 09/05/2024] Open
Abstract
Radiotherapy (RT) controls local lesions, meantime it has the capability to induce systemic response to inhibit distant, metastatic, non-radiated tumors, which is referred to as the "abscopal effect". It is widely recognized that radiotherapy can stimulate systemic immune response. This provides a compelling theoretical basis for the combination of immune therapy combined with radiotherapy(iRT). Indeed, this phenomenon has also been observed in clinical treatment, bringing significant clinical benefits to patients, and a series of basic studies are underway to amplify this effect. However, the molecular mechanisms of immune response induced by RT, determination of the optimal treatment regimen for iRT, and how to amplify the abscopal effect. In order to amplify and utilize this effect in clinical management, these key issues require to be well addressed; In this review, we comprehensively summarize the growing consensus and emphasize the emerging limitations of enhancing the abscopal effect with radiotherapy or immunotherapy. Finally, we discuss the prospects and barriers to the current clinical translational applications.
Collapse
Affiliation(s)
- Xueying Wang
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, People's Republic of China
- Otolaryngology Major Disease Research Key Laboratory of Hunan Province, 87 Xiangya Road, Changsha, 410008, Hunan, People's Republic of China
- Clinical Research Center for Laryngopharyngeal and Voice Disorders in Hunan Province, 87 Xiangya Road, Changsha, 410008, Hunan, People's Republic of China
- National Clinical Research Center for Geriatric Disorders (Xiangya Hospital), Changsha, 410008, Hunan, China
| | - Haoyu Zhang
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, People's Republic of China
- Otolaryngology Major Disease Research Key Laboratory of Hunan Province, 87 Xiangya Road, Changsha, 410008, Hunan, People's Republic of China
- Clinical Research Center for Laryngopharyngeal and Voice Disorders in Hunan Province, 87 Xiangya Road, Changsha, 410008, Hunan, People's Republic of China
- National Clinical Research Center for Geriatric Disorders (Xiangya Hospital), Changsha, 410008, Hunan, China
| | - XinZhang
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, People's Republic of China.
- Otolaryngology Major Disease Research Key Laboratory of Hunan Province, 87 Xiangya Road, Changsha, 410008, Hunan, People's Republic of China.
- Clinical Research Center for Laryngopharyngeal and Voice Disorders in Hunan Province, 87 Xiangya Road, Changsha, 410008, Hunan, People's Republic of China.
- National Clinical Research Center for Geriatric Disorders (Xiangya Hospital), Changsha, 410008, Hunan, China.
| | - Yong Liu
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, People's Republic of China.
- Otolaryngology Major Disease Research Key Laboratory of Hunan Province, 87 Xiangya Road, Changsha, 410008, Hunan, People's Republic of China.
- Clinical Research Center for Laryngopharyngeal and Voice Disorders in Hunan Province, 87 Xiangya Road, Changsha, 410008, Hunan, People's Republic of China.
- National Clinical Research Center for Geriatric Disorders (Xiangya Hospital), Changsha, 410008, Hunan, China.
| |
Collapse
|
5
|
Malla R, Kumari S, Ganji SP, Srilatha M, Nellipudi HR, Nagaraju GP. Reactive oxygen species of tumor microenvironment: Harnessing for immunogenic cell death. Biochim Biophys Acta Rev Cancer 2024; 1879:189154. [PMID: 39019409 DOI: 10.1016/j.bbcan.2024.189154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 07/07/2024] [Accepted: 07/10/2024] [Indexed: 07/19/2024]
Abstract
The tumor microenvironment (TME) is a dynamic and complex system that undergoes continuous changes in its network architecture, notably affecting redox homeostasis. These alterations collectively shape a diverse ecosystem actively supporting tumor progression by influencing the cellular and molecular components of the TME. Despite the remarkable clinical advancements in cancer immunotherapy, its spectrum of clinical utility is limited by the altered TME and inadequate tumor immunogenicity. Recent studies have revealed that some conventional and targeted therapy strategies can augment the efficacy of immunotherapy even in patients with less immunogenic solid tumors. These strategies provoke immunogenic cell death (ICD) through the ROS-dependent liberation of damage-associated molecular patterns (DAMPs). These DAMPs recognize and bind with Pattern Recognition Receptors (PRRs) on immune cells, activating and maturing defense cells, ultimately leading to a robust antitumor immune response. The present review underscores the pivotal role of redox homeostasis in orchestrating the transition of TME from a cold to a hot phenotype and the ROS-ICD axis in immune response induction. Additionally, it provides up-to-date insights into strategies that leverage ROS generation to induce ICD. The comprehensive analysis aims to develop ROS-based effective cancer immunotherapies for less immunogenic tumors.
