1
|
Hou X, Shi W, Luo W, Luo Y, Huang X, Li J, Ji N, Chen Q. FUS::DDIT3 Fusion Protein in the Development of Myxoid Liposarcoma and Possible Implications for Therapy. Biomolecules 2024; 14:1297. [PMID: 39456230 PMCID: PMC11506083 DOI: 10.3390/biom14101297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 09/24/2024] [Accepted: 10/11/2024] [Indexed: 10/28/2024] Open
Abstract
The FUS::DDIT3 fusion protein, formed by the chromosomal translocation t (12;16) (q13;p11), is found in over 90% of myxoid liposarcoma (MLS) cases and is a crucial protein in its development. Many studies have explored the role of FUS::DDIT3 in MLS, and the prevailing view is that FUS::DDIT3 inhibits adipocyte differentiation and promotes MLS growth and invasive migration by functioning as an aberrant transcription factor that affects gene expression and regulates its downstream molecules. As fusion proteins are gradually showing their potential as targets for precision cancer therapy, FUS::DDIT3 has also been investigated as a therapeutic target. Drugs that target FUS::DDIT3 and its downstream molecules for treating MLS are widely utilized in both clinical practice and experimental studies, and some of them have demonstrated promising results. This article reviews the findings of relevant research, providing an overview of the oncogenic mechanisms of the FUS::DDIT3 fusion protein in MLS, as well as recent advancements in its therapy.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Ning Ji
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; (X.H.); (W.S.); (W.L.); (Y.L.); (X.H.); (J.L.); (Q.C.)
| | | |
Collapse
|
2
|
Brumbaugh-Reed EH, Gao Y, Aoki K, Toettcher JE. Rapid and reversible dissolution of biomolecular condensates using light-controlled recruitment of a solubility tag. Nat Commun 2024; 15:6717. [PMID: 39112465 PMCID: PMC11306331 DOI: 10.1038/s41467-024-50858-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 07/23/2024] [Indexed: 08/10/2024] Open
Abstract
Biomolecular condensates are broadly implicated in both normal cellular regulation and disease. Consequently, several chemical biology and optogenetic approaches have been developed to induce phase separation of a protein of interest. However, few tools are available to perform the converse function - dissolving a condensate of interest on demand. Such a tool would aid in testing whether the condensate plays specific functional roles. Here we show that light-gated recruitment of a solubilizing domain, maltose-binding protein (MBP), results in rapid and controlled dissolution of condensates formed from proteins of interest. Our optogenetic MBP-based dissolution strategy (OptoMBP) is rapid, reversible, and can be spatially controlled with subcellular precision. We also provide a proof-of-principle application of OptoMBP by disrupting condensation of the oncogenic fusion protein FUS-CHOP and reverting FUS-CHOP driven transcriptional changes. We envision that the OptoMBP system could be broadly useful for disrupting constitutive protein condensates to probe their biological functions.
Collapse
Affiliation(s)
- Ellen H Brumbaugh-Reed
- Department of Molecular Biology, Princeton University, Princeton, NJ, 08544, USA
- Omenn-Darling Bioengineering Institute, Princeton University, Princeton, NJ, 08544, USA
- International Research Collaboration Center (IRCC), National Institutes of Natural Sciences, Tokyo, 105-0001, Japan
| | - Yang Gao
- Department of Molecular Biology, Princeton University, Princeton, NJ, 08544, USA
| | - Kazuhiro Aoki
- International Research Collaboration Center (IRCC), National Institutes of Natural Sciences, Tokyo, 105-0001, Japan
- Quantitative Biology Research Group, Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki, Aichi, 444-8787, Japan
- Division of Quantitative Biology, National Institute for Basic Biology, National Institutes of Natural Sciences, Okazaki, Aichi, 444-8787, Japan
- Department of Basic Biology, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Aichi, 444-8787, Japan
- Laboratory of Cell Cycle Regulation Graduate School of Biostudies, Kyoto University, Kyoto, Kyoto, 606-8315, Japan
| | - Jared E Toettcher
- Department of Molecular Biology, Princeton University, Princeton, NJ, 08544, USA.
