1
|
Qian D, Liu Y, Zheng J, Cai J. Dendritic cell therapy for neurospoagioma: Immunomodulation mediated by tumor vaccine. Cell Death Discov 2024; 10:11. [PMID: 38184649 PMCID: PMC10771477 DOI: 10.1038/s41420-023-01782-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 12/09/2023] [Accepted: 12/15/2023] [Indexed: 01/08/2024] Open
Abstract
Neurospagioma, arising from different glial cells such as astrocytes, oligodendrocytes, and ependymal cells, stands as the prevalent intracranial tumor within the central nervous system. Among its variants, glioblastoma (GBM) represents the most aggressive form, characterized by a notably high occurrence rate and a discouragingly low survival prognosis. The formidable challenge posed by glioblastoma underscores its critical importance as a life-threatening ailment. Currently, clinical approaches often involve surgical excision along with a combination of radiotherapy and chemotherapy. However, these treatments frequently result in a notable recurrence rate, accompanied by substantial adverse effects that significantly compromise the overall prognosis. Hence, there is a crucial need to investigate novel and dependable treatment strategies. Dendritic cells (DCs), being specialized antigen-presenting cells (APCs), hold a significant position in both innate and adaptive immune responses. Presently, DC vaccines have gained widespread application in the treatment of various tumors, including neurospoagioma. In this review, we summarize the immunomodulatory effects and related mechanisms of DC vaccines in neurospoagioma as well as the progress of clinical trials to propose possible challenges of DC vaccines and new development directions.
Collapse
Affiliation(s)
- Da Qian
- Department of Burn and Plastic Surgery-Hand Surgery, Changshu Hospital Affiliated to Soochow University, Changshu No.1 People's Hospital, Changshu, 215500, Jiangsu Province, China.
| | - Yuxiang Liu
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, 150086, Harbin, China
| | - Jie Zheng
- Department of Burn and Plastic Surgery-Hand Surgery, Changshu Hospital Affiliated to Soochow University, Changshu No.1 People's Hospital, Changshu, 215500, Jiangsu Province, China
| | - Jinquan Cai
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, 150086, Harbin, China.
| |
Collapse
|
2
|
Sipos TC, Kövecsi A, Ovidiu-Ioan Ș, Zsuzsánna P. General Clinico-Pathological Characteristics in Glioblastomas in Correlation with p53 and Ki67. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1918. [PMID: 38003967 PMCID: PMC10672788 DOI: 10.3390/medicina59111918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/18/2023] [Accepted: 10/28/2023] [Indexed: 11/26/2023]
Abstract
Introduction: A glioblastoma is an intra-axial brain tumour of glial origin that belongs to the category of diffuse gliomas and is the most common malignant neoplasia of the central nervous system. The rate of survival at 5 years, from the moment of diagnosis, is not higher than 10%. Materials and methods: In this retrospective study, fifty-four patients diagnosed with glioblastoma, from the Pathology Department of the County Emergency Clinical Hospital of Târgu Mureș, between 2014 and 2017 were included. We studied the clinico-pathological data (age, gender, location, and laterality) and, respectively, the immunoexpression of p53, Ki67, ATRX, and IDH-1 proteins. Results: We observed a statistically significant association between the laterality of the tumour according to the age groups, with the localization on the right side being more frequent in the age group below 65 years of age, while the involvement of the left hemisphere was more prevalent in those over 65 years. Out of the total 54 cases, 87.04% were found to be primary glioblastomas; more than 70% of the cases were ATRX immunopositive; almost 80% of the glioblastomas studied had wild-type p53 profile; and 35% of the cases were found to have a Ki67 index greater than 20%. A statistically significant association between gender and ATRX mutation was found; female cases were ATRX immunopositive in 92% of the cases. Almost 70% of the cases were both IDH-1 and p53 wild-type, and we observed the presence of both mutations in only 3.7% of the cases. Approximately 83% of primary glioblastomas were ATRX positive, respectively, and all IDH-1 mutant cases were ATRX negative. Conclusions: Glioblastomas still represent a multidisciplinary challenge considering their reserved prognosis. In this study, we described the most common clinico-pathological characteristics and IHC marker expression profiles, highlighting a variety of percentage ranges in primary and secondary glioblastomas. Given the small number of studied cases, further prospective studies on larger cohorts are needed in the future to evaluate the role of these immunohistochemical markers as prognostic factors for survival or recurrence.
Collapse
Affiliation(s)
- Tamás-Csaba Sipos
- Department of Anatomy and Embryology, George Emil Palade University of Medicine, Pharmacy, Sciences and Technology of Târgu Mures, Street Gheorghe Marinescu 38, 540142 Târgu Mures, Romania; (T.-C.S.); (P.Z.)
| | - Attila Kövecsi
- Department of Pathology, George Emil Palade University of Medicine, Pharmacy, Sciences and Technology of Târgu Mures, Street Gheorghe Marinescu 38, 540142 Târgu Mures, Romania;
| | - Șușu Ovidiu-Ioan
- Department of Anatomy and Embryology, George Emil Palade University of Medicine, Pharmacy, Sciences and Technology of Târgu Mures, Street Gheorghe Marinescu 38, 540142 Târgu Mures, Romania; (T.-C.S.); (P.Z.)
| | - Pap Zsuzsánna
- Department of Anatomy and Embryology, George Emil Palade University of Medicine, Pharmacy, Sciences and Technology of Târgu Mures, Street Gheorghe Marinescu 38, 540142 Târgu Mures, Romania; (T.-C.S.); (P.Z.)