Collapse
Affiliation(s)
- RamaRao Malla
- Cancer Biology Laboratory, Department of Biochemistry and Bioinformatics, School of Science, GITAM (Deemed to be University), Visakhapatnam-530045, Andhra Pradesh, India
| | - Seema Kumari
- Cancer Biology Laboratory, Department of Biochemistry and Bioinformatics, School of Science, GITAM (Deemed to be University), Visakhapatnam-530045, Andhra Pradesh, India
| | - Swapna Priya Ganji
- Cancer Biology Laboratory, Department of Biochemistry and Bioinformatics, School of Science, GITAM (Deemed to be University), Visakhapatnam-530045, Andhra Pradesh, India
| | - Mundla Srilatha
- Department of Biotechnology, Sri Venkateswara University, Tirupati, Andhra Pradesh 517502, India
| | | | - Ganji Purnachandra Nagaraju
- Department of Hematology and Oncology, Heersink School of Medicine, University of Alabama, Birmingham, AL 35233, USA.
| |
Collapse
|
6
|
Fenech M, Ajanaku A, Hsuan J, McCormick A, Shamas S, Ghadiri N. Immune checkpoint inhibitors and the orbit; two cases of reactive dacryoadenitis. Orbit 2024:1-5. [PMID: 39109960 DOI: 10.1080/01676830.2024.2385010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 07/17/2024] [Indexed: 01/11/2025]
Abstract
Immune checkpoints refer to mechanisms entrusted with the modulation of immune responses in peripheral tissues and are required for minimising collateral damage. Immune checkpoint inhibitors (ICPi) work through numerous pathways, including the anti-CTLA-4 (cytotoxic T-lymphocyte-associated protein 4), anti-PD-1 (programmed cell death protein 1) and the PD-L1 (protein cell death protein-ligand-1) pathways. They are proving to be an exciting therapeutic avenue in the attempt to activate anti-tumour activity. Ipilimumab is a fully human monoclonal antibody working on the anti-CTLA-4 pathway, while nivolumab and pembrolizumab are humanised monoclonal IgG4 antibodies that work on the PD-1 pathway. Despite a growing body of research pertinent to these novel therapies, early indications show that they are limited by their side effect profile. Furthermore, their efficacy appears to be greater in cancers with a high mutational burden. We present two female patients with bilateral reactive dacryoadenitis secondary to ICPi therapy, a finding that to the best of our knowledge was not previously described in the literature.
Collapse
Affiliation(s)
- Matthew Fenech
- Department of Ophthalmology, Liverpool University Hospitals NHS Foundation Trust, Liverpool, UK
| | - Ayodeji Ajanaku
- Department of Ophthalmology, Liverpool University Hospitals NHS Foundation Trust, Liverpool, UK
| | - James Hsuan
- Department of Ophthalmology, Liverpool University Hospitals NHS Foundation Trust, Liverpool, UK
| | - Austin McCormick
- Department of Ophthalmology, Liverpool University Hospitals NHS Foundation Trust, Liverpool, UK
| | - Simon Shamas
- Department of Oncology, The Clatterbridge Cancer Centre NHS Foundation Trust, Bebington, UK
| | - Nima Ghadiri
- Department of Ophthalmology, Liverpool University Hospitals NHS Foundation Trust, Liverpool, UK
| |
Collapse
|
7
|
Hanzawa S, Asami S, Kanazawa T, Oono S, Takakura N. Multimodal Treatment With Nivolumab Contributes to Long-Term Survival in a Case of Unresectable Esophagogastric Junction Neuroendocrine Carcinoma. Cureus 2024; 16:e65981. [PMID: 39221328 PMCID: PMC11366065 DOI: 10.7759/cureus.65981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/01/2024] [Indexed: 09/04/2024] Open
Abstract
Advanced neuroendocrine carcinoma (NEC) has an extremely poor prognosis, partly explained by the rarity and diagnostic difficulty, for which the most appropriate treatment strategy has not been established. In this report, we discuss a case of unresectable advanced esophagogastric junction NEC, which was difficult to diagnose, that has achieved relatively long-term survival with multidisciplinary treatment centered on nivolumab. A man in his 60s was initially diagnosed with an advanced esophagogastric junction squamous cell carcinoma (SCC). The lymph node metastasis was detected in the regional lymph nodes and para-aortic region. We diagnosed the patient with T3, N3, M1 (Lym), stage IVB, and administered systemic chemotherapy. Due to the failure of first-line, fluorouracil, and cisplatin therapy, we administered nivolumab as the second-line therapy. This therapy demonstrated partial response, so we performed conversion surgery, however the postoperative diagnosis was NEC. Three years after treatment initiation, a single lymph node metastasis has recurred, which is under control with nivolumab and radiation therapy. However, 4.5 years after the start of treatment, with the advent of immune-related adverse events (irAE), nivolumab was discontinued and the patient was placed on surveillance. Six months after that, metastasis to the hilar lymph node and adrenal gland was observed. Both times that recurrence/metastasis appeared, they occurred while nivolumab was being discontinued, suggesting its significant systemic anti-cancer effect. Therefore, nivolumab in particular may be an effective treatment for advanced esophageal NEC, and this case suggests that it may contribute to prolonged progression-free survival.