- Omenn-Darling Bioengineering Institute, Princeton University, Princeton, NJ, 08544, USA.
| |
Collapse
|
3
|
Ciongariu AM, Țăpoi DA, Dumitru AV, Bejenariu A, Marin A, Costache M. Pleomorphic Liposarcoma Unraveled: Investigating Histopathological and Immunohistochemical Markers for Tailored Diagnosis and Therapeutic Innovations. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:950. [PMID: 38929567 PMCID: PMC11205576 DOI: 10.3390/medicina60060950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/01/2024] [Accepted: 06/04/2024] [Indexed: 06/28/2024]
Abstract
Liposarcomas are some of the most challenging soft tissue tumors and are subclassified into multiple subtypes with special histologic and molecular features. The peculiarities of each histopathological subtype influence the clinical behavior, management, and treatment of these neoplasms. For instance, well-differentiated liposarcomas are common soft tissue malignancies and usually display a favorable outcome. On the other hand, pleomorphic liposarcoma is the rarest, yet the most aggressive subtype of liposarcoma. This histopathological diagnosis may be challenging due to the scarce available data and because pleomorphic liposarcomas can mimic other pleomorphic sarcomas or other neoplasms of dissimilar differentiation. Nevertheless, the correct diagnosis of pleomorphic liposarcoma is of utmost importance as such patients are prone to develop local recurrences and metastases. Treatment usually consists of surgical excision along with radiotherapy and follow-up of the patients. Therefore, this review aims to assess the complex clinical, histological, and immunohistochemical features of liposarcomas in order to establish how these characteristics influence the management and prognosis of the patients, emphasizing the particularities of pleomorphic liposarcoma.
Collapse
Affiliation(s)
- Ana-Maria Ciongariu
- Department of Pathology, “Carol Davila’’ University of Medicine and Pharmacy, 020021 Bucharest, Romania; (A.-M.C.); (D.-A.Ț.); (M.C.)
- Department of Pathology, University Emergency Hospital, 050098 Bucharest, Romania;
| | - Dana-Antonia Țăpoi
- Department of Pathology, “Carol Davila’’ University of Medicine and Pharmacy, 020021 Bucharest, Romania; (A.-M.C.); (D.-A.Ț.); (M.C.)
- Department of Pathology, University Emergency Hospital, 050098 Bucharest, Romania;
| | - Adrian-Vasile Dumitru
- Department of Pathology, “Carol Davila’’ University of Medicine and Pharmacy, 020021 Bucharest, Romania; (A.-M.C.); (D.-A.Ț.); (M.C.)
- Department of Pathology, University Emergency Hospital, 050098 Bucharest, Romania;
| | - Adrian Bejenariu
- Department of Pathology, University Emergency Hospital, 050098 Bucharest, Romania;
| | - Andrei Marin
- Department of Plastic Surgery, “Carol Davila’’ University of Medicine and Pharmacy, 020021 Bucharest, Romania;
| | - Mariana Costache
- Department of Pathology, “Carol Davila’’ University of Medicine and Pharmacy, 020021 Bucharest, Romania; (A.-M.C.); (D.-A.Ț.); (M.C.)
- Department of Pathology, University Emergency Hospital, 050098 Bucharest, Romania;
| |
Collapse
|
4
|
Ranji P, Jonasson E, Andersson L, Filges S, Luna Santamaría M, Vannas C, Dolatabadi S, Gustafsson A, Myklebost O, Håkansson J, Fagman H, Landberg G, Åman P, Ståhlberg A. Deciphering the role of FUS::DDIT3 expression and tumor microenvironment in myxoid liposarcoma development. J Transl Med 2024; 22:389. [PMID: 38671504 PMCID: PMC11046918 DOI: 10.1186/s12967-024-05211-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND Myxoid liposarcoma (MLS) displays a distinctive tumor microenvironment and is characterized by the FUS::DDIT3 fusion oncogene, however, the precise functional contributions of these two elements remain enigmatic in tumor development. METHODS To study the cell-free microenvironment in MLS, we developed an experimental model system based on decellularized patient-derived xenograft tumors. We characterized the cell-free scaffold using mass spectrometry. Subsequently, scaffolds were repopulated using sarcoma cells with or without FUS::DDIT3 expression that were analyzed with histology and RNA sequencing. RESULTS Characterization of cell-free MLS scaffolds revealed intact structure and a large variation of protein types remaining after decellularization. We demonstrated an optimal culture time of 3 weeks and showed that FUS::DDIT3 expression decreased cell proliferation and scaffold invasiveness. The cell-free MLS microenvironment and FUS::DDIT3 expression both induced biological processes related to cell-to-cell and cell-to-extracellular matrix interactions, as well as chromatin remodeling, immune response, and metabolism. Data indicated that FUS::DDIT3 expression more than the microenvironment determined the pre-adipocytic phenotype that is typical for MLS. CONCLUSIONS Our experimental approach opens new means to study the tumor microenvironment in detail and our findings suggest that FUS::DDIT3-expressing tumor cells can create their own extracellular niche.
