1
|
Chen Y, Fu Y, Zou H, Wang P, Xu Y, Xie Q. Network pharmacology and molecular docking reveal the mechanism of action of Bergapten against non‑small cell lung cancer. Oncol Lett 2025; 29:87. [PMID: 39677411 PMCID: PMC11638938 DOI: 10.3892/ol.2024.14833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 10/28/2024] [Indexed: 12/17/2024] Open
Abstract
Non-small cell lung cancer (NSCLC) is a leading cause of cancer mortality worldwide, necessitating new treatment approaches with minimal side effects. In the present study, the potential of Bergapten (5-methoxypsoralen), a natural furanocoumarin compound, as a therapeutic agent against NSCLC was investigated by using network pharmacology, molecular docking and in vitro validation. Bergapten targets were identified using the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform and SwissTarget databases, whilst lung cancer-related targets were sourced from GeneCards and DisGeNET. Protein-protein interaction analysis and molecular docking were performed to identify key targets. The inhibitory effects of Bergapten on lung cancer cells were assessed using Cell Counting Kit-8 assays, wound healing assays, cell migration experiments, flow cytometry and western blotting. SC79 was used to verify the regulation of Bergapten on the PI3K/AKT pathway. Network pharmacology identified 51 targets, one signaling pathway and four Gene Ontology projects associated with the action of Bergapten against NSCLC. Key targets identified included glycogen synthase kinase-3β, Janus kinase 2, phosphatidylinositol-4,5-bisphosphate 3-kinase, catalytic subunit α and protein tyrosine kinase 2. In vitro experiments demonstrated that Bergapten significantly inhibited cell viability, promoted apoptosis, induced cellular senescence and inhibited the PI3K/AKT signaling pathway in NSCLC cells. In conclusion, Bergapten exerts its anti-NSCLC effects through the PI3K/AKT pathway, promoting cell senescence and inhibiting inflammation. These findings suggest that Bergapten has potential as a therapeutic agent for NSCLC.
Collapse
Affiliation(s)
- Yihao Chen
- Department of Oncology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, P.R. China
| | - Yu Fu
- Department of Oncology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, P.R. China
| | - Hongbo Zou
- Department of Oncology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, P.R. China
| | - Pingsong Wang
- Department of Oncology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, P.R. China
| | - Yao Xu
- Department of Oncology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, P.R. China
| | - Qichao Xie
- Department of Oncology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, P.R. China
| |
Collapse
|
2
|
Zinnah KMA, Munna AN, Park SY. Optimizing autophagy modulation for enhanced TRAIL-mediated therapy: Unveiling the superiority of late-stage inhibition over early-stage inhibition to overcome therapy resistance in cancer. Basic Clin Pharmacol Toxicol 2025; 136:e14110. [PMID: 39668304 DOI: 10.1111/bcpt.14110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 10/13/2024] [Accepted: 11/12/2024] [Indexed: 12/14/2024]
Abstract
Autophagy is a vital mechanism that eliminates large cytoplasmic components via lysosomal degradation to maintain cellular homeostasis. The role of autophagy in cancer treatment has been studied extensively. Autophagy primarily prevents tumour initiation by maintaining genomic stability and preventing cellular inflammation. However, autophagy also supports cancer cell survival and growth by providing essential nutrients for therapeutic resistance. Thus, autophagy has emerged as a promising strategy for overcoming resistance and enhancing anti-cancer therapy. Inhibiting autophagy significantly improves the sensitivity of lung, colorectal, breast, liver and prostate cancer cells to tumour necrosis factor-related apoptosis-inducing ligand (TRAIL). This review investigates the intricate interplay between autophagy modulation and TRAIL-based therapy, specifically focussing on comparing the efficacy of late-stage autophagy inhibition versus early-stage inhibition in overcoming cancer resistance. We expose the distinctive advantages of late-stage autophagy inhibition by exploring the mechanisms underlying autophagy's impact on TRAIL sensitivity. Current preclinical and clinical investigations are inspected, showing the potential of targeting late-stage autophagy for sensitizing resistant cancer cells to TRAIL-induced apoptosis. This review emphasizes the significance of optimizing autophagy modulation to enhance TRAIL-mediated therapy and overcome the challenge of treatment resistance in cancer. We offer insights and recommendations for guiding the development of potential therapeutic strategies aimed at overcoming the challenges posed by treatment-resistant cancers.
Collapse
Affiliation(s)
- Kazi Mohammad Ali Zinnah
- Biosafety Research Institute, College of Veterinary Medicine, Jeonbuk National University, Iksan, South Korea
- Faculty of Biotechnology and Genetic Engineering, Department of Animal and Fish Biotechnology, Sylhet Agricultural University, Sylhet, Bangladesh
| | - Ali Newaz Munna
- Biosafety Research Institute, College of Veterinary Medicine, Jeonbuk National University, Iksan, South Korea
| | - Sang-Youel Park
- Biosafety Research Institute, College of Veterinary Medicine, Jeonbuk National University, Iksan, South Korea
| |
Collapse
|
3
|
Meng F, Yan Y, Zhou L, Zhao S, Sun L, Yu H. Targeting autophagy promotes the antitumor effect of radiotherapy on cervical cancer cells. Cancer Biol Ther 2024; 25:2431136. [PMID: 39635971 PMCID: PMC11622585 DOI: 10.1080/15384047.2024.2431136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/30/2024] [Accepted: 11/14/2024] [Indexed: 12/07/2024] Open
Abstract
Radiotherapy is the mainstay of cancer treatment, and reducing radioresistance is still a poorly explored issue in radiotherapy. Our study was designed to explore the possible functions and mechanisms of autophagy in cervical cancer cells treated with radiotherapy. We discovered that autophagy was activated in C33a and HeLa cervical cancer cells in parallel with increased apoptosis and formation of polyploid giant carcinoma cells (PGCCs) after radiation. Inhibition of autophagy significantly enhances radiation-induced cytotoxicity and apoptosis in cervical cancer cells and reduces PGCCs formation. Immunoblot analysis, as part of the mechanistic experiments, showed that the phosphorylation levels of Akt, mTOR, and P70S6K were downregulated. Thus, our research demonstrated that inhibiting autophagy enhances the antitumor effects of radiation on cervical cancer cells.
