1
|
Ying S, Wu N, Ruan Y, Ge W, Ma P, Xu T, Shu Y, Wang Y, Qiu W, Zhao C. IL-17 triggers PD-L1 gene transcription in NSCLC cells via TRIM31-dependent MEF2C K63-linked polyubiquitination. BMC Cancer 2025; 25:81. [PMID: 39810133 PMCID: PMC11731414 DOI: 10.1186/s12885-025-13473-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 01/07/2025] [Indexed: 01/16/2025] Open
Abstract
BACKGROUND Non-small cell lung cancer (NSCLC) is a disease related to inflammation. Proinflammatory cytokines such as interleukin 17 (IL-17) can induce cancer cell proliferation, metastasis and immune escape. Although NSCLC immune escape is partly due to the interaction between PD-1 and PD-L1 and PD-L1 expression can be upregulated in cancer cells upon stimulation with IL-17, the underlying mechanism of IL-17-triggered PD-L1 gene transcription in NSCLC cells remains elusive. METHODS RT‒PCR, real-time PCR, and IB were used to assess the levels of PD-L1, MEF2C, and TRIM31 in NSCLC tissues as well as in IL-17-stimulated H1299 or PC9 cells. Bioinformatics analysis, luciferase assays, and ChIP were utilized to investigate the transcriptional mechanism of the PD-L1 gene. Co-IP/IB was used to examine the interaction between MEF2C and PD-L1, including MEF2C ubiquitination. IHC staining was carried out to analyse the expression of IL-17RA, MEF2C, TRIM31, and PD-L1 in NSCLC tissue arrays. The corresponding plasmids were constructed and identified. An isograft model was used to verify the findings in vitro. RESULTS PD-L1, MEF2C and TRIM31 expression levels were increased in NSCLC tissues and NSCLC cells exposed to IL-17. Mechanistically, MEF2C could bind to the - 778 to -475 nt and - 336 to -97 nt regions of the PD-L1 promoter. TRIM31 could mediate MEF2C K63-linked polyubiquitination at Lys 25, increasing MEF2C recruitment to the PD-L1 promoter and PD-L1 gene transcription. MEF2C, TRIM31 or PD-L1 gene silencing effectively suppressed MEF2C K63-linked polyubiquitination, PD-L1 induction and NSCLC growth in mice inoculated with Lewis lung cancer (LLC) cells transfected with the corresponding shRNA and treated with IL-17. CONCLUSION IL-17 induces PD-L1 gene transcription in NSCLC cells through TRIM31-dependent MEF2C K63-linked polyubiquitination.
Collapse
Affiliation(s)
- Shuai Ying
- Department of Immunology, Nanjing Medical University, Nanjing, 211166, China
- Department of Laboratory Medicine, Wuxi People's Hospital of Nanjing Medical University, Wuxi, 214023, China
| | - Ningxia Wu
- Department of Immunology, Nanjing Medical University, Nanjing, 211166, China
- Department of Blood Transfusion, Nanjing Tianyinshan Hospital of China Pharmaceutical University, Nanjing, 211800, China
| | - Yuting Ruan
- Department of Immunology, Nanjing Medical University, Nanjing, 211166, China
| | - Wen Ge
- Department of Immunology, Nanjing Medical University, Nanjing, 211166, China
| | - Pei Ma
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
- Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, 210029, China
| | - Tongpeng Xu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
- Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, 210029, China
| | - Yongqian Shu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
- Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, 210029, China
| | - Yingwei Wang
- Department of Immunology, Nanjing Medical University, Nanjing, 211166, China
| | - Wen Qiu
- Department of Immunology, Nanjing Medical University, Nanjing, 211166, China
| | - Chenhui Zhao
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China.
- Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, 210029, China.
| |
Collapse
|
2
|
Duan F, Li H, Lu B, Wang X, Xu X. Loss of Trim31 Worsens Cardiac Remodeling in a Mouse Model of Heart Failure by Enhancing the Activation of the NLRP3 Inflammasome. Inflammation 2024:10.1007/s10753-024-02217-w. [PMID: 39673012 DOI: 10.1007/s10753-024-02217-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 12/04/2024] [Accepted: 12/09/2024] [Indexed: 12/15/2024]
Abstract
Tripartite motif-containing protein 31 (Trim31) is known to be involved in various pathological conditions, including heart diseases. Nonetheless, its specific involvement in heart failure (HF) has yet to be determined. In this study, we examined the function and mechanism of Trim31 in HF by using mice with cardiac-specific knockout (cKO) of Trim31. The HF mouse model was induced via the subcutaneous injection of isoproterenol (ISO). We observed a decrease in Trim31 expression in the heart tissues of mice with HF. Compared with wild-type (WT) mice, Trim31 cKO mice presented more severe characteristics of HF, including worsened cardiac dysfunction, hypertrophy, and fibrosis. However, these symptoms in Trim31 cKO mice were significantly reversed when they received an intramyocardial injection of recombinant adeno-associated virus (AAV) expressing Trim31. Excessive activation of the NLRP3 inflammasome, manifested by increased levels of NLRP3, ASC, cleaved Caspase-1, cleaved GSDMD, IL-1β, and IL-18, was observed in Trim31 cKO mice with HF. However, Trim31 overexpression effectively reversed the NLRP3 inflammasome activation in Trim31 cKO mice with HF. Selective inhibition of the NLRP3 inflammasome with the NLRP3 inhibitor MCC950 effectively reversed the worsened cardiac dysfunction, hypertrophy, and fibrosis observed in Trim31 cKO mice with HF. Overall, the findings from this study reveal a crucial role of Trim31 in HF. Trim31 deficiency may contribute to the progression of HF by promoting cardiac hypertrophy, fibrosis, and inflammation by facilitating the activation of the NLRP3 inflammasome. Therefore, Trim31 may hold significant potential as a therapeutic target for the treatment of HF.
Collapse
Affiliation(s)
- Fengqi Duan
- Department of Hematology, The Seventh Affiliated Hospital of Sun Yat-Sen University, Sun Yat-Sen University, No. 628 Zhenyuan Road, Shenzhen, 518106, Guangdong, China
| | - Huangjing Li
- Department of Pathophysiology, School of Medicine, Sun Yat-Sen University, Shenzhen, 518106, Guangdong, China
| | - Bo Lu
- Department of Hematology, The Seventh Affiliated Hospital of Sun Yat-Sen University, Sun Yat-Sen University, No. 628 Zhenyuan Road, Shenzhen, 518106, Guangdong, China
| | - Xiaobo Wang
- Department of Hematology, The Seventh Affiliated Hospital of Sun Yat-Sen University, Sun Yat-Sen University, No. 628 Zhenyuan Road, Shenzhen, 518106, Guangdong, China
| | - Xiaojun Xu
- Department of Hematology, The Seventh Affiliated Hospital of Sun Yat-Sen University, Sun Yat-Sen University, No. 628 Zhenyuan Road, Shenzhen, 518106, Guangdong, China.
| |
Collapse
|
3
|
Maghsoudloo M, Mokhtari K, Jamali B, Gholamzad A, Entezari M, Hashemi M, Fu J. Multifaceted role of TRIM28 in health and disease. MedComm (Beijing) 2024; 5:e790. [PMID: 39534556 PMCID: PMC11554878 DOI: 10.1002/mco2.790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 09/28/2024] [Accepted: 09/28/2024] [Indexed: 11/16/2024] Open
Abstract
The TRIM (tripartite motif) family, with TRIM28 as a key member, plays a vital role in regulating health and disease. TRIM28 contains various functional domains essential for transcriptional regulation, primarily through its interaction with KRAB-ZNF proteins, which influence chromatin remodeling and gene expression. Despite extensive research, the precise mechanisms by which TRIM28 impacts health and disease remain elusive. This review delves into TRIM28's multifaceted roles in maintaining health, contributing to a variety of diseases, and influencing cancer progression. In cancers, TRIM28 exhibits a dual nature, functioning as both a tumor promoter and suppressor depending on the cellular context and cancer type. The review also explores its critical involvement in processes such as DNA repair, cell cycle regulation, epithelial-to-mesenchymal transition, and the maintenance of stem cell properties. By uncovering TRIM28's complex roles across different cancers and other diseases, this review underscores its potential as a therapeutic target. The significance of TRIM28 as a versatile regulator opens the door to innovative therapeutic strategies, particularly in cancer treatment and the management of other diseases. Ongoing research into TRIM28 may yield key insights into disease progression and novel treatment options.