Collapse
Affiliation(s)
- Parmida Ranji
- Sahlgrenska Center for Cancer Research, Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Emma Jonasson
- Sahlgrenska Center for Cancer Research, Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Lisa Andersson
- Sahlgrenska Center for Cancer Research, Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Stefan Filges
- Sahlgrenska Center for Cancer Research, Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Manuel Luna Santamaría
- Sahlgrenska Center for Cancer Research, Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Christoffer Vannas
- Sahlgrenska Center for Cancer Research, Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
- Department of Oncology, Region Västra Götaland, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Soheila Dolatabadi
- Sahlgrenska Center for Cancer Research, Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Anna Gustafsson
- Sahlgrenska Center for Cancer Research, Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Ola Myklebost
- Department of Tumor Biology, Oslo University Hospital, Oslo, Norway
- Institute for Clinical Science, University of Bergen, Bergen, Norway
| | - Joakim Håkansson
- RISE Unit of Biological Function, Division Materials and Production, RISE Research Institutes of Sweden, Borås, Sweden
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
- Department of Chemistry and Molecular Biology, Faculty of Science at University of Gothenburg, Gothenburg, Sweden
| | - Henrik Fagman
- Sahlgrenska Center for Cancer Research, Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
- Department of Clinical Pathology, Region Västra Götaland, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Göran Landberg
- Sahlgrenska Center for Cancer Research, Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
- Department of Clinical Pathology, Region Västra Götaland, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Pierre Åman
- Sahlgrenska Center for Cancer Research, Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Anders Ståhlberg
- Sahlgrenska Center for Cancer Research, Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden.
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden.
- Department of Clinical Genetics and Genomics, Region Västra Götaland, Sahlgrenska University Hospital, Gothenburg, Sweden.
| |
Collapse
|
5
|
Brumbaugh-Reed EH, Aoki K, Toettcher JE. Rapid and reversible dissolution of biomolecular condensates using light-controlled recruitment of a solubility tag. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.16.575860. [PMID: 38293146 PMCID: PMC10827175 DOI: 10.1101/2024.01.16.575860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Biomolecular condensates are broadly implicated in both normal cellular regulation and disease. Consequently, several chemical biology and optogenetic approaches have been developed to induce phase separation of a protein of interest. However, few tools are available to perform the converse function-dissolving a condensate of interest on demand. Such a tool would aid in testing whether the condensate plays specific functional roles, a major question in cell biology and drug development. Here we report an optogenetic approach to selectively dissolve a condensate of interest in a reversible and spatially controlled manner. We show that light-gated recruitment of maltose-binding protein (MBP), a commonly used solubilizing domain in protein purification, results in rapid and controlled dissolution of condensates formed from proteins of interest. Our optogenetic MBP-based dissolution strategy (OptoMBP) is rapid, reversible, and can be spatially controlled with subcellular precision. We also provide a proof-of-principle application of OptoMBP, showing that disrupting condensation of the oncogenic fusion protein FUS-CHOP results in reversion of FUS-CHOP driven transcriptional changes. We envision that the OptoMBP system could be broadly useful for disrupting constitutive protein condensates to probe their biological functions.
