1
|
Zeng F, Chen Y, Lin J. Identification of alternative lengthening of telomeres-related genes prognosis model in hepatocellular carcinoma. BMC Cancer 2024; 24:1386. [PMID: 39529015 PMCID: PMC11555837 DOI: 10.1186/s12885-024-13146-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is a common malignant tumor worldwide, characterized by high mortality. This study aimed to explore the prognostic value and function of alternative lengthening of telomeres (ALT)-related genes in HCC. METHODS Differentially expressed genes (DEGs) were identified based on The Cancer Genome Atlas (TCGA) and then intersected with ALT-related genes to obtain ALTDEGs. Risk score model was constructed using the least absolute shrinkage and selection operator (LASSO) algorithm and Cox regression and validated with Gene Expression Omnibus (GEO) datasets. The predictive efficacy of the risk score and ALTs-score was evaluated by Kaplan-Meier curves, time-ROC curves, and the nomogram analyses. The impacts of SMG5 silencing on the HCC cell behaviors were assessed by CCK-8, wound healing, and Transwell assays. RESULTS A total of 500 ALTDEGs were screened and 13 genes (CDCA8, SMG5, RAD54B, FOXD2, NOL10, RRP12, CCT5, CCT4, HDAC1, DDX1, HRG, HDAC2, and PPP1CB) were identified for constructing a prognostic model. The overall survival (OS) curves, time-ROC curves, and nomograms based on the risk score or ALTs-score were developed to optimally predict the survival of HCC patients. ALTs-score was correlated with immune infiltration and confirmed its value in predicting immunotherapy outcomes. Furthermore, RT-qPCR demonstrated that eight risk signature genes were up-regulated in HCC cells. SMG5 silencing suppressed the proliferation, migration, and invasion of HCC cells. It was also found that SMG5 silencing reduced C-circle level in SNU-387 cells. CONCLUSION We identified new ALT-related prognostic biomarkers for HCC. SMG5 knockdown inhibited the HCC progression, which might be a promising target for HCC therapy.
Collapse
Affiliation(s)
- FanLin Zeng
- Department of General Surgery (Hepatobiliary and Pancreatic Surgery), The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - YuLiang Chen
- Department of Gastroenterology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Jie Lin
- Department of Intensive Medicine (Comprehensive Intensive Care Unit), The First Affiliated Hospital of Gannan Medical University, No. 128 Jin Ling Lu, Ganzhou, Jiangxi, 341000, P.R. China.
| |
Collapse
|
2
|
Pan T, Li J, Zhang O, Zhu Y, Zhou H, Ma M, Yu Y, Lyu J, Chen Y, Xu L. Knockdown of ribosome RNA processing protein 15 suppresses migration of hepatocellular carcinoma through inhibiting PATZ1-associated LAMC2/FAK pathway. BMC Cancer 2024; 24:334. [PMID: 38475740 DOI: 10.1186/s12885-024-12065-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
BACKGROUND Ribosomal RNA processing protein 15 (RRP15) has been found to regulate the progression of hepatocellular carcinoma (HCC). Nevertheless, the extent to which it contributes to the spread of HCC cells remains uncertain. Thus, the objective of this research was to assess the biological function of RRP15 in the migration of HCC. METHODS The expression of RRP15 in HCC tissue microarray (TMA), tumor tissues and cell lines were determined. In vitro, the effects of RRP15 knockdown on the migration, invasion and adhesion ability of HCC cells were assessed by wound healing assay, transwell and adhesion assay, respectively. The effect of RRP15 knockdown on HCC migration was also evaluated in vivo in a mouse model. RESULTS Bioinformatics analysis showed that high expression of RRP15 was significantly associated with low survival rate of HCC. The expression level of RRP15 was strikingly upregulated in HCC tissues and cell lines compared with the corresponding controls, and TMA data also indicated that RRP15 was a pivotal prognostic factor for HCC. RRP15 knockdown in HCC cells reduced epithelial-to-mesenchymal transition (EMT) and inhibited migration in vitro and in vivo, independent of P53 expression. Mechanistically, blockade of RRP15 reduced the protein level of the transcription factor POZ/BTB and AT hook containing zinc finger 1 (PATZ1), resulting in decreased expression of the downstream genes encoding laminin 5 subunits, LAMC2 and LAMB3, eventually suppressing the integrin β4 (ITGB4)/focal adhesion kinase (FAK)/nuclear factor κB kappa-light-chain-enhancer of activated B cells (NF-κB) signaling pathway. CONCLUSIONS RRP15 promotes HCC migration by activating the LAMC2/ITGB4/FAK pathway, providing a new target for future HCC treatment.