Collapse
Affiliation(s)
- Mazaher Maghsoudloo
- Key Laboratory of Epigenetics and Oncologythe Research Center for Preclinical MedicineSouthwest Medical UniversityLuzhouSichuanChina
| | - Khatere Mokhtari
- Department of Cellular and Molecular Biology and MicrobiologyFaculty of Biological Science and TechnologyUniversity of IsfahanIsfahanIran
| | - Behdokht Jamali
- Department of Microbiology and GeneticKherad Institute of Higher EducationBusheherIran
| | - Amir Gholamzad
- Farhikhtegan Medical Convergence Sciences Research CenterFarhikhtegan Hospital Tehran Medical SciencesIslamic Azad UniversityTehranIran
| | - Maliheh Entezari
- Farhikhtegan Medical Convergence Sciences Research CenterFarhikhtegan Hospital Tehran Medical SciencesIslamic Azad UniversityTehranIran
- Department of GeneticsFaculty of Advanced Science and TechnologyTehran Medical SciencesIslamic Azad UniversityTehranIran
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research CenterFarhikhtegan Hospital Tehran Medical SciencesIslamic Azad UniversityTehranIran
- Department of GeneticsFaculty of Advanced Science and TechnologyTehran Medical SciencesIslamic Azad UniversityTehranIran
| | - Junjiang Fu
- Key Laboratory of Epigenetics and Oncologythe Research Center for Preclinical MedicineSouthwest Medical UniversityLuzhouSichuanChina
| |
Collapse
|
4
|
Xue J, Jiang C, Chen X, Wang L. Trim31 deficiency exacerbates airway inflammation in asthma by enhancing the activation of the NLRP3 inflammasome. Int Immunopharmacol 2024; 138:112591. [PMID: 38981220 DOI: 10.1016/j.intimp.2024.112591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 06/23/2024] [Accepted: 06/27/2024] [Indexed: 07/11/2024]
Abstract
Tripartite motif (Trim) 31 is important for numerous inflammatory diseases. However, whether Trim31 regulates airway inflammation in asthma remains undetermined. The present work explored the role of Trim31 in airway inflammation in asthmatic mice established by ovalbumin (OVA) stimulation. Trim31 expression was markedly downregulated in the lungs of asthmatic mice. Compared with wild-type (WT) mice, Trim31-/- mice showed more severe pathological changes accompanied by increased inflammatory cell infiltration after OVA induction. House dust mite (HDM) stimulation evoked airway epithelial cell injury and inflammation, which were exacerbated by Trim31 silencing or attenuated by Trim31 overexpression. Further examination revealed that Trim31 deficiency exacerbated the activation of the NLRP3 inflammasome in OVA-induced asthmatic mice and HDM-stimulated airway epithelial cells. The inhibition of NLRP3 markedly diminished the Trim31 silencing-mediated enhancement of HDM-induced injury and inflammation in airway epithelial cells. In conclusion, this work demonstrates that Trim31 acts as a crucial mediator of airway inflammation in asthma. Trim31 deficiency may contribute to the progression of asthma by increasing NLRP3 inflammasome activation, suggesting that Trim31 is a potential therapeutic target for asthma.
Collapse
Affiliation(s)
- Jing Xue
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, 710061, China.