Collapse
Affiliation(s)
- Shunya Hanzawa
- Department of Surgery, Fukuyama City Hospital, Fukuyama, JPN
- Department of Gastrointestinal Surgery, Okayama University Hospital, Okayama, JPN
| | - Shinya Asami
- Department of Surgery, Fukuyama City Hospital, Fukuyama, JPN
| | | | - Satoshi Oono
- Department of Surgery, Fukuyama City Hospital, Fukuyama, JPN
| | | |
Collapse
|
8
|
Kleinendorst SC, Oosterwijk E, Molkenboer-Kuenen J, Frielink C, Franssen GM, Boreel DF, Tamborino G, Gloudemans M, Hendrikx M, Kroon D, Hillen J, Bussink J, Muselaers S, Mulders P, Konijnenberg MW, Wheatcroft MP, Twumasi-Boateng K, Heskamp S. Towards effective CAIX-targeted radionuclide and checkpoint inhibition combination therapy for advanced clear cell renal cell carcinoma. Theranostics 2024; 14:3693-3707. [PMID: 38948062 PMCID: PMC11209717 DOI: 10.7150/thno.96944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 05/03/2024] [Indexed: 07/02/2024] Open
Abstract
Background: Immune checkpoint inhibitors (ICI) are routinely used in advanced clear cell renal cell carcinoma (ccRCC). However, a substantial group of patients does not respond to ICI therapy. Radiation is a promising approach to increase ICI response rates since it can generate anti-tumor immunity. Targeted radionuclide therapy (TRT) is a systemic radiation treatment, ideally suited for precision irradiation of metastasized cancer. Therefore, the aim of this study is to explore the potential of combined TRT, targeting carbonic anhydrase IX (CAIX) which is overexpressed in ccRCC, using [177Lu]Lu-DOTA-hG250, and ICI for the treatment of ccRCC. Methods: In this study, we evaluated the therapeutic and immunological action of [177Lu]Lu-DOTA-hG250 combined with aPD-1/a-CTLA-4 ICI. First, the biodistribution of [177Lu]Lu-DOTA-hG250 was investigated in BALB/cAnNRj mice bearing Renca-CAIX or CT26-CAIX tumors. Renca-CAIX and CT26-CAIX tumors are characterized by poor versus extensive T-cell infiltration and homogeneous versus heterogeneous PD-L1 expression, respectively. Tumor-absorbed radiation doses were estimated through dosimetry. Subsequently, [177Lu]Lu-DOTA-hG250 TRT efficacy with and without ICI was evaluated by monitoring tumor growth and survival. Therapy-induced changes in the tumor microenvironment were studied by collection of tumor tissue before and 5 or 8 days after treatment and analyzed by immunohistochemistry, flow cytometry, and RNA profiling. Results: Biodistribution studies showed high tumor uptake of [177Lu]Lu-DOTA-hG250 in both tumor models. Dose escalation therapy studies in Renca-CAIX tumor-bearing mice demonstrated dose-dependent anti-tumor efficacy of [177Lu]Lu-DOTA-hG250 and remarkable therapeutic synergy including complete remissions when a presumed subtherapeutic TRT dose (4 MBq, which had no significant efficacy as monotherapy) was combined with aPD-1+aCTLA-4. Similar results were obtained in the CT26-CAIX model for 4 MBq [177Lu]Lu-DOTA-hG250 + a-PD1. Ex vivo analyses of treated tumors revealed DNA damage, T-cell infiltration, and modulated immune signaling pathways in the TME after combination treatment. Conclusions: Subtherapeutic [177Lu]Lu-DOTA-hG250 combined with ICI showed superior therapeutic outcome and significantly altered the TME. Our results underline the importance of investigating this combination treatment for patients with advanced ccRCC in a clinical setting. Further investigations should focus on how the combination therapy should be optimally applied in the future.