Collapse
Affiliation(s)
- Fanjie Meng
- Basic Medical Laboratory, General Hospital of Northern Theater Command, Shenyang, China
| | - Ying Yan
- Country Department of Radiotherapy, General Hospital of Northern Theater Command, Shenyang, China
| | - Li Zhou
- Basic Medical Laboratory, General Hospital of Northern Theater Command, Shenyang, China
| | - Song Zhao
- Basic Medical Laboratory, General Hospital of Northern Theater Command, Shenyang, China
| | - Lingyan Sun
- Basic Medical Laboratory, General Hospital of Northern Theater Command, Shenyang, China
| | - Huiying Yu
- Basic Medical Laboratory, General Hospital of Northern Theater Command, Shenyang, China
| |
Collapse
|
4
|
Qi Y, Xu B, He J, Jiang B, Yan L, Zhou H, Chen S. Unveiling the Mechanisms and Therapeutic Effects of Xiaoyao Sanjie Decoction in Triple-Negative Breast Cancer: A Network Pharmacology and Experimental Validation Approach. Drug Des Devel Ther 2024; 18:6263-6281. [PMID: 39741917 PMCID: PMC11687282 DOI: 10.2147/dddt.s492047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Accepted: 12/16/2024] [Indexed: 01/03/2025] Open
Abstract
Purpose Triple-negative breast cancer (TNBC) is a disease associated with high incidence and high mortality, which is a major problem threatening women's health. Xiaoyao Sanjie Decoction (XYSJD) exhibits remarkable therapeutic efficacy on TNBC; however, the underlying mechanism is unclear. This study verified the efficacy of XYSJD and its active component in the treatment of TNBC and explored its potential mechanism. Methods Ultra-high performance liquid chromatography-hybrid quadrupole orbitrap mass spectrometry (UHPLC-Q Exactive HFX-MS) was applied to explore the main chemical constituents of XYSJD. The key targets and potential mechanisms of XYSJD in the treatment of TNBC were predicted through network pharmacology, bioinformatics analysis and molecular docking. The effects of XYSJD against TNBC cells were evaluated by CCK-8 assay, EdU assay, wound healing assay, transwell assay, Hoechst-PI staining and flow cytometry. The mechanism of action was validated by Western blot analysis. Finally, the effect and mechanism of XYSJD and Que on TNBC were further verified by the tumor formation model. Results UHPLC-Q Exactive HFX-MS identified a total of 9 compounds in XYSJD. Network pharmacological methods identified 206 targets for anti-TNBC. Bioinformatics analysis suggests that the EZH2/AKT1 signaling pathway might play an important role in the effects of XYSJD against TNBC. Gene Ontology enrichment analysis showed that the biological process of XYSJD in TNBC treatment mainly involved apoptosis. XYSJD and Que were observed to have a good anticancer effect in vivo and in vitro. In addition, quercetin could induce the apoptosis of TNBC cells by decreased the expression levels of EZH2/AKT1 signaling pathway. Furthermore, AKT1 overexpression, treatment with the AKT activator (SC79) and EZH2 overexpression could reverse apoptosis induced by quercetin in TNBC cells. Conclusion This study revealed the anti-TNBC efficacy of XYSJD. Quercetin, the effective component of XYSJD, promoted apoptosis of TNBC cells via blockade of the EZH2/AKT1 signaling pathway. These findings aim to provide a more reliable basis for the clinical application of XYSJD in the treatment of TNBC.
Collapse
Affiliation(s)
- Yu Qi
- Traditional Chinese Medicine Classics Laboratory, Hubei University of Chinese Medicine, Wuhan, People’s Republic of China
| | - Bo Xu
- Postdoctoral Mobile Workstation, China Academy of Chinese Medical Sciences, Beijing, People’s Republic of China
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, People’s Republic of China
| | - Jinrong He
- Key Laboratory for Molecular Diagnosis of Hubei Province, the Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Bo Jiang
- Traditional Chinese Medicine Classics Laboratory, Hubei University of Chinese Medicine, Wuhan, People’s Republic of China
| | - Le Yan
- Traditional Chinese Medicine Classics Laboratory, Hubei University of Chinese Medicine, Wuhan, People’s Republic of China
| | - Haiyan Zhou
- Foreign Languages College, Hubei University of Science and Technology, Xianning, People’s Republic of China
| | - Saili Chen
- Clinical Medical College, Hubei University of Science and Technology, Xianning, People’s Republic of China
- National Demonstration Center for Experimental (General Practice) Education (Hubei University of Science and Technology), Xianning, People’s Republic of China
- Xianning Heji Hospital of Integrated Chinese and Western Medicine, Xianning, People’s Republic of China
- Xianning Traditional Chinese Medicine Chronic Disease Conditioning and Cancer Rehabilitation Joint Innovation Center, Xianning, People’s Republic of China
| |
Collapse
|
5
|
Srinivasan MK, Namasivayam N. Evaluating the in vitro and in vivo effects of carvacrol zinc oxide quantum dots in breast cancer. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2024:1-20. [PMID: 39625392 DOI: 10.1080/09205063.2024.2429325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 11/08/2024] [Indexed: 12/31/2024]
Abstract
The study investigates the molecular interactions and biological effects of carvacrol zinc oxide quantum dots (CVC-ZnO QDs) on breast cancer in vitro MCF-7 cell lines and in vivo mammary cancer models. Molecular docking using AutoDock Vina revealed binding energies of CVC with key proteins in the PI3K/AKT/mTOR pathway, including PI3K, AKT, PTEN, and mTOR. The results showed significant interaction with specific amino acids, indicating a strong binding affinity. In vitro studies demonstrated a dose-dependent cytotoxic effect of CVC-ZnO QDs on MCF-7 cells, with an IC50 of 20.02 µg/mL, while enhancing intracellular reactive oxygen species (ROS) and decreasing mitochondrial membrane potential (MMP), indicative of apoptosis induction. Antioxidant activity, lipid peroxidation, and nuclear morphological changes were assessed, revealing decreased antioxidant status and increased lipid peroxidation in treated cells. In vivo, CVC-ZnO QDs modulated the PI3K/AKT/mTOR signaling in DMBA-induced mammary cancer in rats, decreasing p-PI3K, p-AKT, and p-mTOR expression while upregulating PTEN. Immunohistochemistry, qRT-PCR, and Western blot analyses confirmed these molecular alterations. The study concludes that CVC-ZnO QDs exert cytotoxic and pro-apoptotic effects on breast cancer cells by modulating the PI3K/Akt/mTOR pathway and promoting oxidative stress, presenting a potential therapeutic strategy for breast cancer management.
Collapse
Affiliation(s)
- Manoj Kumar Srinivasan
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Chidambaram, Tamilnadu, India
| | - Nalini Namasivayam
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Chidambaram, Tamilnadu, India
| |
Collapse
|
6
|
Rojas-Salazar Y, Gómez-Montañez E, Rojas-Salazar J, de Anda-Jáuregui G, Hernández-Lemus E. Potential Drug Synergy Through the ERBB2 Pathway in HER2+ Breast Tumors. Int J Mol Sci 2024; 25:12840. [PMID: 39684551 DOI: 10.3390/ijms252312840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/19/2024] [Accepted: 11/22/2024] [Indexed: 12/18/2024] Open
Abstract
HER2-positive (HER2+) breast cancer is characterized by the overexpression of the ERBB2 (HER2) gene, which promotes aggressive tumor growth and poor prognosis. Targeting the ERBB2 pathway with single-agent therapies has shown limited efficacy due to resistance mechanisms and the complexity of gene interactions within the tumor microenvironment. This study aims to explore potential drug synergies by analyzing gene-drug interactions and combination therapies that target the ERBB2 pathway in HER2+ breast tumors. Using gene co-expression network analysis, we identified 23 metabolic pathways with significant cross-linking of gene interactions, including those involving EGFR tyrosine kinase inhibitors, PI3K, mTOR, and others. We visualized these interactions using Cytoscape to generate individual and combined drug-gene networks, focusing on frequently used drugs such as Erlotinib, Gefitinib, Lapatinib, and Cetuximab. Individual networks highlighted the direct effects of these drugs on their target genes and neighboring genes within the ERBB2 pathway. Combined drug networks, such as those for Cetuximab with Lapatinib, Cetuximab with Erlotinib, and Erlotinib with Lapatinib, revealed potential synergies that could enhance therapeutic efficacy by simultaneously influencing multiple genes and pathways. Our findings suggest that a network-based approach to analyzing drug combinations provides valuable insights into the molecular mechanisms of HER2+ breast cancer and offers promising strategies for overcoming drug resistance and improving treatment outcomes.