| |
Collapse
|
3
|
Consoli S, Dono F, Evangelista G, Corniello C, Onofrj M, Thomas A, Sensi SL. Case Report: Brain tumor's pitfalls: two cases of high-grade brain tumors mimicking autoimmune encephalitis with positive onconeuronal antibodies. Front Oncol 2023; 13:1254674. [PMID: 37692853 PMCID: PMC10484219 DOI: 10.3389/fonc.2023.1254674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 07/18/2023] [Indexed: 09/12/2023] Open
Abstract
Background Glioblastoma (GBM) is the most common primary brain tumor in adulthood. Initial diagnosis is generally based on clinical and MRI findings, which may be misinterpreted as other neurological pictures, including autoimmune encephalitis (AE). AE is a heterogeneous group of neuroinflammatory diseases due to the presence of auto-antibodies targeting antigens on neuronal synaptic or cell surface. In the present report, we describe two peculiar cases of GBM initially misdiagnosed as AE, focusing on the diagnostic pitfalls and the treatment strategies. Methods We report the case of two patients with high-grade brain tumors, initially misdiagnosed and treated for AE. Clinical, laboratory, and neuroradiological data are discussed in terms of differential diagnosis between AE and GBM. Results The presence of atypical brain MRI findings and the unresponsiveness to immunosuppressive treatment are major red flags in the differential diagnosis between AE and GBM. In these cases, a brain biopsy is necessary to confirm the diagnosis. Conclusions Atypical brain tumor presentation causes a diagnostic and therapeutic delay. A positive onconeural autoantibodies result should always be interpreted cautiously, considering the possibility of a false-positive test. A brain biopsy is mandatory for a definite diagnosis.
Collapse
Affiliation(s)
- Stefano Consoli
- Department of Neuroscience, Imaging and Clinical Science, “G. d’Annunzio” University of Chieti-Pescara, Chieti, Italy
- Epilepsy Center, “SS Annunziata” Hospital, Chieti, Italy
| | - Fedele Dono
- Department of Neuroscience, Imaging and Clinical Science, “G. d’Annunzio” University of Chieti-Pescara, Chieti, Italy
- Epilepsy Center, “SS Annunziata” Hospital, Chieti, Italy
| | - Giacomo Evangelista
- Department of Neuroscience, Imaging and Clinical Science, “G. d’Annunzio” University of Chieti-Pescara, Chieti, Italy
- Epilepsy Center, “SS Annunziata” Hospital, Chieti, Italy
| | - Clarissa Corniello
- Department of Neuroscience, Imaging and Clinical Science, “G. d’Annunzio” University of Chieti-Pescara, Chieti, Italy
- Epilepsy Center, “SS Annunziata” Hospital, Chieti, Italy
| | - Marco Onofrj
- Department of Neuroscience, Imaging and Clinical Science, “G. d’Annunzio” University of Chieti-Pescara, Chieti, Italy
| | - Astrid Thomas
- Department of Neuroscience, Imaging and Clinical Science, “G. d’Annunzio” University of Chieti-Pescara, Chieti, Italy
| | - Stefano L. Sensi
- Department of Neuroscience, Imaging and Clinical Science, “G. d’Annunzio” University of Chieti-Pescara, Chieti, Italy
- Behavioral Neurology and Molecular Neurology Units, Center for Advanced Studies and Technology (CAST), University “G. d’Annunzio” of Chieti-Pescara, Chieti, Italy
- Institute for Advanced Biomedical Technologies, University of Chieti-Pescara, Chieti, Italy
| |
Collapse
|
4
|
Msheik A, Fares Y, Hamoud M, Atat R. Unraveling the Complexity of Multicentric Gliomas: Insights Into Chronicity and Genetic Aberrations. Cureus 2023; 15:e37284. [PMID: 37168179 PMCID: PMC10165940 DOI: 10.7759/cureus.37284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/08/2023] [Indexed: 05/13/2023] Open
Abstract
Gliomas are among the most common primary tumors of the brain. Discrimination among tumors of more than one focus has segregated the latter into two groups: multifocal gliomas and multicentric gliomas (MCGs). In this case series, outcomes among three patients are described and discussed in light of the findings present in the literature. Ideally, it is crucial to consider genetic testing for categorizing each tumor. This can help determine the original genetic mutations of MCGs and allow to establish necessary screening testing for early detection. We present the cases of three patients diagnosed with cranial gliomas. The first case showed two synchronous gliomas at different loci in the right hemisphere. The second patient showed synchronous lesions on cranial magnetic resonance imaging in each hemisphere. The third case was of a patient with metachronous lesions appearing at different times with similar radiological findings at different loci of the same hemisphere. Discrimination among multifocal and multicentric gliomas requires genetic workup because radiological and temporal findings may fail to allow adequate discrimination.
Collapse
Affiliation(s)
- Ali Msheik
- Neurosurgery, Al Zahraa Hospital University Medical Center, Beirut, LBN
| | - Youssef Fares
- Neurosurgery, Al Zahraa Hospital University Medical Center, Beirut, LBN
| | - Maarouf Hamoud
- Neurosurgery, Al Zahraa Hospital University Medical Center, Beirut, LBN
| | - Rami Atat
- Neurology Division, Faculty of Medicine, Lebanese University, Al Zahraa Hospital University Medical Center, Beirut, LBN
| |
Collapse
|