Collapse
Affiliation(s)
- Ellen H Brumbaugh-Reed
- Department of Molecular Biology, Princeton University, Princeton NJ 08544
- Omenn-Darling Bioengineering Institute, Princeton University, Princeton NJ 08544
- International Research Collaboration Center (IRCC), National Institutes of Natural Sciences, Tokyo 105-0001, Japan
| | - Kazuhiro Aoki
- International Research Collaboration Center (IRCC), National Institutes of Natural Sciences, Tokyo 105-0001, Japan
- Quantitative Biology Research Group, Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan
- Division of Quantitative Biology, National Institute for Basic Biology, National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan
- Department of Basic Biology, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Aichi 444-8787, Japan
- Laboratory of Cell Cycle Regulation, Graduate School of Biostudies, Kyoto University, Kyoto, Kyoto 606-8315, Japan
| | - Jared E Toettcher
- Department of Molecular Biology, Princeton University, Princeton NJ 08544
- Omenn-Darling Bioengineering Institute, Princeton University, Princeton NJ 08544
| |
Collapse
|
6
|
Lesovaya EA, Fetisov TI, Bokhyan BY, Maksimova VP, Kulikov EP, Belitsky GA, Kirsanov KI, Yakubovskaya MG. Genetic, Epigenetic and Transcriptome Alterations in Liposarcoma for Target Therapy Selection. Cancers (Basel) 2024; 16:271. [PMID: 38254762 PMCID: PMC10813500 DOI: 10.3390/cancers16020271] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/25/2023] [Accepted: 12/25/2023] [Indexed: 01/24/2024] Open
Abstract
Liposarcoma (LPS) is one of the most common adult soft-tissue sarcomas (STS), characterized by a high diversity of histopathological features as well as to a lesser extent by a spectrum of molecular abnormalities. Current targeted therapies for STS do not include a wide range of drugs and surgical resection is the mainstay of treatment for localized disease in all subtypes, while many LPS patients initially present with or ultimately progress to advanced disease that is either unresectable, metastatic or both. The understanding of the molecular characteristics of liposarcoma subtypes is becoming an important option for the detection of new potential targets and development novel, biology-driven therapies for this disease. Innovative therapies have been introduced and they are currently part of preclinical and clinical studies. In this review, we provide an analysis of the molecular genetics of liposarcoma followed by a discussion of the specific epigenetic changes in these malignancies. Then, we summarize the peculiarities of the key signaling cascades involved in the pathogenesis of the disease and possible novel therapeutic approaches based on a better understanding of subtype-specific disease biology. Although heterogeneity in liposarcoma genetics and phenotype as well as the associated development of resistance to therapy make difficult the introduction of novel therapeutic targets into the clinic, recently a number of targeted therapy drugs were proposed for LPS treatment. The most promising results were shown for CDK4/6 and MDM2 inhibitors as well as for the multi-kinase inhibitors anlotinib and sunitinib.
Collapse
Affiliation(s)
- Ekaterina A. Lesovaya
- N.N. Blokhin Russian Cancer Research Center, Ministry of Health of Russia, 24 Kashirskoe Shosse, Moscow 115478, Russia; (E.A.L.); (T.I.F.); (B.Y.B.); (V.P.M.); (K.I.K.)
- Faculty of Oncology, I.P. Pavlov Ryazan State Medical University, Ministry of Health of Russia, 9 Vysokovol’tnaya St., Ryazan 390026, Russia;
- Laboratory of Single Cell Biology, Peoples’ Friendship University of Russia, 6 Miklukho-Maklaya St., Moscow 117198, Russia
| | - Timur I. Fetisov
- N.N. Blokhin Russian Cancer Research Center, Ministry of Health of Russia, 24 Kashirskoe Shosse, Moscow 115478, Russia; (E.A.L.); (T.I.F.); (B.Y.B.); (V.P.M.); (K.I.K.)
| | - Beniamin Yu. Bokhyan
- N.N. Blokhin Russian Cancer Research Center, Ministry of Health of Russia, 24 Kashirskoe Shosse, Moscow 115478, Russia; (E.A.L.); (T.I.F.); (B.Y.B.); (V.P.M.); (K.I.K.)
| | - Varvara P. Maksimova
- N.N. Blokhin Russian Cancer Research Center, Ministry of Health of Russia, 24 Kashirskoe Shosse, Moscow 115478, Russia; (E.A.L.); (T.I.F.); (B.Y.B.); (V.P.M.); (K.I.K.)