Collapse
Affiliation(s)
- Yareli Rojas-Salazar
- Computational Genomics Division, National Institute of Genomic Medicine, Mexico City 14610, Mexico
| | - Emiliano Gómez-Montañez
- Computational Genomics Division, National Institute of Genomic Medicine, Mexico City 14610, Mexico
| | - Jorge Rojas-Salazar
- Computational Genomics Division, National Institute of Genomic Medicine, Mexico City 14610, Mexico
| | - Guillermo de Anda-Jáuregui
- Computational Genomics Division, National Institute of Genomic Medicine, Mexico City 14610, Mexico
- Center for Complexity Sciences, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
- Investigadores e Investigadoras por Mexico Program, Conahcyt, Mexico City 03940, Mexico
| | - Enrique Hernández-Lemus
- Computational Genomics Division, National Institute of Genomic Medicine, Mexico City 14610, Mexico
- Center for Complexity Sciences, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| |
Collapse
|
7
|
Yang H, Yang J, Zheng X, Chen T, Zhang R, Chen R, Cao T, Zeng F, Liu Q. The Hippo Pathway in Breast Cancer: The Extracellular Matrix and Hypoxia. Int J Mol Sci 2024; 25:12868. [PMID: 39684583 DOI: 10.3390/ijms252312868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 11/25/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024] Open
Abstract
As one of the most prevalent malignant neoplasms among women globally, the optimization of therapeutic strategies for breast cancer has perpetually been a research hotspot. The tumor microenvironment (TME) is of paramount importance in the progression of breast cancer, among which the extracellular matrix (ECM) and hypoxia are two crucial factors. The alterations of these two factors are predominantly regulated by the Hippo signaling pathway, which promotes tumor invasiveness, metastasis, therapeutic resistance, and susceptibility. Hence, this review focuses on the Hippo pathway in breast cancer, specifically, how the ECM and hypoxia impact the biological traits and therapeutic responses of breast cancer. Moreover, the role of miRNAs in modulating ECM constituents was investigated, and hsa-miR-33b-3p was identified as a potential therapeutic target for breast cancer. The review provides theoretical foundations and potential therapeutic direction for clinical treatment strategies in breast cancer, with the aspiration of attaining more precise and effective treatment alternatives in the future.
Collapse
Affiliation(s)
- Hanyu Yang
- School of Pharmacy, Southwest Medical University, Luzhou 646000, China
- Laboratory of Biochemistry and Molecular Biology, School of Basic Medical Science, Southwest Medical University, Luzhou 646000, China
| | - Jiaxin Yang
- School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Xiang Zheng
- School of Basic Medical Science, Southwest Medical University, Luzhou 646000, China
| | - Tianshun Chen
- Laboratory of Biochemistry and Molecular Biology, School of Basic Medical Science, Southwest Medical University, Luzhou 646000, China
| | - Ranqi Zhang
- School of Pharmacy, Southwest Medical University, Luzhou 646000, China
- Laboratory of Biochemistry and Molecular Biology, School of Basic Medical Science, Southwest Medical University, Luzhou 646000, China
| | - Rui Chen
- School of Pharmacy, Southwest Medical University, Luzhou 646000, China
- Laboratory of Biochemistry and Molecular Biology, School of Basic Medical Science, Southwest Medical University, Luzhou 646000, China
| | - Tingting Cao
- School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Fancai Zeng
- Laboratory of Biochemistry and Molecular Biology, School of Basic Medical Science, Southwest Medical University, Luzhou 646000, China
| | - Qiuyu Liu
- School of Pharmacy, Southwest Medical University, Luzhou 646000, China
- Laboratory of Biochemistry and Molecular Biology, School of Basic Medical Science, Southwest Medical University, Luzhou 646000, China
- Leiden Academic Centre for Drug Research, Leiden University, 2333 CC Leiden, The Netherlands
| |
Collapse
|
8
|
Fang H, Chi X, Wang M, Liu J, Sun M, Zhang J, Zhang W. M2 macrophage-derived exosomes promote cell proliferation, migration and EMT of non-small cell lung cancer by secreting miR-155-5p. Mol Cell Biochem 2024:10.1007/s11010-024-05161-3. [PMID: 39612105 DOI: 10.1007/s11010-024-05161-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 11/09/2024] [Indexed: 11/30/2024]
Abstract
Tumor-associated macrophages (TAMs) are a type of highly plastic immune cells in the tumor microenvironment (TME), which can be classified into two main phenotypes: classical activated M1 macrophages and alternatively activated M2 macrophages. As previously reported, M2-polarized TAMs play critical role in promoting the progression of non-small cell lung cancer (NSCLC) via secreting exosomes, but the detailed mechanisms are still largely unknown. In the present study, the THP-1 monocytes were sequentially induced into M0 and M2-polarized macrophages, and the exosomes were obtained from M0 (M0-exos) and M2 (M2-exos) polarized macrophages, respectively, and co-cultured with NSCLC cells (H1299 and A549) to establish the exosomes-cell co-culture system in vitro. As it was determined by MTT assay, RT-qPCR and Transwell assay, in contrast with the M0-exos, M2-exos significantly promoted cell proliferation, migration and epithelial-mesenchymal transition (EMT) process in NSCLC cells. Next, through screening the contents in the exosomes, it was verified that miR-155-5p was especially enriched in the M2-exos, and M2-exos enhanced cancer aggressiveness and tumorigenesis in in vitro NSCLC cells and in vivo xenograft tumor-bearing mice models via delivering miR-155-5p. The detailed molecular mechanisms were subsequently elucidated, and it was found that miR-155-5p bound with HuR to increase the stability and expression levels of VEGFR2, which further activated the tumor-promoting PI3K/Akt/mTOR signal pathway, and M2-exos-enhanced cancer progression in NSCLC cells were apparently suppressed by downregulating VEGFR2 and PI3K inhibitor LY294002 co-treatment. Taken together, M2-polarized TAMs secreted miR-155-5p-containing exosomes to enhanced cancer aggressiveness of NSCLC by activating the VEGFR2/PI3K/Akt/mTOR pathway in a HuR-dependent manner.
Collapse
Affiliation(s)
- Hua Fang
- Respiratory and Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, No. 23, Post Street, Nangang District, Harbin, 150001, China
| | - Xiaowen Chi
- Respiratory and Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, No. 23, Post Street, Nangang District, Harbin, 150001, China
| | - Mengyao Wang
- Respiratory and Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, No. 23, Post Street, Nangang District, Harbin, 150001, China
| | - Jing Liu
- Respiratory and Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, No. 23, Post Street, Nangang District, Harbin, 150001, China
| | - Meiqi Sun
- Respiratory and Critical Care Medicine, The Second Hospital of Heilongjiang Province, Harbin, 150028, China
| | - Jiashu Zhang
- Respiratory and Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, No. 23, Post Street, Nangang District, Harbin, 150001, China
| | - Wei Zhang
- Respiratory and Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, No. 23, Post Street, Nangang District, Harbin, 150001, China.
| |
Collapse
|
9
|
Wu L, Zhu K, Sun Y, Li T, Zhu J, Tong H, Zhang X, Chen J, Yin H, He W. Nucleolar protein 3 promotes proliferation of bladder cancer cells through the PI3K-Akt pathway. World J Surg Oncol 2024; 22:316. [PMID: 39605067 PMCID: PMC11603959 DOI: 10.1186/s12957-024-03600-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Accepted: 11/19/2024] [Indexed: 11/29/2024] Open
Abstract
Nucleolar protein 3 (NOL3), as a markedly increased protein across a range of tumors, has been well acknowledged that plays an anti-apoptotic role in malignancies, while some novel impacts of NOL3 on metastasis and chemoresistance are demonstrated recently. In this study, we uncover another role of NOL3 on promoting proliferation in bladder cancer (BLCA). The reduction of NOL3 significantly inhibited cell proliferation, and we detected the stable cell cycle arrest after knockdown of NOL3 in two-type BLCA cell lines. Mechanistically, we present the first evidence that the PI3K/Akt pathway was considerably inhibited with the decrease of NOL3 in BLCA cell lines. In addition, LY294002, a PI3K inhibitor, rescued NOL3 overexpression-mediated activation of the PI3K/Akt axis and the depression of proliferation in BLCA cell lines. In conclusion, our study suggests that NOL3 is upregulated in BLCA cells and promotes proliferation via the PI3K/Akt pathway, indicating that NOL3 may be a potential therapeutic target for BLCA.