Collapse
Affiliation(s)
- Tongtong Pan
- Zhejiang Provincial Key Laboratory for Accurate Diagnosis and Treatment of Chronic Liver Diseases, The First Affiliated Hospital of Wenzhou Medical University, 325035, Wenzhou, Zhejiang, China
| | - Jinhai Li
- Department of Liver and Gall Surgery, The Third Affiliated Hospital of Wenzhou Medical University, 325200, Wenzhou, Zhejiang, China
| | - Ouyang Zhang
- Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, 325035, Wenzhou, Zhejiang, China
| | - Yuqin Zhu
- Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, 325035, Wenzhou, Zhejiang, China
| | - Hongfei Zhou
- Zhejiang Provincial Key Laboratory for Accurate Diagnosis and Treatment of Chronic Liver Diseases, The First Affiliated Hospital of Wenzhou Medical University, 325035, Wenzhou, Zhejiang, China
| | - Mengchen Ma
- Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, 325035, Wenzhou, Zhejiang, China
| | - Yanwen Yu
- Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, 325035, Wenzhou, Zhejiang, China
| | - Jiaojian Lyu
- Department of Infectious Diseases, Lishui People's Hospital, 323000, Lishui, Zhejiang, China
| | - Yongping Chen
- Zhejiang Provincial Key Laboratory for Accurate Diagnosis and Treatment of Chronic Liver Diseases, The First Affiliated Hospital of Wenzhou Medical University, 325035, Wenzhou, Zhejiang, China.
| | - Liang Xu
- Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, 325035, Wenzhou, Zhejiang, China.
| |
Collapse
|
3
|
Suo L, Liang X, Zhang W, Gao M, Ma T, Hu D, Song Y, Gao Z. Potential prognostic biomarkers of hepatocellular carcinoma based on 4D label-free quantitative proteomics analysis pilot investigation. Int J Biol Markers 2024; 39:59-69. [PMID: 37956648 DOI: 10.1177/03936155231212925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
BACKGROUND Hepatocellular carcinoma carries a poor prognosis and poses a serious threat to global health. Currently, there are few potential prognostic biomarkers available for the prognosis of hepatocellular carcinoma. METHODS This pilot study used 4D label-free quantitative proteomics to compare the proteomes of hepatocellular carcinoma and adjacent non-tumor tissue. A total of 66,075 peptides, 6363 identified proteins, and 772 differentially expressed proteins were identified in specimens from three hepatocellular carcinoma patients. Through functional enrichment analysis of differentially expressed proteins by Gene Ontology, KEGG pathway, and protein domain, we identified proteins with similar functions. RESULTS Twelve differentially expressed proteins (RPL17, RPL27, RPL27A, RPS5, RPS16, RSL1D1, DDX18, RRP12, TARS2, YARS2, MARS2, and NARS1) were selected for identification and validation by parallel reaction monitoring. Subsequent Western blotting confirmed overexpression of RPL27, RPS16, and TARS2 in hepatocellular carcinoma compared to non-tumor tissue in 16 pairs of clinical samples. Analysis of The Cancer Genome Atlas datasets associated the increased expression of these proteins with poor prognosis. Tissue microarray revealed a negative association between high expression of RPL27 and TARS2 and the prognosis of hepatocellular carcinoma patients, although RPS16 was not significant. CONCLUSIONS These data suggest that RPL27 and TARS2 play an important role in hepatocellular carcinoma progression and may be potential prognostic biomarkers of overall survival in hepatocellular carcinoma patients.