| | - Chunyan Jiang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, 710061, China
| | - Xue Chen
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, 710061, China
| | - Li Wang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, 710061, China
| |
Collapse
|
5
|
Gharib E, Robichaud GA. From Crypts to Cancer: A Holistic Perspective on Colorectal Carcinogenesis and Therapeutic Strategies. Int J Mol Sci 2024; 25:9463. [PMID: 39273409 PMCID: PMC11395697 DOI: 10.3390/ijms25179463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/19/2024] [Accepted: 08/24/2024] [Indexed: 09/15/2024] Open
Abstract
Colorectal cancer (CRC) represents a significant global health burden, with high incidence and mortality rates worldwide. Recent progress in research highlights the distinct clinical and molecular characteristics of colon versus rectal cancers, underscoring tumor location's importance in treatment approaches. This article provides a comprehensive review of our current understanding of CRC epidemiology, risk factors, molecular pathogenesis, and management strategies. We also present the intricate cellular architecture of colonic crypts and their roles in intestinal homeostasis. Colorectal carcinogenesis multistep processes are also described, covering the conventional adenoma-carcinoma sequence, alternative serrated pathways, and the influential Vogelstein model, which proposes sequential APC, KRAS, and TP53 alterations as drivers. The consensus molecular CRC subtypes (CMS1-CMS4) are examined, shedding light on disease heterogeneity and personalized therapy implications.
Collapse
Affiliation(s)
- Ehsan Gharib
- Département de Chimie et Biochimie, Université de Moncton, Moncton, NB E1A 3E9, Canada
- Atlantic Cancer Research Institute, Moncton, NB E1C 8X3, Canada
| | - Gilles A Robichaud
- Département de Chimie et Biochimie, Université de Moncton, Moncton, NB E1A 3E9, Canada
- Atlantic Cancer Research Institute, Moncton, NB E1C 8X3, Canada
| |
Collapse
|
6
|
Deng NH, Tian Z, Zou YJ, Quan SB. E3 ubiquitin ligase TRIM31: A potential therapeutic target. Biomed Pharmacother 2024; 176:116846. [PMID: 38850648 DOI: 10.1016/j.biopha.2024.116846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/13/2024] [Accepted: 05/27/2024] [Indexed: 06/10/2024] Open
Abstract
Ubiquitination is a key mechanism for post-translational protein modification, affecting protein localization, metabolism, degradation and various cellular physiological processes. Dysregulation of ubiquitination is associated with the pathogenesis of various diseases, such as tumors and cardiovascular diseases, making it a primary area of interest in biochemical research and drug development endeavors. E3 ubiquitin ligases play a pivotal role in modulating the ubiquitination of substrate proteins through their unique recognition functions. TRIM31, a member of the TRIM family of E3 ubiquitin ligases, is aberrantly expressed in different pathophysiological conditions. The biological function of TRIM31 is associated with the occurrence and development of diverse diseases. TRIM31 has been demonstrated to inhibit inflammation by promoting ubiquitin-proteasome-mediated degradation of the sensing protein NLRP3 in the inflammasome. TRIM31 mediates ubiquitination of MAVS, inducing the formation of prion-like aggregates, and triggering innate antiviral immune responses. TRIM31 is also implicated in tumor pathophysiology through its ability to promote ubiquitination of the tumor suppressor protein p53. These findings indicate that TRIM31 is a potential therapeutic target, and subsequent in-depth research of TRIM31 is anticipated to provide information on its clinical application in therapy.
Collapse
Affiliation(s)
- Nian-Hua Deng
- The Affiliated Dongguan Songshan Lake Central Hospital, Guangdong Medical University, Dongguan, Guangdong 523326, PR China
| | - Zhen Tian
- The Affiliated Dongguan Songshan Lake Central Hospital, Guangdong Medical University, Dongguan, Guangdong 523326, PR China
| | - Ying-Jiao Zou
- Medical Technology Center, Shilong Town Community Health Service Center, Dongguan, Guangdong 523326, PR China
| | - Shou-Bo Quan
- The Affiliated Dongguan Songshan Lake Central Hospital, Guangdong Medical University, Dongguan, Guangdong 523326, PR China.