Collapse
Affiliation(s)
- Linfeng Wu
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong District, Chongqing, 400016, P.R. China
| | - Kunyao Zhu
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong District, Chongqing, 400016, P.R. China
| | - Yan Sun
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong District, Chongqing, 400016, P.R. China
| | - Tinghao Li
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong District, Chongqing, 400016, P.R. China
| | - Junlong Zhu
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong District, Chongqing, 400016, P.R. China
| | - Hang Tong
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong District, Chongqing, 400016, P.R. China
| | - Xiaoyu Zhang
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong District, Chongqing, 400016, P.R. China
| | - Junrui Chen
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong District, Chongqing, 400016, P.R. China
| | - Hubin Yin
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong District, Chongqing, 400016, P.R. China
| | - Weiyang He
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong District, Chongqing, 400016, P.R. China.
| |
Collapse
|
10
|
Yao Y, Shen G, Luo J, Wang J, Xu Z, Wang H, Cui L. Research Progress with Atractylone as an Antitumor Agent. Molecules 2024; 29:5450. [PMID: 39598839 PMCID: PMC11597220 DOI: 10.3390/molecules29225450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/30/2024] [Accepted: 11/12/2024] [Indexed: 11/29/2024] Open
Abstract
Atractylone is a sesquiterpenoid compound extracted from Rhizoma Atractylodis. As one of the main active components in the volatile oil of the Atractylodes genus, it has exhibited certain therapeutic effects, including anti-inflammatory, antiviral, antioxidant, antiallergic, antiangiogenic, and neuroprotective activities, among others. With further research on the chemical constituents and pharmacology of sesquiterpenes, research on the antitumor activity of Atractylone has also been further expanded. Much of the current literature pays particular attention to the antitumor activity of Atractylone, which was found to inhibit the apoptosis of tumor cells and prevent growth, invasion, and migration through different apoptosis pathways and signaling pathways. Due to its promising potential for cancer prevention, it may play a role in reducing the incidence of malignant tumors. In this paper, the antitumor activity and mechanism of Atractylone are reviewed, providing a reference to inform future research on the tumor treatment, clinical application, and further development and utilization of this plant genus.
Collapse
Affiliation(s)
- Ying Yao
- College of Pharmacy, Harbin University of Commerce, Harbin 150076, China; (Y.Y.); (G.S.); (J.L.); (J.W.); (Z.X.)
- Heilongjiang Provincial Key Laboratory of Geriatric Medicine, Harbin 150076, China
| | - Guanghuan Shen
- College of Pharmacy, Harbin University of Commerce, Harbin 150076, China; (Y.Y.); (G.S.); (J.L.); (J.W.); (Z.X.)
- Heilongjiang Provincial Key Laboratory of Geriatric Medicine, Harbin 150076, China
- Postdoctoral Programme of Meteria Medica Institute, Harbin University of Commerce, Harbin 150076, China
| | - Jianghan Luo
- College of Pharmacy, Harbin University of Commerce, Harbin 150076, China; (Y.Y.); (G.S.); (J.L.); (J.W.); (Z.X.)
- Heilongjiang Provincial Key Laboratory of Geriatric Medicine, Harbin 150076, China
| | - Jinhong Wang
- College of Pharmacy, Harbin University of Commerce, Harbin 150076, China; (Y.Y.); (G.S.); (J.L.); (J.W.); (Z.X.)
- Heilongjiang Provincial Key Laboratory of Geriatric Medicine, Harbin 150076, China
| | - Zheng Xu
- College of Pharmacy, Harbin University of Commerce, Harbin 150076, China; (Y.Y.); (G.S.); (J.L.); (J.W.); (Z.X.)
- Heilongjiang Provincial Key Laboratory of Geriatric Medicine, Harbin 150076, China
| | - Hao Wang
- College of Pharmacy, Harbin University of Commerce, Harbin 150076, China; (Y.Y.); (G.S.); (J.L.); (J.W.); (Z.X.)
- Heilongjiang Provincial Key Laboratory of Geriatric Medicine, Harbin 150076, China
| | - Linlin Cui
- College of Pharmacy, Harbin University of Commerce, Harbin 150076, China; (Y.Y.); (G.S.); (J.L.); (J.W.); (Z.X.)
- Heilongjiang Provincial Key Laboratory of Geriatric Medicine, Harbin 150076, China
| |
Collapse
|
11
|
Ju S, Singh MK, Han S, Ranbhise J, Ha J, Choe W, Yoon KS, Yeo SG, Kim SS, Kang I. Oxidative Stress and Cancer Therapy: Controlling Cancer Cells Using Reactive Oxygen Species. Int J Mol Sci 2024; 25:12387. [PMID: 39596452 PMCID: PMC11595237 DOI: 10.3390/ijms252212387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 10/31/2024] [Accepted: 11/13/2024] [Indexed: 11/28/2024] Open
Abstract
Cancer is a multifaceted disease influenced by various mechanisms, including the generation of reactive oxygen species (ROS), which have a paradoxical role in both promoting cancer progression and serving as targets for therapeutic interventions. At low concentrations, ROS serve as signaling agents that enhance cancer cell proliferation, migration, and resistance to drugs. However, at elevated levels, ROS induce oxidative stress, causing damage to biomolecules and leading to cell death. Cancer cells have developed mechanisms to manage ROS levels, including activating pathways such as NRF2, NF-κB, and PI3K/Akt. This review explores the relationship between ROS and cancer, focusing on cell death mechanisms like apoptosis, ferroptosis, and autophagy, highlighting the potential therapeutic strategies that exploit ROS to target cancer cells.
Collapse
Affiliation(s)
- Songhyun Ju
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (S.J.); (M.K.S.); (S.H.); (J.R.); (J.H.); (W.C.); (K.-S.Y.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Manish Kumar Singh
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (S.J.); (M.K.S.); (S.H.); (J.R.); (J.H.); (W.C.); (K.-S.Y.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Sunhee Han
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (S.J.); (M.K.S.); (S.H.); (J.R.); (J.H.); (W.C.); (K.-S.Y.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Jyotsna Ranbhise
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (S.J.); (M.K.S.); (S.H.); (J.R.); (J.H.); (W.C.); (K.-S.Y.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Joohun Ha
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (S.J.); (M.K.S.); (S.H.); (J.R.); (J.H.); (W.C.); (K.-S.Y.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Wonchae Choe
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (S.J.); (M.K.S.); (S.H.); (J.R.); (J.H.); (W.C.); (K.-S.Y.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Kyung-Sik Yoon
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (S.J.); (M.K.S.); (S.H.); (J.R.); (J.H.); (W.C.); (K.-S.Y.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Seung Geun Yeo
- Department of Otorhinolaryngology—Head and Neck Surgery, College of Medicine, Kyung Hee University Medical Center, Kyung Hee University, Seoul 02453, Republic of Korea;
| | - Sung Soo Kim
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (S.J.); (M.K.S.); (S.H.); (J.R.); (J.H.); (W.C.); (K.-S.Y.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Insug Kang
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (S.J.); (M.K.S.); (S.H.); (J.R.); (J.H.); (W.C.); (K.-S.Y.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
12
|
Utpal BK, Dehbia Z, Zidan BMRM, Sweilam SH, Singh LP, Arunkumar MS, Sona M, Panigrahy UP, Keerthana R, Mandadi SR, Rab SO, Alshehri MA, Koula D, Suliman M, Nafady MH, Emran TB. Carotenoids as modulators of the PI3K/Akt/mTOR pathway: innovative strategies in cancer therapy. Med Oncol 2024; 42:4. [PMID: 39549201 DOI: 10.1007/s12032-024-02551-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 10/29/2024] [Indexed: 11/18/2024]
Abstract
Cancer progression is primarily driven by the uncontrolled activation of cellular signaling pathways, with the PI3K/Akt/mTOR (PAMT) pathway playing a central role. This pathway significantly contributes to the proliferation and survival of cancer cells, and its hyperactivity is a major challenge in managing several types of malignancies. This article delves into the promising potential of carotenoids, natural pigments found in abundance in fruits and vegetables, as a novel therapeutic strategy for cancer treatment. By specifically targeting and inhibiting the PAMT pathway, carotenoids may effectively disrupt the growth and survival of cancer cells. The article examines the complex mechanisms underlying these interactions and highlights the obstacles faced in cancer treatment. It proposes a compelling approach to developing therapies that leverage natural products to target this critical pathway, offering a fresh perspective on cancer treatment. Further research is essential to enhance the therapeutic efficacy of these compounds.