Collapse
Affiliation(s)
- Lida Suo
- Division of Hepatobiliary and Pancreatic Surgery, Department of General Surgery, The Second Hospital of Dalian Medical University, Dalian, China
| | - Xiangnan Liang
- Division of Hepatobiliary and Pancreatic Surgery, Department of General Surgery, The Second Hospital of Dalian Medical University, Dalian, China
| | - Weibin Zhang
- Division of Hepatobiliary and Pancreatic Surgery, Department of General Surgery, The Second Hospital of Dalian Medical University, Dalian, China
| | - Mingwei Gao
- Division of Hepatobiliary and Pancreatic Surgery, Department of General Surgery, The Second Hospital of Dalian Medical University, Dalian, China
| | - Taiheng Ma
- Division of Hepatobiliary and Pancreatic Surgery, Department of General Surgery, The Second Hospital of Dalian Medical University, Dalian, China
| | - Daosheng Hu
- Division of Hepatobiliary and Pancreatic Surgery, Department of General Surgery, The Second Hospital of Dalian Medical University, Dalian, China
| | - Yilin Song
- Division of Hepatobiliary and Pancreatic Surgery, Department of General Surgery, The Second Hospital of Dalian Medical University, Dalian, China
| | - Zhenming Gao
- Division of Hepatobiliary and Pancreatic Surgery, Department of General Surgery, The Second Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
4
|
Tang L, Chen Z, Wei C, Liu H, Wang B, Yu T, Tao X, Yang J, Guan J, Yi J, Zhu H, Li C, Tang P, Wang K. The significance of HAUS1 and its relationship with immune microenvironment in hepatocellular carcinoma. J Cancer 2024; 15:1328-1341. [PMID: 38356703 PMCID: PMC10861820 DOI: 10.7150/jca.90298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 12/29/2023] [Indexed: 02/16/2024] Open
Abstract
Background: HAUS Augmin-like complex subunit 1(HAUS1), as a controlling gene, which affected the production of spindle was firstly discovered in Drosophila cells. Although HAUS1 has been intensively studied, but its significance and relationship with the immune microenvironment in Hepatocellular carcinoma (HCC) remain unclear. Materials and Methods: All data of HCC in this paper were obtained from The Cancer Genome Atlas(TCGA), Genotype-Tissue Expression (GTEx), Gene Expression Omnibus (GEO) and the Human Protein Atlas(HPA) database. The role and potential value of HAUS1 in the tumorigenesis and development of HCC were studied by applying plenty of bioinformatics analysis methods. Knocked down the expression of HAUS1 through siRNA and further investigated the function of HAUS1 in HCC Results: HAUS1 was highly expressed in HCC, which led to a poor prognosis. ROC curve analysis showed that HAUS1 had a excellent diagnostic value. It was also associated with clinical stage, pathological grade and AFP of HCC. Univariate and multivariate COX regression analysis showed that HAUS1 was an independent prognostic factor for HCC patients. HAUS1 was associated with immune cells infiltrate and immune checkpoints in HCC, and it could generate significative therapeutic results when combined with anti-CTLA4 and anti-CD274 treatment. In vitro experiments, HAUS1 was found to promote the proliferation, invasion and metastasis, participated in cell cycle regulation and inhibited apoptosis of HCC. Conclusion: These results suggested that HAUS1 might serve as a potential therapeutic target, as well as a diagnostic, prognostic, and survival biomarker for HCC.
