1
|
Wei S, Zhou J, Dong B. A novel risk model consisting of nine platelet-related gene signatures for predicting prognosis, immune features and drug sensitivity in glioma. Hereditas 2024; 161:52. [PMID: 39707577 DOI: 10.1186/s41065-024-00355-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 12/11/2024] [Indexed: 12/23/2024] Open
Abstract
BACKGROUND Glioma is a malignancy with challenging clinical treatment and poor prognosis. Platelets are closely associated with tumor growth, propagation, invasion, and angiogenesis. However, the role of platelet-related genes in glioma treatment and prognosis remains unclear. RESULTS A prognostic risk model was established using nine platelet-related prognostic signature genes (CAPG, CLIC1, GLB1, GNG12, KIF20A, PDIA4, SULF2, TAGLN2, and WEE1), and the risk score of samples were calculated. Subsequently, the glioma samples were divided into high- and low-risk groups based on the median values of risk scores. scRNA-seq analysis revealed that the prognostic genes were primarily located in astrocytes and natural killer cells. The immune infiltration proportions of most immune cells differed significantly between high- and low-risk groups. Moreover, we found AZD7762 as a potential candidate for glioma treatment. CONCLUSION Nine platelet-related prognostic genes identified as prognostic signatures for glioma were closely associated with the TME and may aid in directing the clinical treatment and prognosis of gliomas.
Collapse
Affiliation(s)
- Sanlin Wei
- Dalian Medical University, Dalian, Liaoning Province, 116000, China
- Department of Neurosurgery, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, 116000, China
| | - Junke Zhou
- Department of Nephrology, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, 116000, China
| | - Bin Dong
- Dalian Medical University, Dalian, Liaoning Province, 116000, China.
- Department of Neurosurgery, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, 116000, China.
| |
Collapse
|
2
|
Lu Y, Huang R, Zhang Y, Xiang W, Zhang X, Chen F, An L, Yuan H, Wen F, Xu Y. Porphyromonas gingivalis induced UCHL3 to promote colon cancer progression. Am J Cancer Res 2023; 13:5981-5995. [PMID: 38187053 PMCID: PMC10767335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 12/01/2023] [Indexed: 01/09/2024] Open
Abstract
Porphyromonas gingivalis (P. gingivalis), a Gram-negative oral anaerobe, was demonstrated to facilitate colonization and progression in colonic tumor, while the underlying mechanism still remains to be clarified. Here, we identified the proteome profile changed by P. gingivalis infection in HCT116 cells through label-free quantitative proteomics, and found that deubiquitinase UCHL3 was a key protein that response for P. gingivalis infection. By CCK8, colony formation, wound healing assays, and in vivo subcutaneous tumor mouse moudle, we proved that P. gingivalis could promote the proliferation and migration of colon cancer, while the process was inhibited by UCHL3 knock down. Through IP-MS, we identified GNG12 as the UCHL3 interacting protein. The protein level of GNG12 was significantly reduced when knock out UCHL3. Thus we propose that GNG12 is a substrate protein of UCHL3. Furthermore, we demonstrated that overexpression of GNG12 could restore the tumor inhibition effect caused by UCHL3 knock down, and UCHL3-GNG12 axis promote colon cancer progression via the NF-κB signal pathway. Collectively, this study unveiled that P. gingivalis infection up-regulated UCHL3 and stabilized its substrate protein GNG12 to activate the NF-κB signal pathway to promote colon cancer progression. Our study indicate that UCHL3 is a potential biomarker and therapeutic target for colon cancer which infected with P. gingivalis.