Collapse
Affiliation(s)
- Biswajit Kumar Utpal
- Department of Pharmacy, Faculty of Health and Life Sciences, Daffodil International University, Dhaka, 1207, Bangladesh
| | - Zerrouki Dehbia
- Laboratory of AgroBiotechnology and Nutrition in Semi Arid Zones, Faculty of Nature and Life Sciences, University of Ibn Khaldoun, Tiaret, Algeria
| | - B M Redwan Matin Zidan
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Sherouk Hussein Sweilam
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia
- Department of Pharmacognosy, Faculty of Pharmacy, Egyptian Russian University, Cairo-Suez Road, Badr City, Cairo, 11829, Egypt
| | - Laliteshwar Pratap Singh
- Department of Pharmaceutical Chemistry, Narayan Institute of Pharmacy, Gopal Narayan Singh University, Sasaram (Rohtas) Bihar, Jamuhar, 821305, India
| | - M S Arunkumar
- Faculty of Pharmacy, Karpagam Academy of Higher Education, Coimbatore, Tamil Nadu, 641021, India
| | - M Sona
- Faculty of Pharmacy, Karpagam Academy of Higher Education, Coimbatore, Tamil Nadu, 641021, India
| | - Uttam Prasad Panigrahy
- Faculty of Pharmaceutical Science, Assam Down Town University, Gandhi Nagar, Sankar Madhab Path, Panikhaiti, Guwahati, Assam, India
| | - R Keerthana
- Faculty of Pharmacy, Karpagam Academy of Higher Education, Coimbatore, Tamil Nadu, 641021, India
| | - Sandhya Rani Mandadi
- Department of Pharmaceutics, Vishnu Institute of Pharmaceutical Education and Research, Tuljaraopet, Telangana , 502313, India
| | - Safia Obaidur Rab
- Department of Clinical Laboratory Sciences, College of Applied Medical Science, King Khalid University, Abha, Saudi Arabia
| | - Mohammed Ali Alshehri
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk, 71491, Saudi Arabia
| | - Doukani Koula
- Laboratory of AgroBiotechnology and Nutrition in Semi Arid Zones, Faculty of Nature and Life Sciences, University of Ibn Khaldoun, Tiaret, Algeria
- Laboratory of Animal Production Sciences and Techniques, University of Abdelhamid Ibn Badis, Mostaganem, Algeria
| | - Muath Suliman
- Department of Clinical Laboratory Sciences, College of Applied Medical Science, King Khalid University, Abha, Saudi Arabia
| | - Mohamed H Nafady
- Faculty of Applied Health Science Technology, Misr University for Science and Technology, Giza, 12568, Egypt.
| | - Talha Bin Emran
- Department of Pharmacy, Faculty of Health and Life Sciences, Daffodil International University, Dhaka, 1207, Bangladesh
| |
Collapse
|
13
|
Yang J. Emerging roles of long non-coding RNA FOXP4-AS1 in human cancers: From molecular biology to clinical application. Heliyon 2024; 10:e39857. [PMID: 39539976 PMCID: PMC11558633 DOI: 10.1016/j.heliyon.2024.e39857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 10/23/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024] Open
Abstract
Forkhead box P4 antisense RNA 1 (FOXP4-AS1) is a long non-coding RNA (lncRNA) situated on the human chromosome 6p21.1 locus. Previous research has demonstrated that FOXP4-AS1 is dysregulated in various cancers and exhibits a dual purpose as a tumor suppressor or oncogene in specific types of cancer. The levels of FOXP4-AS1 are significantly correlated with clinical features of cancer as well as prognosis. Additionally, FOXP4-AS1 is stimulated by transcription factors ATF3, YY1, PAX5, and SP4. The molecular mechanisms of FOXP4-AS1 in cancer are quite complex. It competitively sponges multiple miRNAs, bidirectionally regulates the levels of host gene FOXP4, activates the PI3K/AKT, Wnt/β-catenin, and ERK/MAPK signaling pathways, and recruits chromatin-modifying enzymes or interacts with other proteins to regulate malignant phenotypes of tumors, including proliferation, invasion, epithelial-mesenchymal transition (EMT), and angiogenesis. In this review, we provide an overview of the latest developments in FOXP4-AS1 oncology research, outlines its molecular regulatory networks in cancer, and discusses its prospective relevance as a cancer therapeutic target as well as a biomarker for prognosis and diagnosis.
Collapse
Affiliation(s)
- Jingjie Yang
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, 443002, China
- College of Basic Medical Science, China Three Gorges University, Yichang, 443002, China
| |
Collapse
|
14
|
Zou R, Shi W, Chen M, Zhang M, Wu D, Li H, Zhou H, Li Y, Lu W, Li C, Fan X. Phosphoglycerate mutase 1-mediated dephosphorylation and degradation of Dusp1 disrupt mitochondrial quality control and exacerbate endotoxemia-induced myocardial dysfunction. Theranostics 2024; 14:7488-7504. [PMID: 39659576 PMCID: PMC11626948 DOI: 10.7150/thno.102647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 10/10/2024] [Indexed: 12/12/2024] Open
Abstract
Rationale: Endotoxemia, caused by lipopolysaccharides, triggers systemic inflammation and myocardial injury by disrupting mitochondrial homeostasis. This study examines the roles of dual specificity phosphatase 1 (Dusp1) and phosphoglycerate mutase family member 1 (Pgam1) in this process. Methods: This study utilized cardiomyocyte-specific Dusp1 knockout (Dusp1Cko ) and transgenic (Dusp1Tg ) mice, alongside Pgam1 knockout (Pgam1Cko ) mice, subjected to LPS-induced endotoxemia. Echocardiography was performed to assess cardiac function. Mitochondrial integrity was evaluated using molecular techniques, including qPCR and Seahorse assays. Additionally, molecular docking studies and Western blot analyses were conducted to explore the interaction between Pgam1 and Dusp1. Results: Using single-cell sequencing and human sample databases, Dusp1 emerged as a novel biomarker for endotoxemia-induced myocardial dysfunction. Experiments with cardiomyocyte-specific Dusp1 knockout (Dusp1Cko ) and Dusp1 transgenic (Dusp1Tg ) mice showed that Dusp1 deficiency worsens, while overexpression improves, heart function during LPS-induced myocardial injury. This effect is mediated by regulating inflammation and cardiomyocyte viability. Molecular analyses revealed that LPS exposure leads to Dusp1 dephosphorylation at Ser364, increasing its degradation. Stabilizing Dusp1 phosphorylation enhances mitochondrial function through mitochondrial quality control (MQC), including dynamics, mitophagy, and biogenesis. Functional studies identified Pgam1 as an upstream phosphatase interacting with Dusp1. Pgam1 ablation reduced LPS-induced cardiomyocyte dysfunction and mitochondrial disorder. Conclusions: Pgam1-mediated dephosphorylation of Dusp1 disrupts mitochondrial quality control, leading to myocardial dysfunction in endotoxemia. Targeting the Pgam1-Dusp1 axis represents a promising therapeutic strategy for improving cardiac outcomes in patients with endotoxemia.