Collapse
Affiliation(s)
- Lei Tang
- Hepatobiliary and Pancreatic Surgery Division, Department of General Surgery, the 2nd affiliated hospital, Jiangxi Medical College, Nanchang University, Nanchang 330038, China
- Jiangxi Province Engineering Research Center of Hepatobiliary Disease, the 2nd affiliated hospital, Jiangxi Medical College, Nanchang University, Nanchang 330008, China
- Jiangxi Province Key Laboratory of Molecular Medicine, the 2nd affiliated hospital, Jiangxi Medical College, Nanchang University, Nanchang 330008, China
| | - Zhonghuo Chen
- Department of Emergency, Jiangxi Province Hospital of Integrated Chinese and Western Medicine, Nanchang 330009, China
| | - Chao Wei
- Hepatobiliary and Pancreatic Surgery Division, Department of General Surgery, the 2nd affiliated hospital, Jiangxi Medical College, Nanchang University, Nanchang 330038, China
- Jiangxi Province Engineering Research Center of Hepatobiliary Disease, the 2nd affiliated hospital, Jiangxi Medical College, Nanchang University, Nanchang 330008, China
- Jiangxi Province Key Laboratory of Molecular Medicine, the 2nd affiliated hospital, Jiangxi Medical College, Nanchang University, Nanchang 330008, China
| | - Hao Liu
- Hepatobiliary and Pancreatic Surgery Division, Department of General Surgery, the 2nd affiliated hospital, Jiangxi Medical College, Nanchang University, Nanchang 330038, China
- Jiangxi Province Engineering Research Center of Hepatobiliary Disease, the 2nd affiliated hospital, Jiangxi Medical College, Nanchang University, Nanchang 330008, China
| | - Ben Wang
- Department of General Surgery, No. 215 Hospital of Shanxi Nuclear Industry, Xianyang 712000, China
| | - Taozhi Yu
- Hepatobiliary and Pancreatic Surgery Division, Department of General Surgery, the 2nd affiliated hospital, Jiangxi Medical College, Nanchang University, Nanchang 330038, China
- Jiangxi Province Engineering Research Center of Hepatobiliary Disease, the 2nd affiliated hospital, Jiangxi Medical College, Nanchang University, Nanchang 330008, China
- Jiangxi Province Key Laboratory of Molecular Medicine, the 2nd affiliated hospital, Jiangxi Medical College, Nanchang University, Nanchang 330008, China
| | - Xiaofei Tao
- Hepatobiliary and Pancreatic Surgery Division, Department of General Surgery, the 2nd affiliated hospital, Jiangxi Medical College, Nanchang University, Nanchang 330038, China
- Jiangxi Province Engineering Research Center of Hepatobiliary Disease, the 2nd affiliated hospital, Jiangxi Medical College, Nanchang University, Nanchang 330008, China
- Jiangxi Province Key Laboratory of Molecular Medicine, the 2nd affiliated hospital, Jiangxi Medical College, Nanchang University, Nanchang 330008, China
| | - Jiale Yang
- Hepatobiliary and Pancreatic Surgery Division, Department of General Surgery, the 2nd affiliated hospital, Jiangxi Medical College, Nanchang University, Nanchang 330038, China
- Jiangxi Province Engineering Research Center of Hepatobiliary Disease, the 2nd affiliated hospital, Jiangxi Medical College, Nanchang University, Nanchang 330008, China
- Jiangxi Province Key Laboratory of Molecular Medicine, the 2nd affiliated hospital, Jiangxi Medical College, Nanchang University, Nanchang 330008, China
| | - Jiafu Guan
- Hepatobiliary and Pancreatic Surgery Division, Department of General Surgery, the 2nd affiliated hospital, Jiangxi Medical College, Nanchang University, Nanchang 330038, China
- Jiangxi Province Engineering Research Center of Hepatobiliary Disease, the 2nd affiliated hospital, Jiangxi Medical College, Nanchang University, Nanchang 330008, China
| | - Jianwei Yi
- Hepatobiliary and Pancreatic Surgery Division, Department of General Surgery, the 2nd affiliated hospital, Jiangxi Medical College, Nanchang University, Nanchang 330038, China
- Jiangxi Province Engineering Research Center of Hepatobiliary Disease, the 2nd affiliated hospital, Jiangxi Medical College, Nanchang University, Nanchang 330008, China
| | - Hengchang Zhu
- Hepatobiliary and Pancreatic Surgery Division, Department of General Surgery, the 2nd affiliated hospital, Jiangxi Medical College, Nanchang University, Nanchang 330038, China