Collapse
Affiliation(s)
- Simone C. Kleinendorst
- Department of Medical Imaging, Nuclear Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Egbert Oosterwijk
- Department of Urology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Janneke Molkenboer-Kuenen
- Department of Medical Imaging, Nuclear Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Cathelijne Frielink
- Department of Medical Imaging, Nuclear Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Gerben M. Franssen
- Department of Medical Imaging, Nuclear Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Daan F. Boreel
- Department of Medical Imaging, Nuclear Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
- Department of Radiation Oncology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Giulia Tamborino
- Department of Radiology and Nuclear Medicine, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Manon Gloudemans
- Department of Medical Imaging, Nuclear Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Merel Hendrikx
- Department of Medical Imaging, Nuclear Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Dennis Kroon
- Department of Medical Imaging, Nuclear Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Jopp Hillen
- Department of Medical Imaging, Nuclear Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Johan Bussink
- Department of Radiation Oncology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Stijn Muselaers
- Department of Urology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Peter Mulders
- Department of Urology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Mark W. Konijnenberg
- Department of Medical Imaging, Nuclear Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
- Department of Radiology and Nuclear Medicine, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | | | | | - Sandra Heskamp
- Department of Medical Imaging, Nuclear Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
| |
Collapse
|
9
|
Patil SR. Immunotherapy in oral cancer treatment: Harnessing the immune system to combat oral squamous cell carcinoma. ORAL ONCOLOGY REPORTS 2024; 10:100484. [DOI: 10.1016/j.oor.2024.100484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
10
|
Arnold CR, Mangesius J, Portnaia I, Ganswindt U, Wolff HA. Innovative therapeutic strategies to overcome radioresistance in breast cancer. Front Oncol 2024; 14:1379986. [PMID: 38873260 PMCID: PMC11169591 DOI: 10.3389/fonc.2024.1379986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 05/10/2024] [Indexed: 06/15/2024] Open
Abstract
Despite a comparatively favorable prognosis relative to other malignancies, breast cancer continues to significantly impact women's health globally, partly due to its high incidence rate. A critical factor in treatment failure is radiation resistance - the capacity of tumor cells to withstand high doses of ionizing radiation. Advancements in understanding the cellular and molecular mechanisms underlying radioresistance, coupled with enhanced characterization of radioresistant cell clones, are paving the way for the development of novel treatment modalities that hold potential for future clinical application. In the context of combating radioresistance in breast cancer, potential targets of interest include long non-coding RNAs (lncRNAs), micro RNAs (miRNAs), and their associated signaling pathways, along with other signal transduction routes amenable to pharmacological intervention. Furthermore, technical, and methodological innovations, such as the integration of hyperthermia or nanoparticles with radiotherapy, have the potential to enhance treatment responses in patients with radioresistant breast cancer. This review endeavors to provide a comprehensive survey of the current scientific landscape, focusing on novel therapeutic advancements specifically addressing radioresistant breast cancer.
Collapse
Affiliation(s)
| | - Julian Mangesius
- Department of Radiation-Oncology, Medical University of Innsbruck, Innsbruck, Austria
| | - Iana Portnaia
- Department of Internal Medicine II, Medical University of Innsbruck, Innsbruck, Austria
| | - Ute Ganswindt
- Department of Radiation-Oncology, Medical University of Innsbruck, Innsbruck, Austria
| | - Hendrik Andreas Wolff
- Department of Radiology, Nuclear Medicine, and Radiotherapy, Radiology Munich, Munich, Germany
| |
Collapse
|
11
|
Fang F, Jia Z, Xie H, Cao Y, Zhu X, Yang XY, Guo X, Zhang H. Prognostic utility of blood inflammation biomarkers before and after treatment on the survival of patients with locally advanced non-small cell lung cancer undergoing stereotactic body radiotherapy. THE CLINICAL RESPIRATORY JOURNAL 2024; 18:e13749. [PMID: 38685745 PMCID: PMC11058398 DOI: 10.1111/crj.13749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 02/26/2024] [Accepted: 03/20/2024] [Indexed: 05/02/2024]
Abstract
BACKGROUND AND OBJECTIVE The neutrophil-lymphocyte ratio (NLR) and platelet-lymphocyte ratio (PLR) were significant and succinct indicators of systemic inflammation. We assessed the influence of stereotactic body radiotherapy (SBRT) on NLR and PLR in patients with locally advanced non-small cell lung cancer (LA-NSCLC). METHODS We reviewed the medical data of patients with LA-NSCLC who underwent SBRT between 1 January 2013 and 31 December 2018. NLR and PLR values recorded at pre- and post-SBRT were examined. We assessed the correlation between pre/post-SBRT NLR and PLR and survival outcomes. The decision tree evaluation was conducted using Chi-square automatic detection. RESULTS In total, 213 patients were included in the study with a median follow-up duration of 40.00 (ranging from 5.28 to 100.70) months. Upon dichotomization by a median, we identified that post-SBRT NLR > 5.5 and post-SBRT PLR > 382.0 were negatively associated with shorter overall survival (OS). In the multivariate assessment, post-SBRT PLR > 382.0 was the only factor. Based on post-SBRT PLR, tumor locations, and tumor stage, we categorized patients into low, medium, or high-risk groups. CONCLUSIONS Post-SBRT PLR > 382.0 correlated with survival in patients undergoing SBRT. The decision tree model might play a role in future risk stratification to guide the clinical practice of individualized SBRT for LA-NSCLC.