Collapse
Affiliation(s)
- Rongjun Zou
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou University of Chinese Medicine, the Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou 510120, Guangdong, China
- Department of Cardiovascular Surgery, Guangdong Provincial Hospital of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, the Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou 510120, Guangdong, China
- Guangdong Provincial Key Laboratory of TCM Emergency Research, Guangzhou 510120, Guangdong, China
| | - Wanting Shi
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China
| | - Mingxian Chen
- Tongde Hospital of Zhejiang Province, No. 234, Gucui road, Hangzhou 310012, China
| | - Miao Zhang
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou University of Chinese Medicine, the Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou 510120, Guangdong, China
- Department of Cardiovascular Surgery, Guangdong Provincial Hospital of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, the Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou 510120, Guangdong, China
| | - Dan Wu
- Division of Vascular Surgery, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510800, China; National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Disease, First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Haixia Li
- Xianning Medical College, Hubei University of Science & Technology, Xianning 437000, China
| | - Hao Zhou
- Xianning Medical College, Hubei University of Science & Technology, Xianning 437000, China
| | - Yukun Li
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China
| | - Weihui Lu
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou University of Chinese Medicine, the Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou 510120, Guangdong, China
| | - Chao Li
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiaoping Fan
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou University of Chinese Medicine, the Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou 510120, Guangdong, China
- Department of Cardiovascular Surgery, Guangdong Provincial Hospital of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, the Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou 510120, Guangdong, China
- Guangdong Provincial Key Laboratory of TCM Emergency Research, Guangzhou 510120, Guangdong, China
| |
Collapse
|
15
|
Kumar A, Sharma V, Behl T, Ganesan S, Nathiya D, Gulati M, Khalid M, Elossaily GM, Chigurupati S, Sachdeva M. Insights into medicinal attributes of imidazo[1,2-a]pyridine derivatives as anticancer agents. Arch Pharm (Weinheim) 2024; 357:e2400402. [PMID: 39221527 DOI: 10.1002/ardp.202400402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/10/2024] [Accepted: 08/13/2024] [Indexed: 09/04/2024]
Abstract
Cancer ranks among the most life-threatening diseases worldwide and is continuously affecting all age groups. Consequently, many research studies are being carried out to develop new cancer treatments, but many of them experience resistance and cause severe toxicity to the patients. Therefore, there is a continuous need to design novel anticancer agents that are target-based, have a higher potency, and have minimal toxicity. The imidazo[1,2-a]pyridine (IP) pharmacophore has been found to be a prominent moiety in the field of medicinal chemistry due to its vast biological properties. Also, it holds immense potential for combating cancer with minimal side effects, depending on the substitution patterns of the core structure. IPs exhibit significant capability in regulating various cellular pathways, offering possibilities for targeted anticancer effects. The present review summarizes the anticancer profile of numerous IP derivatives synthesized and developed by various researchers from 2016 till now, as inhibitors of phosphoinositide-3-kinase/mammalian target of rapamycin (PI3K/mTOR), protein kinase B/mammalian target of rapamycin (Akt/mTOR), aldehyde dehydrogenase (ALDH), and tubulin polymerization. This review provides a comprehensive analysis of the anticancer activity afforded by the discussed IP compounds, emphasizing the structure-activity-relationships (SARs). The aim is also to underscore the potential therapeutic future of the IP moiety as a potent partial structure for upcoming cancer drug development and to aid researchers in the field of rational drug design.
Collapse
Affiliation(s)
- Ankush Kumar
- Amity School of Pharmaceutical Sciences, Amity University, Mohali, Punjab, India
| | - Vishakha Sharma
- Amity School of Pharmaceutical Sciences, Amity University, Mohali, Punjab, India
| | - Tapan Behl
- Amity School of Pharmaceutical Sciences, Amity University, Mohali, Punjab, India
| | - Subbulakshmi Ganesan
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | - Deepak Nathiya
- Department of Pharmacy Practice, Institute of Pharmacy, NIMS University, Jaipur, Rajasthan, India
| | - Monica Gulati
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
- ARCCIM, Faculty of Health, University of Technology Sydney, Ultimo, Sydney, New South Wales, Australia
| | - Mohammad Khalid
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Gehan M Elossaily
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, Riyadh, Saudi Arabia
| | - Sridevi Chigurupati
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University, Buraydah, Kingdom of Saudi Arabia
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Monika Sachdeva
- Fatimah College of Health Sciences, Al Ain, United Arab Emirates
| |
Collapse
|
16
|
Chen Q, Zheng X, Cheng W, Li J. Landscape of targeted therapies for lung squamous cell carcinoma. Front Oncol 2024; 14:1467898. [PMID: 39544292 PMCID: PMC11560903 DOI: 10.3389/fonc.2024.1467898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 10/08/2024] [Indexed: 11/17/2024] Open
Abstract
Lung cancer, a common type of malignant neoplasm, has seen significant advancements in the treatment of lung adenocarcinoma (LUAD). However, the management of lung squamous cell carcinoma (LSCC) continues to pose challenges. Traditional treatment methods for LSCC encompass surgical resection, chemotherapy, and radiotherapy. The introduction of targeted therapy and immunotherapy has greatly benefited LSCC patients, but issues such as limited immune response rates and adverse reactions persist. Therefore, gaining a deeper comprehension of the underlying mechanisms holds immense importance. This review provides an in-depth overview of classical signaling pathways and therapeutic targets, including the PI3K signaling pathway, CDK4/6 pathway, FGFR1 pathway and EGFR pathway. Additionally, we delve into alternative signaling pathways and potential targets that could offer new therapeutic avenues for LSCC. Lastly, we summarize the latest advancements in targeted therapy combined with immune checkpoint blockade (ICB) therapy for LSCC and discuss the prospects and challenges in this field.
Collapse
Affiliation(s)
- Qiuxuan Chen
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Xiaoshuo Zheng
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Weiting Cheng
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Jian Li
- Institude of Experimental Immunology, University Clinic of Rheinische Friedrich-Wihelms-University, Bonn, Germany
| |
Collapse
|
17
|
Nguyen MH, Nguyen TYN, Le THN, Le TNT, Chau NTN, Le TMH, Huy Nguyen BQ. Medicinal plants as a potential resource for the discovery of novel structures towards cancer drug resistance treatment. Heliyon 2024; 10:e39229. [PMID: 39492898 PMCID: PMC11530815 DOI: 10.1016/j.heliyon.2024.e39229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 08/23/2024] [Accepted: 10/09/2024] [Indexed: 11/05/2024] Open
Abstract
Despite extensive research in chemotherapy, global cancer concerns persist, exacerbated by the challenge of drug resistance, which imposes economic and medical burdens. Natural compounds, particularly secondary metabolites from medicinal plants, present promising avenues for overcoming cancer drug resistance due to their diverse structures and essential pharmacological effects. This review provides a comprehensive exploration of cancer cell resistance mechanisms and target actions for reversing resistance and highlights the in vitro and in vivo efficacy of noteworthy alkaloids, flavonoids, and other compounds, emphasizing their potential as therapeutic agents. The molecular properties supporting ligand interactions are thoroughly examined, providing a robust theoretical foundation. The review concludes by discussing methods including quantitative structure-activity relationships and molecular docking, offering insights into screening potential candidates. Current trends in clinical treatment, contributing to a holistic understanding of the multifaceted approaches to address cancer drug resistance are also outlined.