- Jiangxi Province Engineering Research Center of Hepatobiliary Disease, the 2nd affiliated hospital, Jiangxi Medical College, Nanchang University, Nanchang 330008, China
| | - Chen Li
- Hepatobiliary and Pancreatic Surgery Division, Department of General Surgery, the 2nd affiliated hospital, Jiangxi Medical College, Nanchang University, Nanchang 330038, China
- Jiangxi Province Engineering Research Center of Hepatobiliary Disease, the 2nd affiliated hospital, Jiangxi Medical College, Nanchang University, Nanchang 330008, China
| | - Peng Tang
- Hepatobiliary and Pancreatic Surgery Division, Department of General Surgery, the 2nd affiliated hospital, Jiangxi Medical College, Nanchang University, Nanchang 330038, China
- Jiangxi Province Engineering Research Center of Hepatobiliary Disease, the 2nd affiliated hospital, Jiangxi Medical College, Nanchang University, Nanchang 330008, China
| | - Kai Wang
- Hepatobiliary and Pancreatic Surgery Division, Department of General Surgery, the 2nd affiliated hospital, Jiangxi Medical College, Nanchang University, Nanchang 330038, China
- Jiangxi Province Engineering Research Center of Hepatobiliary Disease, the 2nd affiliated hospital, Jiangxi Medical College, Nanchang University, Nanchang 330008, China
- Jiangxi Province Key Laboratory of Molecular Medicine, the 2nd affiliated hospital, Jiangxi Medical College, Nanchang University, Nanchang 330008, China
- Jiangxi Provincial Clinical Research Center for General Surgery Disease, the 2nd affiliated hospital, Jiangxi Medical College, Nanchang University, Nanchang 330008, China
- Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, Ministry of Education, the 2nd affiliated hospital, Jiangxi Medical College, Nanchang University, Nanchang 330031, China
| |
Collapse
|
5
|
Hekmatshoar Y, Rahbar Saadat Y, Ozkan T, Bozkurt S, Karadag Gurel A. Identification of common genes and pathways underlying imatinib and nilotinib treatment in CML: a Bioinformatics Study. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2023; 43:664-684. [PMID: 38117080 DOI: 10.1080/15257770.2023.2296021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 12/12/2023] [Indexed: 12/21/2023]
Abstract
Imatinib (IMA) and nilotinib are the first and second generations of BCR-ABL tyrosine kinase inhibitors, which widely applied in chronic myeloid leukemia (CML) treatment. Here we aimed to provide new targets for CML treatment by transcriptome analysis. Microarray data GSE19567 was downloaded and analyzed from Gene Expression Omnibus (GEO) to identify common genes, which are downregulated or upregulated in K562-imatinib and K562-nilotinib treated cells. The differentially expressed genes (DEGs) were assessed, and STRING and Cytoscape were used to create the protein-protein interaction (PPI) network. In imatinib and nilotinib treated groups' comparison, there were common 626 upregulated and 268 downregulated genes, which were differentially expressed. The GO analysis represented the enrichment of DEGs in iron ion binding, protein tyrosine kinase activity, transcription factor activity, ATP binding, sequence-specific DNA binding, cytokine activity, the mitochondrion, sequence-specific DNA binding, plasma membrane and cell-cell adherens junction. KEGG pathway analysis revealed that downregulated DEGs were associated with pathways including microRNAs in cancer and PI3K-Akt signaling pathway. Furthermore, upregulated DEGs were involved in hematopoietic cell lineage, lysosome and chemical carcinogenesis. Among the upregulated genes, MYH9, MYH14, MYL10, MYL7, MYL5, RXRA, CYP1A1, FECH, AKR1C3, ALAD, CAT, CITED2, CPT1A, CYP3A5, CYP3A7, FABP1, HBD, HMBS and PPOX genes were found as hub genes. Moreover, 20 downregulated genes, YARS, AARS, SARS, GARS, CARS, IARS, RRP79, CEBPB, RRP12, UTP14A, PNO1, CCND1, DDX10, MYC, WDR43, CEBPG, DDIT3, VEGFA, PIM1 and TRIB3 were identified as hub genes. These genes have the potential to become target genes for diagnosis and therapy of CML patients.