Collapse
Affiliation(s)
- Fang Fang
- Department of Radiation OncologyChanghai Hospital Affiliated to Navy Medical UniversityShanghaiChina
| | - Zhen Jia
- Department of Radiation OncologyChanghai Hospital Affiliated to Navy Medical UniversityShanghaiChina
| | - Hongliang Xie
- Department of Radiation OncologyChanghai Hospital Affiliated to Navy Medical UniversityShanghaiChina
| | - Yangsen Cao
- Department of Radiation OncologyChanghai Hospital Affiliated to Navy Medical UniversityShanghaiChina
| | - Xiaofei Zhu
- Department of Radiation OncologyChanghai Hospital Affiliated to Navy Medical UniversityShanghaiChina
| | - Xiao Yu Yang
- Department of Hepatic SurgeryShanghai Eastern Hepatobiliary Surgery HospitalShanghaiChina
| | - Xueling Guo
- Department of Radiation OncologyChanghai Hospital Affiliated to Navy Medical UniversityShanghaiChina
| | - Huojun Zhang
- Department of Radiation OncologyChanghai Hospital Affiliated to Navy Medical UniversityShanghaiChina
| |
Collapse
|
12
|
Wang X, Wang Y, Zhang Y, Shi H, Liu K, Wang F, Wang Y, Chen H, Shi Y, Wang R. Immune modulatory roles of radioimmunotherapy: biological principles and clinical prospects. Front Immunol 2024; 15:1357101. [PMID: 38449871 PMCID: PMC10915027 DOI: 10.3389/fimmu.2024.1357101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 01/31/2024] [Indexed: 03/08/2024] Open
Abstract
Radiation therapy (RT) not only can directly kill tumor cells by causing DNA double-strand break, but also exerts anti-tumor effects through modulating local and systemic immune responses. The immunomodulatory effects of RT are generally considered as a double-edged sword. On the one hand, RT effectively enhances the immunogenicity of tumor cells, triggers type I interferon response, induces immunogenic cell death to activate immune cell function, increases the release of proinflammatory factors, and reshapes the tumor immune microenvironment, thereby positively promoting anti-tumor immune responses. On the other hand, RT stimulates tumor cells to express immunosuppressive cytokines, upregulates the function of inhibitory immune cells, leads to lymphocytopenia and depletion of immune effector cells, and thus negatively suppresses immune responses. Nonetheless, it is notable that RT has promising abscopal effects and may achieve potent synergistic effects, especially when combined with immunotherapy in the daily clinical practice. This systematic review will provide a comprehensive profile of the latest research progress with respect to the immunomodulatory effects of RT, as well as the abscopal effect of radioimmunotherapy combinations, from the perspective of biological basis and clinical practice.
Collapse
Affiliation(s)
- Xuefeng Wang
- Department of Radiation Oncology, Affiliated Hospital of Hebei University, Baoding, Hebei, China
| | - Yu Wang
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yonggang Zhang
- Department of Head and Neck Surgery, Affiliated Hospital of Hebei University, Baoding, Hebei, China
| | - Hongyun Shi
- Department of Radiation Oncology, Affiliated Hospital of Hebei University, Baoding, Hebei, China
| | - Kuan Liu
- Department of Radiation Oncology, Affiliated Hospital of Hebei University, Baoding, Hebei, China
| | - Fang Wang
- Department of Radiation Oncology, Affiliated Hospital of Hebei University, Baoding, Hebei, China
| | - Yue Wang
- Department of Radiation Oncology, Affiliated Hospital of Hebei University, Baoding, Hebei, China
| | - Huijing Chen
- Department of Radiation Oncology, Affiliated Hospital of Hebei University, Baoding, Hebei, China
| | - Yan Shi
- Department of Medical Oncology, Affiliated Hospital of Hebei University, Baoding, Hebei, China
| | - Ruiyao Wang
- Department of Thoracic Surgery, Affiliated Hospital of Hebei University, Baoding, Hebei, China
| |
Collapse
|
13
|
Song KH, Jung SY, Park JI, Lee DH, Ahn J, Hwang SG, Lim DS, Song JY. Poliovirus receptor inhibition in breast cancer cells induces antitumor immunity via T cell activation. Am J Cancer Res 2023; 13:5966-5980. [PMID: 38187056 PMCID: PMC10767338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 12/02/2023] [Indexed: 01/09/2024] Open
Abstract
Radiotherapy (RT) is a commonly used treatment option for patients with cancer because it can effectively control tumor growth and kill tumor cells. However, the impact of RT goes beyond direct tumor cell killing because it can change the tumor microenvironment by altering surrounding tissues and infiltrating cells and modulating the expression of immune checkpoints. Poliovirus receptor (PVR, cluster of differentiation (CD)155), a member of the nectin-like molecule family, is overexpressed in many human cancers. However, its role in the tumor growth and T-cell immune responses of triple-negative breast cancer (TNBC) remains unclear. In the present study, we observe that radiation exposure increases PVR expression in MDA-MB-231 and BT549 cells. Silencing PVR not only inhibited the proliferation of breast cancer cells but also significantly enhanced the cytotoxicity of cytotoxic T lymphocytes (CTLs) compared with the control or RT groups. Treatment of T cells with PVR decreased CD8+ T cells, increased CD4+ T cells, and induced PVR ligands such as T cell immunoreceptor with immunoglobulin and ITIM domain, CD226, and CD96. However, after treatment with PVR, CTL responses decreased and secretion of interferon-γ, tumor necrosis factor-α, interleukin (IL)-2, IL-6, and IL-10 was significantly inhibited. In contrast, PVR knockdown increased the production of these cytokines, illustrating the immunosuppressive function of PVR. Suppression of PVR using an anti-PVR antibody inhibited 4T1 tumor growth by increasing immune cell infiltration. These results provide new insights into the role of PVR in TNBC and highlight its potential as a target for T cell-mediated immunotherapy in breast cancer.