Collapse
Affiliation(s)
- Yang Lu
- Department of Stomatology, Shanghai Tenth People’s Hospital, Tongji University School of MedicineShanghai, China
| | - Renhuan Huang
- Department of Stomatology, Shanghai Tenth People’s Hospital, Tongji University School of MedicineShanghai, China
| | - Yiming Zhang
- Department of Stomatology, Shanghai Tenth People’s Hospital, Tongji University School of MedicineShanghai, China
| | - Wei Xiang
- Department of Stomatology, Shanghai Tenth People’s Hospital, Tongji University School of MedicineShanghai, China
| | - Xu Zhang
- Department of Stomatology, Shanghai Tenth People’s Hospital, Tongji University School of MedicineShanghai, China
| | - Fubo Chen
- Department of Stomatology, Shanghai Tenth People’s Hospital, Tongji University School of MedicineShanghai, China
| | - Liwei An
- Department of Stomatology, Shanghai Tenth People’s Hospital, Tongji University School of MedicineShanghai, China
- Department of Medical Stomatology, Shanghai Tenth People’s Hospital, Tongji University Cancer Center, Tongji University School of MedicineShanghai, China
| | - Hang Yuan
- Department of Stomatology, Shanghai Tenth People’s Hospital, Tongji University School of MedicineShanghai, China
| | - Fuping Wen
- Department of Stomatology, Shanghai Tenth People’s Hospital, Tongji University School of MedicineShanghai, China
| | - Yuanzhi Xu
- Department of Stomatology, Shanghai Tenth People’s Hospital, Tongji University School of MedicineShanghai, China
| |
Collapse
|
3
|
Yao L, Li Y, Li S, Wang M, Cao H, Xu L, Xu Y. ARHGAP39 is a prognostic biomarker involved in immune infiltration in breast cancer. BMC Cancer 2023; 23:440. [PMID: 37189064 DOI: 10.1186/s12885-023-10904-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 04/29/2023] [Indexed: 05/17/2023] Open
Abstract
BACKGROUND Current studies on the role of ARHGAP39 mainly focused on its effect on neurodevelopment. However, there are few studies on the comprehensive analysis of ARHGAP39 in breast cancer. METHODS ARHGAP39 expression level was analyzed based on the Cancer Genome Atlas (TCGA), the Genotype-Tissue Expression Project (GTEx), and the Clinical Proteomic Tumor Analysis Consortium (CPTAC) database and validated by qPCR in various cell lines and tumor tissues. The prognostic value was analyzed using Kaplan-Meier curve analysis. CCK-8 and transwell assays were conducted to identify the biological function of ARHGAP39 in tumorigenesis. Signaling pathways related to ARHGAP39 expression were identified by the GO and KEGG enrichment analysis and gene set enrichment analysis (GSEA). The correlations between ARHGAP39 and cancer immune infiltrates were investigated via TIMER, CIBERSORT, ESTIMATE and tumor-immune system interactions database (TISIDB). RESULTS ARHGAP39 was overexpressed in breast cancer and associated with poor survival outcomes. In vitro experiments revealed that ARHGAP39 could facilitate the proliferation, migration, and invasion capability of breast cancer cells. GSEA analysis showed that the main enrichment pathways of ARHGAP39 was immunity-related pathways. Considering the immune infiltration level, ARHGAP39 was negatively associated with infiltrating levels of CD8 + T cell and macrophage, and positively associated with CD4 + T cell. Furthermore, ARHGAP39 was significantly negatively correlated with immune score, stromal score, and ESTIMATE score. CONCLUSIONS Our findings suggested that ARHGAP39 can be used as a potential therapeutic target and prognostic biomarker in breast cancer. ARHGAP39 was indeed a determinant factor of immune infiltration.
Collapse
Affiliation(s)
- Litong Yao
- Department of Breast Surgery, the First Hospital of China Medical University, Shenyang, 110001, Liaoning, China
| | - Yuwei Li
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Siyuan Li
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Mozhi Wang
- Department of Breast Surgery, the First Hospital of China Medical University, Shenyang, 110001, Liaoning, China
| | - Hongyi Cao
- Department of Pathology, the First Hospital of China Medical University and College of Basic Medical Sciences, Shenyang, Liaoning, China
| | - Ling Xu
- Department of Medical Oncology, the First Hospital of China Medical University, Shenyang, China
| | - Yingying Xu
- Department of Breast Surgery, the First Hospital of China Medical University, Shenyang, 110001, Liaoning, China.