| |
Collapse
|
7
|
O'Keefe ME, Dubyak GR, Abbott DW. Post-translational control of NLRP3 inflammasome signaling. J Biol Chem 2024; 300:107386. [PMID: 38763335 PMCID: PMC11245928 DOI: 10.1016/j.jbc.2024.107386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 04/10/2024] [Accepted: 04/25/2024] [Indexed: 05/21/2024] Open
Abstract
Inflammasomes serve as critical sensors for disruptions to cellular homeostasis, with inflammasome assembly leading to inflammatory caspase activation, gasdermin cleavage, and cytokine release. While the canonical pathways leading to priming, assembly, and pyroptosis are well characterized, recent work has begun to focus on the role of post-translational modifications (PTMs) in regulating inflammasome activity. A diverse array of PTMs, including phosphorylation, ubiquitination, SUMOylation, acetylation, and glycosylation, exert both activating and inhibitory influences on members of the inflammasome cascade through effects on protein-protein interactions, stability, and localization. Dysregulation of inflammasome activation is associated with a number of inflammatory diseases, and evidence is emerging that aberrant modification of inflammasome components contributes to this dysregulation. This review provides insight into PTMs within the NLRP3 inflammasome pathway and their functional consequences on the signaling cascade and highlights outstanding questions that remain regarding the complex web of signals at play.
Collapse
Affiliation(s)
- Meghan E O'Keefe
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - George R Dubyak
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Derek W Abbott
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA.
| |
Collapse
|
8
|
Nopora A, Weidle UH. CircRNAs as New Therapeutic Entities and Tools for Target Identification in Acute Myeloid Leukemia. Cancer Genomics Proteomics 2024; 21:118-136. [PMID: 38423599 PMCID: PMC10905271 DOI: 10.21873/cgp.20434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/08/2024] [Accepted: 01/09/2024] [Indexed: 03/02/2024] Open
Abstract
Acute myeloid leukemia (AML) is a genetically extremely heterogeneous disease. Drug resistance after induction therapy is a very frequent event resulting in poor medium survival times. Therefore, the identification of new targets and treatment modalities is a medical high priority issue. We addressed our attention to circular RNAs (circRNAs), which can act as oncogenes or tumor suppressors in AML. We searched the literature (PubMed) and identified eight up-regulated and two down-regulated circ-RNAs with activity in preclinical in vivo models. In addition, we identified twenty-two up-regulated and four down-regulated circRNAs with activity in preclinical in vitro systems, but pending in vivo activity. Up-regulated RNAs are potential targets for si- or shRNA-based approaches, and down-regulated circRNAs can be reconstituted by replacement therapy to achieve a therapeutic benefit in preclinical systems. The up-regulated targets can be tackled with small molecules, antibody-based entities, or other modes of intervention. For down-regulated targets, up-regulators must be identified. The ranking of the identified circRNAs with respect to therapy of AML will depend on further target validation experiments.
Collapse
Affiliation(s)
- Adam Nopora
- Roche Pharma Research and Early Development, Roche Innovation Center Munich, Penzberg, Germany
| | - Ulrich H Weidle
- Roche Pharma Research and Early Development, Roche Innovation Center Munich, Penzberg, Germany
| |
Collapse
|
9
|
Jin J, He J, Li X, Ni X, Jin X. The role of ubiquitination and deubiquitination in PI3K/AKT/mTOR pathway: A potential target for cancer therapy. Gene 2023; 889:147807. [PMID: 37722609 DOI: 10.1016/j.gene.2023.147807] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 09/12/2023] [Accepted: 09/15/2023] [Indexed: 09/20/2023]
Abstract
The PI3K/AKT/mTOR pathway controls key cellular processes, including proliferation and tumor progression, and abnormally high activation of this pathway is a hallmark in human cancers. The post-translational modification, such as Ubiquitination and deubiquitination, fine-tuning the protein level and the activity of members in this pathway play a pivotal role in maintaining normal physiological process. Emerging evidence show that the unbalanced ubiquitination/deubiquitination modification leads to human diseases via PI3K/AKT/mTOR pathway. Therefore, a comprehensive understanding of the ubiquitination/deubiquitination regulation of PI3K/AKT/mTOR pathway may be helpful to uncover the underlying mechanism and improve the potential treatment of cancer via targeting this pathway. Herein, we summarize the latest research progress of ubiquitination and deubiquitination of PI3K/AKT/mTOR pathway, systematically discuss the associated crosstalk between them, as well as focus the clinical transformation via targeting ubiquitination process.
Collapse
Affiliation(s)
- Jiabei Jin
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Jian He
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Xinming Li
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Xiaoqi Ni
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Xiaofeng Jin
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, China.
| |
Collapse
|