Collapse
Affiliation(s)
- Kyung-Hee Song
- Division of Radiation Biomedical Research, Korea Institute of Radiological and Medical SciencesSeoul 01812, Republic of Korea
| | - Seung-Youn Jung
- Division of Radiation Biomedical Research, Korea Institute of Radiological and Medical SciencesSeoul 01812, Republic of Korea
| | - Jeong-In Park
- Division of Radiation Biomedical Research, Korea Institute of Radiological and Medical SciencesSeoul 01812, Republic of Korea
| | - Dong-Hyeon Lee
- Division of Radiation Biomedical Research, Korea Institute of Radiological and Medical SciencesSeoul 01812, Republic of Korea
| | - Jiyeon Ahn
- Division of Radiation Biomedical Research, Korea Institute of Radiological and Medical SciencesSeoul 01812, Republic of Korea
| | - Sang-Gu Hwang
- Division of Radiation Biomedical Research, Korea Institute of Radiological and Medical SciencesSeoul 01812, Republic of Korea
| | - Dae-Seog Lim
- Department of Biotechnology, CHA UniversityGyeonggi-do 13488, Republic of Korea
| | - Jie-Young Song
- Division of Radiation Biomedical Research, Korea Institute of Radiological and Medical SciencesSeoul 01812, Republic of Korea
| |
Collapse
|
14
|
Sano T, Saito R, Aizawa R, Watanabe T, Murakami K, Kita Y, Masui K, Goto T, Mizowaki T, Kobayashi T. Current trends in the promising immune checkpoint inhibition and radiotherapy combination for locally advanced and metastatic urothelial carcinoma. Int J Clin Oncol 2023; 28:1573-1584. [PMID: 37874429 DOI: 10.1007/s10147-023-02421-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 09/28/2023] [Indexed: 10/25/2023]
Abstract
Locally advanced and metastatic urothelial carcinoma (UC) remains a challenging malignancy, though several novel therapeutic drugs have been developed in recent years. Over the past decade, immune checkpoint inhibitors (ICI) have shifted the paradigm of therapeutic strategies for UC; however, only a limited number of patients respond to ICI. Since radiotherapy (RT) is widely known to induce systemic immune activation, it may boost the efficacy of ICI. Conversely, RT also causes exhaustion of cytotoxic T cells, and the activation and recruitment of immunosuppressive cells; ICI may help overcome these immunosuppressive effects. Therefore, the combination of ICI and RT has attracted attention in recent years. The therapeutic benefits of this combination therapy and its optimal regimen have not yet been determined through prospective studies. Therefore, this review article aimed to provide an overview of the current preclinical and clinical studies that illustrate the underlying mechanisms and explore the optimization of the RT regimen along with the ICI and RT combination sequence. We also analyzed ongoing prospective studies on ICI and RT combination therapies for metastatic UC. We noted that the tumor response to ICI and RT combination seemingly differs among cancer types. Thus, our findings highlight the need for well-designed prospective trials to determine the optimal combination of ICI and RT for locally advanced and metastatic UC.
Collapse
Affiliation(s)
- Takeshi Sano
- Department of Urology and Andrology, Kansai Medical University Hospital, 2-5-1 Shin-machi, Hirakata-shi, Osaka, 573-1010, Japan
- Department of Urology, Graduate School of Medicine, Kyoto University, 54 Shogoinkawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Ryoichi Saito
- Department of Urology, Graduate School of Medicine, Kyoto University, 54 Shogoinkawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Rihito Aizawa
- Department of Radiation Oncology and Image-Applied Therapy, Graduate School of Medicine, Kyoto University, 54 Shogoinkawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Tsubasa Watanabe
- Institute for Integrated Radiation and Nuclear Science, Kyoto University, 2 Asashiro-Nishi, Kumatori-cho, Sennan-gun, Osaka, 590-0494, Japan
| | - Kaoru Murakami
- Department of Urology, Graduate School of Medicine, Kyoto University, 54 Shogoinkawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Yuki Kita
- Department of Urology, Graduate School of Medicine, Kyoto University, 54 Shogoinkawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Kimihiko Masui
- Department of Urology, Graduate School of Medicine, Kyoto University, 54 Shogoinkawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Takayuki Goto
- Department of Urology, Graduate School of Medicine, Kyoto University, 54 Shogoinkawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Takashi Mizowaki
- Department of Radiation Oncology and Image-Applied Therapy, Graduate School of Medicine, Kyoto University, 54 Shogoinkawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Takashi Kobayashi
- Department of Urology, Graduate School of Medicine, Kyoto University, 54 Shogoinkawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan.