| | - Evgeny P. Kulikov
- Faculty of Oncology, I.P. Pavlov Ryazan State Medical University, Ministry of Health of Russia, 9 Vysokovol’tnaya St., Ryazan 390026, Russia;
| | - Gennady A. Belitsky
- N.N. Blokhin Russian Cancer Research Center, Ministry of Health of Russia, 24 Kashirskoe Shosse, Moscow 115478, Russia; (E.A.L.); (T.I.F.); (B.Y.B.); (V.P.M.); (K.I.K.)
| | - Kirill I. Kirsanov
- N.N. Blokhin Russian Cancer Research Center, Ministry of Health of Russia, 24 Kashirskoe Shosse, Moscow 115478, Russia; (E.A.L.); (T.I.F.); (B.Y.B.); (V.P.M.); (K.I.K.)
- Laboratory of Single Cell Biology, Peoples’ Friendship University of Russia, 6 Miklukho-Maklaya St., Moscow 117198, Russia
| | - Marianna G. Yakubovskaya
- N.N. Blokhin Russian Cancer Research Center, Ministry of Health of Russia, 24 Kashirskoe Shosse, Moscow 115478, Russia; (E.A.L.); (T.I.F.); (B.Y.B.); (V.P.M.); (K.I.K.)
- Laboratory of Single Cell Biology, Peoples’ Friendship University of Russia, 6 Miklukho-Maklaya St., Moscow 117198, Russia
| |
Collapse
|
7
|
Benavides-Huerto MA, Páramo-Figueroa L, Moreno-Páramo D, Lagunas-Rangel FA. Primary Orbital Myxoid Liposarcoma. Med Sci (Basel) 2023; 11:72. [PMID: 37987327 PMCID: PMC10660850 DOI: 10.3390/medsci11040072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 10/31/2023] [Accepted: 11/07/2023] [Indexed: 11/22/2023] Open
Abstract
Although liposarcoma is the most prevalent soft tissue sarcoma in adults, head and neck liposarcomas are rare and account for less than 5% of all liposarcomas. The primary orbital location is even more exceptional, with fewer than 100 cases documented in the medical literature. Given the scarcity of cases of orbital liposarcoma and the limited familiarity of physicians and pathologists with this pathology, there is an increased risk of non-diagnosis or misdiagnosis, which may lead to inappropriate patient management. To address these challenges, we present a case of primary orbital myxoid liposarcoma and subsequently discuss the primary findings of this case based on the evidence documented in the medical literature. This comprehensive text is designed to serve as a valuable resource for healthcare professionals and pathologists, with the goal of promoting both clinical suspicion and accurate diagnosis and treatment of this rare condition in future cases.
Collapse
Affiliation(s)
| | | | | | - Francisco Alejandro Lagunas-Rangel
- Department of Genetics and Molecular Biology, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City 07360, Mexico
- Department of Surgical Sciences, Uppsala University, 752 36 Uppsala, Sweden
| |
Collapse
|
8
|
Kong Y, Jiang C, Wei G, Sun K, Wang R, Qiu T. Small Molecule Inhibitors as Therapeutic Agents Targeting Oncogenic Fusion Proteins: Current Status and Clinical. Molecules 2023; 28:4672. [PMID: 37375228 DOI: 10.3390/molecules28124672] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 05/30/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
Oncogenic fusion proteins, arising from chromosomal rearrangements, have emerged as prominent drivers of tumorigenesis and crucial therapeutic targets in cancer research. In recent years, the potential of small molecular inhibitors in selectively targeting fusion proteins has exhibited significant prospects, offering a novel approach to combat malignancies harboring these aberrant molecular entities. This review provides a comprehensive overview of the current state of small molecular inhibitors as therapeutic agents for oncogenic fusion proteins. We discuss the rationale for targeting fusion proteins, elucidate the mechanism of action of inhibitors, assess the challenges associated with their utilization, and provide a summary of the clinical progress achieved thus far. The objective is to provide the medicinal community with current and pertinent information and to expedite the drug discovery programs in this area.
Collapse
Affiliation(s)
- Yichao Kong
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Caihong Jiang
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Guifeng Wei
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Kai Sun
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Ruijie Wang
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Ting Qiu
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| |
Collapse
|