Collapse
Affiliation(s)
- Yalda Hekmatshoar
- Department of Medical Biology, School of Medicine, Altinbas University, Istanbul, Turkey
| | | | - Tulin Ozkan
- Department of Medical Biology, School of Medicine, Ankara University, Ankara, Turkey
| | - Sureyya Bozkurt
- Department of Medical Biology, School of Medicine, Istinye University, Istanbul, Turkey
| | - Aynur Karadag Gurel
- Department of Medical Biology, School of Medicine, Usak University, Usak, Turkey
| |
Collapse
|
6
|
An G, Liu Y, Hou Y, Lei Y, Bai J, He L, Liu Y. RRP12 suppresses cell migration and invasion in colorectal cancer cell via regulation of epithelial-mesenchymal transition. J Gastrointest Oncol 2023; 14:2111-2123. [PMID: 37969827 PMCID: PMC10643574 DOI: 10.21037/jgo-23-254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 09/13/2023] [Indexed: 11/17/2023] Open
Abstract
Background The survival of patients with advanced colorectal cancer (CRC) is variable. The high rates of recurrence, metastasis, and drug resistance make clinical treatment difficult, which needs to further develop therapeutic and prognostic targets. Ribosomal RNA processing 12 homolog (RRP12), as a nucleolar protein involved in ribosome subunit maturation and export, plays important roles in cell cycle-related processes and the response to DNA damage, and regulates the occurrence and development of various cancers. The primary aim of this study was to identify the function of RRP12 in the process of epithelial-mesenchymal transition (EMT) in CRC. Methods In this study, the expression of RRP12 in tissue samples and the association with clinicopathological features in CRC was evaluated, and the correlation between RRP12 expression and aggressiveness of CRC was detected. After knockdown of RRP12 gene, the relationship between RRP12 and EMT-related indicators was verified in vivo and in vitro of CRC cells. Identification of RRP12-related genes and pathways through bioinformatic-based analyses was performed to find its potential mechanism. Results RRP12 is highly expressed in CRC cell lines and clinical samples and is associated with poor survival in CRC patients. RRP12 expression was positively associated with lymph node metastasis, tumor-node-metastasis (TNM) stage, and poor differentiation. Knockdown of RRP12 was found to suppress migration and invasion of CRC cells. RRP12 contributed to the EMT process of CRC cell lines in a ZEB1-mediated manner. RRP12 knockdown was found to reverse metastasis of CRC cells in vivo. Bioinformatic-based analyses indicated that RRP12 could serve as a potential biomarker for prognostic assessment of CRC patients. Conclusions RRP12 is involved in the tumorigenesis and metastasis of CRC by regulating the EMT process through ZEB1. Thus, RRP12 could be a potential therapeutic target for CRC therapy.