| |
Collapse
|
15
|
Backlund E, Grozman V, Egyhazi Brage S, Lewensohn R, Lindberg K, Helgadottir H. Radiotherapy with or without immunotherapy in metastatic melanoma: efficacy and tolerability. Acta Oncol 2023; 62:1921-1930. [PMID: 37966921 DOI: 10.1080/0284186x.2023.2280766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 11/03/2023] [Indexed: 11/17/2023]
Abstract
INTRODUCTION Radiotherapy (RT) is primarily considered as a palliative treatment in patients with metastatic melanoma. However, observations suggest that when RT is combined with immune checkpoint inhibitors (ICI), it can induce an immune response leading to an anti-tumoral effect also distant from the irradiated area - a phenomenon called 'abscopal effect'. The frequency and circumstances of abscopal effect among metastatic melanoma patients remains uncertain and further research is necessary. MATERIAL AND METHOD This retrospective study included all metastatic melanoma patients who received non-stereotactic RT in Stockholm, Sweden in 2015-2020. Patients were grouped depending on if RT was given at start of ICI (RT + ICI(start)), at ICI progression (RT + ICI(salvage)) or without ICI (RT(only)). Response rates in irradiated (RR(irradiated)) and overall response rates in non-irradiated (ORR(non-irradiated)) metastases were evaluated together with survival and toxicity in each cohort. RESULTS In the RT + ICI(start) (n = 47), RT + ICI(salvage) (n = 41) and RT(only) (n = 55) cohorts, RR(irradiated) was 70.7%, 67.5% and 43.1% (p = 0.018) while the ORR(non-irradiated) was 36.1%, 14.8% and 0.0% (p = 0.003), and the median overall survival was 18.2, 15.0 and 7.2 months, respectively (p = 0.014). Local response to RT was in all cohorts associated with longer survival (p < 0.001). The frequency of grade ≥3 immune-related adverse events was 17.0% and 19.5% in the RT + ICI(start) and RT + ICI(salvage) cohorts. No increased frequency of RT-related adverse events was seen in the RT + ICI cohorts, compared to the RT(only) cohort. CONCLUSION This retrospective study showed that melanoma patients receiving RT in combination with ICI had a superior antitumoral response in both irradiated and non-irradiated lesions as compared to patients receiving only RT. Additionally, a subgroup of patients receiving RT when progressing on ICI experienced tumor regression also in non-irradiated areas.
Collapse
Affiliation(s)
- Ellen Backlund
- Department of Oncology, Karolinska University Hospital, Stockholm, Sweden
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Vitali Grozman
- Department of Diagnostic Radiology, Karolinska University Hospital, Sweden
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm
| | | | - Rolf Lewensohn
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Karin Lindberg
- Department of Oncology, Karolinska University Hospital, Stockholm, Sweden
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Hildur Helgadottir
- Department of Oncology, Karolinska University Hospital, Stockholm, Sweden
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
16
|
Melissourgou-Syka L, Gillespie MA, O'Cathail SM, Sansom OJ, Steele CW, Roxburgh CSD. A Review of Scheduling Strategies for Radiotherapy and Immune Checkpoint Inhibition in Locally Advanced Rectal Cancer. JOURNAL OF IMMUNOTHERAPY AND PRECISION ONCOLOGY 2023; 6:187-197. [PMID: 38143952 PMCID: PMC10734391 DOI: 10.36401/jipo-23-10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 07/07/2023] [Accepted: 07/15/2023] [Indexed: 12/26/2023]
Abstract
Colorectal cancer (CRC) is the third most common malignancy across the globe and, despite advances in treatment strategies, survival rates remain low. Rectal cancer (RC) accounts for most of these cases, and traditional management strategies for advanced disease include total neoadjuvant therapy (TNT) with chemoradiotherapy followed by curative surgery. Unfortunately, approximately 10-15% of patients have no response to treatment or have recurrence at a short interval following radiotherapy. The introduction of immunotherapy in the form of immune checkpoint blockade (ICB) in metastatic colorectal cancer has improved clinical outcomes, yet most patients with RC present with microsatellite stable disease, which lacks the immune-rich microenvironment where ICB is most effective. There is evidence that combining radiotherapy with ICB can unlock the mechanisms that drive resistance in patients; however, the sequencing of these therapies is still debated. This review offers a comprehensive overview of clinical trials and preclinical models that use radiotherapy-immunotherapy combinations in RC in an attempt to extrapolate the ideal sequencing of the two treatment modalities. The results highlight the dearth of evidence to answer the question of whether ICB should be given before, during, or after radiotherapy, yet it is suggested that improving the relevance of our preclinical models will provide a platform with higher translational value and will lead to appropriate clinical trial designs.