Collapse
Affiliation(s)
- Minh Hien Nguyen
- University of Health Sciences, Vietnam National University Ho Chi Minh City, YA1 Administrative Building, Hai Thuong Lan Ong Street, Dong Hoa Ward, Di An City, Binh Duong Province, Viet Nam
- Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc City, Ho Chi Minh city, Viet Nam
| | - Thi Yen Nhi Nguyen
- University of Health Sciences, Vietnam National University Ho Chi Minh City, YA1 Administrative Building, Hai Thuong Lan Ong Street, Dong Hoa Ward, Di An City, Binh Duong Province, Viet Nam
- Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc City, Ho Chi Minh city, Viet Nam
- Faculty of Applied Science, Ho Chi Minh City University of Technology, Vietnam National University Ho Chi Minh City, 268 Ly Thuong Kiet Street Ward 14, District 10, Ho Chi Minh City, Viet Nam
| | - Thien Han Nguyen Le
- University of Health Sciences, Vietnam National University Ho Chi Minh City, YA1 Administrative Building, Hai Thuong Lan Ong Street, Dong Hoa Ward, Di An City, Binh Duong Province, Viet Nam
| | - Thi Ngoc Tam Le
- University of Health Sciences, Vietnam National University Ho Chi Minh City, YA1 Administrative Building, Hai Thuong Lan Ong Street, Dong Hoa Ward, Di An City, Binh Duong Province, Viet Nam
| | - Ngoc Trong Nghia Chau
- University of Health Sciences, Vietnam National University Ho Chi Minh City, YA1 Administrative Building, Hai Thuong Lan Ong Street, Dong Hoa Ward, Di An City, Binh Duong Province, Viet Nam
| | - Tu Manh Huy Le
- University of Health Sciences, Vietnam National University Ho Chi Minh City, YA1 Administrative Building, Hai Thuong Lan Ong Street, Dong Hoa Ward, Di An City, Binh Duong Province, Viet Nam
| | - Bui Quoc Huy Nguyen
- The University of Danang - VN-UK Institute for Research and Executive Education, 41 Le Duan Street, Hai Chau 1 Ward, Hai Chau District, Danang City, Viet Nam
| |
Collapse
|
18
|
Li Y, Liu X, Lin R, Peng X, Wang X, Meng F, Jin S, Lv W, Liu X, Du Z, Wen S, Bai R, Ruan Y, Zhou H, Zou R, Tang R, Liu N. Ibrutinib Promotes Atrial Fibrillation by Disrupting A-Kinase Anchoring Protein 1-Mediated Mitochondrial Quality Surveillance in Cardiomyocytes. RESEARCH (WASHINGTON, D.C.) 2024; 7:0509. [PMID: 39469220 PMCID: PMC11518619 DOI: 10.34133/research.0509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/20/2024] [Accepted: 09/29/2024] [Indexed: 10/30/2024]
Abstract
Background: Ibrutinib, a potent Bruton's tyrosine kinase inhibitor with marked efficacy against hematological malignancies, is associated with the heightened risk of atrial fibrillation (AF). Although ibrutinib-induced AF is linked to enhanced oxidative stress, the underlying mechanisms remain unclear. Objective: This research aimed to explore the molecular mechanism and regulatory target in ibrutinib-induced AF. Methods: We performed in vivo electrophysiology studies using ibrutinib-treated mice, and then employed proteomic and single-cell transcriptomic analyses to identify the underlying targets and mechanisms. The effects of A-kinase anchoring protein 1 (AKAP1) depletion on mitochondrial quality surveillance (MQS) were evaluated using both in vivo and ex vivo AKAP1 overexpression models. Results: Atrial AKAP1 expression was significantly reduced in ibrutinib-treated mice, leading to inducible AF, atrial fibrosis, and mitochondrial fragmentation. These pathological changes were effectively mitigated in an overexpression model of ibrutinib-treated mice injected with an adeno-associated virus carrying Akap1. In ibrutinib-treated atrial myocytes, AKAP1 down-regulation promoted dynamin-related protein 1 (DRP1) translocation into mitochondria by facilitating DRP1 dephosphorylation at Ser637, thereby mediating excessive mitochondrial fission. Impaired MQS was also suggested by defective mitochondrial respiration, mitochondrial metabolic reprogramming, and suppressed mitochondrial biogenesis, accompanied by excessive oxidative stress and inflammatory activation. The ibrutinib-mediated MQS disturbance can be markedly improved with the inducible expression of the AKAP1 lentiviral system. Conclusions: Our findings emphasize the key role of AKAP1-mediated MQS disruption in ibrutinib-induced AF, which explains the previously observed reactive oxygen species overproduction. Hence, AKAP1 activation can be employed to prevent and treat ibrutinib-induced AF.
Collapse
Affiliation(s)
- Yukun Li
- Department of Cardiology, Beijing Anzhen Hospital,
Capital Medical University, Beijing 100012, China
- National Clinical Research Center for Cardiovascular Diseases, Beijing 100012, China
| | - Xinmeng Liu
- Department of Cardiology, Beijing Anzhen Hospital,
Capital Medical University, Beijing 100012, China
- National Clinical Research Center for Cardiovascular Diseases, Beijing 100012, China
| | - Rong Lin
- Department of Cardiology, Beijing Anzhen Hospital,
Capital Medical University, Beijing 100012, China
- National Clinical Research Center for Cardiovascular Diseases, Beijing 100012, China
| | - Xiaodong Peng
- Department of Cardiology, Beijing Anzhen Hospital,
Capital Medical University, Beijing 100012, China
- National Clinical Research Center for Cardiovascular Diseases, Beijing 100012, China
| | - Xuesi Wang
- Department of Cardiology, Beijing Anzhen Hospital,
Capital Medical University, Beijing 100012, China
- National Clinical Research Center for Cardiovascular Diseases, Beijing 100012, China
| | - Fanchao Meng
- Department of Cardiology, Beijing Anzhen Hospital,
Capital Medical University, Beijing 100012, China
- National Clinical Research Center for Cardiovascular Diseases, Beijing 100012, China
| | - Shuqi Jin
- Department of Cardiology, Beijing Anzhen Hospital,
Capital Medical University, Beijing 100012, China
- National Clinical Research Center for Cardiovascular Diseases, Beijing 100012, China
| | - Wenhe Lv
- Department of Cardiology, Beijing Anzhen Hospital,
Capital Medical University, Beijing 100012, China
- National Clinical Research Center for Cardiovascular Diseases, Beijing 100012, China
| | - Xiaoying Liu
- Department of Cardiology, Beijing Anzhen Hospital,
Capital Medical University, Beijing 100012, China
- National Clinical Research Center for Cardiovascular Diseases, Beijing 100012, China
| | - Zhuohang Du
- Department of Cardiology, Beijing Anzhen Hospital,
Capital Medical University, Beijing 100012, China
- National Clinical Research Center for Cardiovascular Diseases, Beijing 100012, China
| | - Songnan Wen
- Department of Cardiovascular Medicine,
Mayo Clinic, Scottsdale, AZ 85259, USA
| | - Rong Bai
- Banner University Medical Center Phoenix,
College of Medicine University of Arizona, Phoenix, AZ 85123, USA
| | - Yanfei Ruan
- Department of Cardiology, Beijing Anzhen Hospital,
Capital Medical University, Beijing 100012, China
- National Clinical Research Center for Cardiovascular Diseases, Beijing 100012, China
| | - Hao Zhou
- Department of Cardiology,
Chinese PLA General Hospital, Beijing 100853, China
- Xianning Medical College,
Hubei University of Science and Technology, Xianning 437000, China
| | - Rongjun Zou
- Department of Cardiovascular Surgery,
the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, Guangdong, China
| | - Ribo Tang
- Department of Cardiology, Beijing Anzhen Hospital,
Capital Medical University, Beijing 100012, China
- National Clinical Research Center for Cardiovascular Diseases, Beijing 100012, China
| | - Nian Liu
- Department of Cardiology, Beijing Anzhen Hospital,
Capital Medical University, Beijing 100012, China
- National Clinical Research Center for Cardiovascular Diseases, Beijing 100012, China
| |
Collapse
|
19
|