Collapse
Affiliation(s)
- Gaili An
- Department of Clinical Oncology, Shaanxi Provincial People’s Hospital, Xi’an, China
- Department of Oncology, the First Affiliated Hospital of Xi’an Jiaotong University Xi’an, China
| | - Ying Liu
- Department of Clinical Oncology, Shaanxi Provincial People’s Hospital, Xi’an, China
| | - Yinyin Hou
- Department of Clinical Oncology, Shaanxi Provincial People’s Hospital, Xi’an, China
| | - Yu Lei
- Department of Clinical Oncology, Shaanxi Provincial People’s Hospital, Xi’an, China
| | - Jun Bai
- Department of Clinical Oncology, Shaanxi Provincial People’s Hospital, Xi’an, China
| | - Li He
- Department of Clinical Oncology, Shaanxi Provincial People’s Hospital, Xi’an, China
| | - Yi Liu
- Department of Clinical Oncology, Shaanxi Provincial People’s Hospital, Xi’an, China
| |
Collapse
|
7
|
Khalili-Tanha G, Mohit R, Asadnia A, Khazaei M, Dashtiahangar M, Maftooh M, Nassiri M, Hassanian SM, Ghayour-Mobarhan M, Kiani MA, Ferns GA, Batra J, Nazari E, Avan A. Identification of ZMYND19 as a novel biomarker of colorectal cancer: RNA-sequencing and machine learning analysis. J Cell Commun Signal 2023:10.1007/s12079-023-00779-2. [PMID: 37428302 DOI: 10.1007/s12079-023-00779-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 05/29/2023] [Indexed: 07/11/2023] Open
Abstract
Colorectal cancer (CRC) is the third most common cause of cancer-related deaths. The five-year relative survival rate for CRC is estimated to be approximately 90% for patients diagnosed with early stages and 14% for those diagnosed at an advanced stages of disease, respectively. Hence, the development of accurate prognostic markers is required. Bioinformatics enables the identification of dysregulated pathways and novel biomarkers. RNA expression profiling was performed in CRC patients from the TCGA database using a Machine Learning approach to identify differential expression genes (DEGs). Survival curves were assessed using Kaplan-Meier analysis to identify prognostic biomarkers. Furthermore, the molecular pathways, protein-protein interaction, the co-expression of DEGs, and the correlation between DEGs and clinical data have been evaluated. The diagnostic markers were then determined based on machine learning analysis. The results indicated that key upregulated genes are associated with the RNA processing and heterocycle metabolic process, including C10orf2, NOP2, DKC1, BYSL, RRP12, PUS7, MTHFD1L, and PPAT. Furthermore, the survival analysis identified NOP58, OSBPL3, DNAJC2, and ZMYND19 as prognostic markers. The combineROC curve analysis indicated that the combination of C10orf2 -PPAT- ZMYND19 can be considered as diagnostic markers with sensitivity, specificity, and AUC values of 0.98, 1.00, and 0.99, respectively. Eventually, ZMYND19 gene was validated in CRC patients. In conclusion, novel biomarkers of CRC have been identified that may be a promising strategy for early diagnosis, potential treatment, and better prognosis.
Collapse
Affiliation(s)
- Ghazaleh Khalili-Tanha
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Reza Mohit
- Department of Anesthesia, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Alireza Asadnia
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Majid Khazaei
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Mina Maftooh
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammadreza Nassiri
- Recombinant Proteins Research Group, The Research Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Seyed Mahdi Hassanian
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Basic Sciences Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Majid Ghayour-Mobarhan
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Ali Kiani
- Basic Sciences Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pediatrics, Ghaem Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gordon A Ferns
- Brighton & Sussex Medical School, Division of Medical Education, Falmer, Brighton, Sussex, BN1 9PH, UK
| | - Jyotsna Batra
- Centre for Genomics and Personalised Health, Queensland University of Technology, Brisbane, 4059, Australia
- Translational Research Institute, Queensland University of Technology, Brisbane, 4102, Australia
- Faculty of Health, School of Biomedical Sciences, Queensland University of Technology, Brisbane, Australia
| | - Elham Nazari
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
- Basic Sciences Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Amir Avan
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
- College of Medicine, University of Warith Al-Anbiyaa, Karbala, Iraq.