Collapse
Affiliation(s)
- Lydia Melissourgou-Syka
- School of Cancer Sciences, University of Glasgow, Glasgow, Scotland
- CRUK Beatson Institute, Glasgow, Scotland
| | | | - Sean M. O'Cathail
- School of Cancer Sciences, University of Glasgow, Glasgow, Scotland
- Beatson West of Scotland Cancer Centre, Glasgow, Scotland
| | - Owen J. Sansom
- School of Cancer Sciences, University of Glasgow, Glasgow, Scotland
- CRUK Beatson Institute, Glasgow, Scotland
| | - Colin W. Steele
- School of Cancer Sciences, University of Glasgow, Glasgow, Scotland
- CRUK Beatson Institute, Glasgow, Scotland
- Academic Unit of Surgery, Glasgow Royal Infirmary, Glasgow, Scotland
| | - Campbell S. D. Roxburgh
- School of Cancer Sciences, University of Glasgow, Glasgow, Scotland
- Academic Unit of Surgery, Glasgow Royal Infirmary, Glasgow, Scotland
| |
Collapse
|
17
|
Li J, Xiao Z, Wang D, Jia L, Nie S, Zeng X, Hu W. The screening, identification, design and clinical application of tumor-specific neoantigens for TCR-T cells. Mol Cancer 2023; 22:141. [PMID: 37649123 PMCID: PMC10466891 DOI: 10.1186/s12943-023-01844-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 08/16/2023] [Indexed: 09/01/2023] Open
Abstract
Recent advances in neoantigen research have accelerated the development of tumor immunotherapies, including adoptive cell therapies (ACTs), cancer vaccines and antibody-based therapies, particularly for solid tumors. With the development of next-generation sequencing and bioinformatics technology, the rapid identification and prediction of tumor-specific antigens (TSAs) has become possible. Compared with tumor-associated antigens (TAAs), highly immunogenic TSAs provide new targets for personalized tumor immunotherapy and can be used as prospective indicators for predicting tumor patient survival, prognosis, and immune checkpoint blockade response. Here, the identification and characterization of neoantigens and the clinical application of neoantigen-based TCR-T immunotherapy strategies are summarized, and the current status, inherent challenges, and clinical translational potential of these strategies are discussed.
Collapse
Affiliation(s)
- Jiangping Li
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China.
| | - Zhiwen Xiao
- Department of Otolaryngology Head and Neck Surgery, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510655, People's Republic of China
| | - Donghui Wang
- Department of Radiation Oncology, The Third Affiliated Hospital Sun Yat-Sen University, Guangzhou, 510630, People's Republic of China
| | - Lei Jia
- International Health Medicine Innovation Center, Shenzhen University, Shenzhen, 518060, People's Republic of China
| | - Shihong Nie
- Department of Radiation Oncology, West China Hospital, Sichuan University, Cancer Center, Chengdu, 610041, People's Republic of China
| | - Xingda Zeng
- Department of Parasitology of Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Wei Hu
- Division of Vascular Surgery, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, People's Republic of China
| |
Collapse
|
18
|
Li J, Xu X. Immune Checkpoint Inhibitor-Based Combination Therapy for Colorectal Cancer: An Overview. Int J Gen Med 2023; 16:1527-1540. [PMID: 37131870 PMCID: PMC10149070 DOI: 10.2147/ijgm.s408349] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 04/19/2023] [Indexed: 05/04/2023] Open
Abstract
Colorectal cancer (CRC) is one of the most common diseases in the world. Tumor immunotherapy is an innovative cancer treatment that acts by activating the human body's autoimmune system. Immune checkpoint block has been shown to be effective in DNA deficient mismatch repair/microsatellite instability-high CRC. However, the therapeutic effect for proficient mismatch repair/microsatellite stability patients still requires further study and optimization. At present, the main CRC strategy is to combine other therapeutic methods, such as chemotherapy, targeted therapy, and radiotherapy. Here, we review the current status and the latest progress of immune checkpoint inhibitors in the treatment of CRC. At the same time, we consider therapeutic opportunities for transforming cold to hot, as well as perspectives on possible future therapies, which may be in great demand for drug-resistant patients.
Collapse
Affiliation(s)
- Jingjing Li
- Department of Gastroenterology, Shidong Hospital of Shanghai, Shanghai, People’s Republic of China
| | - Xuanfu Xu
- Department of Gastroenterology, Shidong Hospital of Shanghai, Shanghai, People’s Republic of China
| |
Collapse
|