| |
Collapse
|
4
|
Jiang X, Tang F, Zhang J, He M, Xie T, Tang H, Liu J, Luo K, Lu S, Liu Y, Lu J, He M, Wei Q. High GNG4 predicts adverse prognosis for osteosarcoma: Bioinformatics prediction and experimental verification. Front Oncol 2023; 13:991483. [PMID: 36845726 PMCID: PMC9950737 DOI: 10.3389/fonc.2023.991483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 01/23/2023] [Indexed: 02/12/2023] Open
Abstract
Background Guanine nucleotide binding (G) protein subunit γ 4 (GNG4) is closely related to the malignant progression and poor prognosis of various tumours. However, its role and mechanism in osteosarcoma remain unclear. This study aimed to elucidate the biological role and prognostic value of GNG4 in osteosarcoma. Methods Osteosarcoma samples in the GSE12865, GSE14359, GSE162454 and TARGET datasets were selected as the test cohorts. The expression level of GNG4 between normal and osteosarcoma was identified in GSE12865 and GSE14359. Based on the osteosarcoma single-cell RNA sequencing (scRNA-seq) dataset GSE162454, differential expression of GNG4 among cell subsets was identified at the single-cell level. As the external validation cohort, 58 osteosarcoma specimens from the First Affiliated Hospital of Guangxi Medical University were collected. Patients with osteosarcoma were divided into high- and low-GNG4 groups. The biological function of GNG4 was annotated using Gene Ontology, gene set enrichment analysis, gene expression correlation analysis and immune infiltration analysis. Kaplan-Meier survival analysis was conducted and receiver operating characteristic (ROC) curves were calculated to determine the reliability of GNG4 in predicting prognostic significance and diagnostic value. Functional in vitro experiments were performed to explore the function of GNG4 in osteosarcoma cells. Results GNG4 was generally highly expressed in osteosarcoma. As an independent risk factor, high GNG4 was negatively correlated with both overall survival and event-free survival. Furthermore, GNG4 was a good diagnostic marker for osteosarcoma, with an area under the receiver operating characteristic curve (AUC) of more than 0.9. Functional analysis suggested that GNG4 may promote the occurrence of osteosarcoma by regulating ossification, B-cell activation, the cell cycle and the proportion of memory B cells. In in vitro experiments, silencing of GNG4 inhibited the viability, proliferation and invasion of osteosarcoma cells. Conclusion Through bioinformatics analysis and experimental verification, high expression of GNG4 in osteosarcoma was identified as an oncogene and reliable biomarker for poor prognosis. This study helps to elucidate the significant potential of GNG4 in carcinogenesis and molecular targeted therapy for osteosarcoma.
Collapse
Affiliation(s)
- Xiaohong Jiang
- Department of Trauma Orthopedic and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China,Department of Orthopedic, The Affiliated Minzu Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Fuxing Tang
- Department of Spinal Bone Disease, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China,Department of Spinal Bone Disease, Yulin Orthopedics Hospital of Chinese and Western Medicine, Yulin, Guangxi, China
| | - Junlei Zhang
- Department of Sports Medicine, Southern University of Science and Technology Hospital, Shenzhen, Guangdong, China
| | - Mingwei He
- Department of Trauma Orthopedic and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Tianyu Xie
- Department of Trauma Orthopedic and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Haijun Tang
- Department of Spinal Bone Disease, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Jianhong Liu
- Department of Trauma Orthopedic and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Kai Luo
- Department of Spinal Bone Disease, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Shenglin Lu
- Department of Orthopedic, The Affiliated Minzu Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Yun Liu
- Department of Orthopedic, The Affiliated Minzu Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Jili Lu
- Department of Orthopaedics, the People’s Hospital of Baise, Baise, Guangxi, China,*Correspondence: Qingjun Wei, ; Maolin He, ; Jili Lu,
| | - Maolin He
- Department of Spinal Bone Disease, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China,*Correspondence: Qingjun Wei, ; Maolin He, ; Jili Lu,
| | - Qingjun Wei
- Department of Trauma Orthopedic and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China,*Correspondence: Qingjun Wei, ; Maolin He, ; Jili Lu,
| |
Collapse
|