- Faculty of Health, School of Biomedical Sciences, Queensland University of Technology, Brisbane, Australia.
| |
Collapse
|
8
|
Zhong W, Liu H, Li F, lin Y, Ye Y, Xu L, Li S, Chen H, Li C, Lin Y, Zhuang W, Lin Y, Wang Q. Elevated expression of LIF predicts a poor prognosis and promotes cell migration and invasion of clear cell renal cell carcinoma. Front Oncol 2022; 12:934128. [PMID: 35992780 PMCID: PMC9382297 DOI: 10.3389/fonc.2022.934128] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 07/06/2022] [Indexed: 11/13/2022] Open
Abstract
Background Renal cell carcinoma (RCC) is the seventh most common cancer in humans, of which clear cell renal cell carcinoma (ccRCC) accounts for the majority. Recently, although there have been significant breakthroughs in the treatment of ccRCC, the prognosis of targeted therapy is still poor. Leukemia inhibitory factor (LIF) is a pleiotropic protein, which is overexpressed in many cancers and plays a carcinogenic role. In this study, we explored the expression and potential role of LIF in ccRCC. Methods The expression levels and prognostic effects of the LIF gene in ccRCC were detected using TCGA, GEO, ICGC, and ArrayExpress databases. The function of LIF in ccRCC was investigated using a series of cell function approaches. LIF-related genes were identified by weighted gene correlation network analysis (WGCNA). GO and KEGG analyses were performed subsequently. Cox univariate and LASSO analyses were used to develop risk signatures based on LIF-related genes, and the prognostic model was validated in the ICGC and E-MTAB-1980 databases. Then, a nomogram model was constructed for survival prediction and validation of ccRCC patients. To further explore the drug sensitivity between LIF-related genes, we also conducted a drug sensitivity analysis based on the GDSC database. Results The mRNA and protein expression levels of LIF were significantly increased in ccRCC patients. In addition, a high expression of LIF has a poor prognostic effect in ccRCC patients. LIF knockdown can inhibit the migration and invasion of ccRCC cells. By using WGCNA, 97 LIF-related genes in ccRCC were identified. Next, a prognostic risk prediction model including eight LIF-related genes (TOB2, MEPCE, LIF, RGS2, RND3, KLF6, RRP12, and SOCS3) was developed and validated. Survival analysis and ROC curve analysis indicated that the eight LIF-related-gene predictive model had good performance in evaluating patients’ prognosis in different subgroups of ccRCC. Conclusion Our study revealed that LIF plays a carcinogenic role in ccRCC. In addition, we firstly integrated multiple LIF-related genes to set up a risk-predictive model. The model could accurately predict the prognosis of ccRCC, which offers clinical implications for risk stratification, drug screening, and therapeutic decision.
Collapse
Affiliation(s)
- Wenting Zhong
- Central Laboratory at the Second Affiliated Hospital of Fujian Traditional Chinese Medical University, Fujian-Macao Science and Technology Cooperation Base of Traditional Chinese Medicine-Oriented Chronic Disease Prevention and Treatment, Innovation and Transformation Center, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Hongxia Liu
- College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Feng Li
- Department of Pathology, Fujian Provincial Hospital, Fuzhou, China
| | - Youyu lin
- College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Yan Ye
- College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Luyun Xu
- College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - ShengZhao Li
- College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Hui Chen
- College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Chengcheng Li
- College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Yuxuan Lin
- College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Wei Zhuang
- Department of Urology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
- *Correspondence: Qingshui Wang, ; Yao Lin, ; ; Wei Zhuang,
| | - Yao Lin
- Central Laboratory at the Second Affiliated Hospital of Fujian Traditional Chinese Medical University, Fujian-Macao Science and Technology Cooperation Base of Traditional Chinese Medicine-Oriented Chronic Disease Prevention and Treatment, Innovation and Transformation Center, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- *Correspondence: Qingshui Wang, ; Yao Lin, ; ; Wei Zhuang,
| | - Qingshui Wang
- Central Laboratory at the Second Affiliated Hospital of Fujian Traditional Chinese Medical University, Fujian-Macao Science and Technology Cooperation Base of Traditional Chinese Medicine-Oriented Chronic Disease Prevention and Treatment, Innovation and Transformation Center, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- College of Life Sciences, Fujian Normal University, Fuzhou, China
- *Correspondence: Qingshui Wang, ; Yao Lin, ; ; Wei Zhuang,
| |
Collapse
|