Chang X, Zhou H, Hu J, Ge T, He K, Chen Y, Zou R, Fan X. Targeting mitochondria by lipid-selenium conjugate drug results in malate/fumarate exhaustion and induces mitophagy-mediated necroptosis suppression. Int J Biol Sci 2024; 20:5793-5811. [PMID: 39494338 PMCID: PMC11528455 DOI: 10.7150/ijbs.102424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 10/16/2024] [Indexed: 11/05/2024] Open
Abstract
Atherosclerosis (AS) is a chronic vascular disease primarily affecting large and medium-sized arteries and involves various complex pathological mechanisms and factors. Previous studies have demonstrated a close association between atherosclerosis and inflammatory damage, metabolic disorders, and gut microbiota. It is also closely linked to several cellular processes, such as endothelial cell pyroptosis, ferroptosis, mitophagy, mitochondrial dynamics, and mitochondrial biogenesis. Mitophagy has been recognized as a previously unexplored mechanism contributing to endothelial injury in atherosclerosis. Our study aims to further elucidate the potential relationship and mechanisms between AS-induced mitophagy dysfunction and the interaction of TMBIM6 and NDUFS4. Data from the study demonstrated that atherosclerosis in AS mice was associated with substantial activation of inflammatory and oxidative stress damage, along with a marked reduction in endothelial mitophagy expression and increased pathological mitochondrial fission, leading to mitochondrial homeostasis disruption. However, under pharmacological intervention, mitophagy levels significantly increased, pathological mitochondrial fission was notably reduced, and oxidative stress and inflammatory damage were suppressed, while necroptotic pathways in endothelial cells were significantly blocked. Interestingly, the deletion of TMBIM6 or NDUFS4 in animal models or cell lines markedly impaired the therapeutic effects of the drug, disrupting its regulation of mitophagy and mitochondrial fission, and leading to the re-emergence of inflammatory responses and oxidative stress damage. Metabolomics analysis further revealed that autophagy plays a pivotal regulatory role during drug intervention and after genetic modification of TMBIM6 and NDUFS4. The activation of autophagy (macroautophagy/mitophagy) alleviated the negative effects of mitochondrial fission and inflammatory damage induced by lipid stress in endothelial cells, a regulatory mechanism likely associated with the TMBIM6-NDUFS4 axis. Subsequent animal gene modification experiments demonstrated that knocking out TMBIM6-NDUFS4 negates the therapeutic effects of the drug on lipid-induced damage and metabolic function. In summary, our research reveals a phenotypic regulatory mechanism of endothelial cell stress damage through mitophagy, influenced by the interaction of TMBIM6 and NDUFS4. Pharmacological intervention can restore mitochondrial homeostasis in endothelial cells by regulating mitophagy via the TMBIM6-NDUFS4 pathway. This novel insight suggests that TMBIM6-NDUFS4 may serve as a key therapeutic target for atherosclerosis.
Collapse
Affiliation(s)
- Xing Chang
- Guang'anmen Hospital of Chinese Academy of Traditional Chinese Medicine, Beijing, China
| | - Hao Zhou
- Senior Department of Cardiology, The Sixth Medical Center of People's Liberation Army General Hospital, Beijing 100048, Beijing, China
| | - Jinlin Hu
- Department of Cardiovascular Surgery, Guangdong Provincial Hospital of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, the Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou 510120, Guangdong, China
- Guangdong Provincial Key Laboratory of TCM Emergency Research, Guangzhou 510120, Guangdong, China
| | - Teng Ge
- Department of Cardiovascular Surgery, Guangdong Provincial Hospital of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, the Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou 510120, Guangdong, China
- Guangdong Provincial Key Laboratory of TCM Emergency Research, Guangzhou 510120, Guangdong, China
| | - Kunyang He
- Department of Cardiovascular Surgery, Guangdong Provincial Hospital of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, the Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou 510120, Guangdong, China
- Guangdong Provincial Key Laboratory of TCM Emergency Research, Guangzhou 510120, Guangdong, China
| | - Ye Chen
- Department of Cardiovascular Surgery, Guangdong Provincial Hospital of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, the Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou 510120, Guangdong, China
| | - Rongjun Zou
- Department of Cardiovascular Surgery, Guangdong Provincial Hospital of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, the Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou 510120, Guangdong, China
- Guangdong Provincial Key Laboratory of TCM Emergency Research, Guangzhou 510120, Guangdong, China
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, Guangzhou 510120, Guangdong, China
- Xianning Medical College, Hubei University of Science & Technology, Xianning 437000, China
| | - Xiaoping Fan
- Department of Cardiovascular Surgery, Guangdong Provincial Hospital of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, the Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou 510120, Guangdong, China
- Guangdong Provincial Key Laboratory of TCM Emergency Research, Guangzhou 510120, Guangdong, China
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, Guangzhou 510120, Guangdong, China
| |
Collapse
|
20
|
Zhou Q, Zhao X, Wang M, Li Y, Yang Z, Liu W, Chen P. Combined Use of Magnetization Transfer Ratio and T2-Mapping to Evaluate Extraocular Muscle Pathophysiology in Myasthenia Gravis with Ophthalmoparesis. Int J Med Sci 2024; 21:2799-2806. [PMID: 39512682 PMCID: PMC11539387 DOI: 10.7150/ijms.104542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 10/19/2024] [Indexed: 11/15/2024] Open
Abstract
Background Myasthenia gravis (MG) is an autoimmune neuromuscular disorder that most frequently affects the extraocular muscles (EOMs), which causes symptoms such as ptosis and restricted eye movement. The EOMs in MG patients are representative of autoimmune inflammatory changes in muscle tissue. Currently, there is no reliable, and sensitive imaging technique for monitoring EOM changes to assist in the evaluation of underlying pathological changes. Methods This study included MG patients treated between March and November 2022 at the First Affiliated Hospital of Sun Yat-sen University. Healthy controls (matched by age and sex) were included. Participants underwent 3.0 T MRI with magnetization transfer imaging (MTI) and T2-mapping to measure the magnetization transfer ratio (MTR) and T2-mapping values in the superior, inferior, medial, and lateral rectus muscles. Comparisons were made between MG patients and healthy controls, and between MG subgroups with and without ophthalmoparesis. Results The MTR and T2-mapping values successfully reflected EOM fibrosis and inflammatory edema in MG patients. MG patients showed significantly higher MTR and T2-mapping values in the EOMs compared with healthy controls. MG patients with ophthalmoparesis exhibited a lower MTR but higher T2-mapping value compared with those without ophthalmoparesis. Combined MTR and T2-mapping values effectively distinguished between MG patients and healthy controls, and between different severities of EOM involvement, with a superior diagnostic accuracy compared with each parameter alone. Conclusion The combination of MTI and T2-mapping MRI techniques can provide key insight into the pathological changes in EOMs in MG patients. This approach enhances early diagnosis and treatment planning, and therefore may improve clinical outcomes.
Collapse
Affiliation(s)
- Qin Zhou
- Department of Radiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiaoxiao Zhao
- Department of Radiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Mengzhu Wang
- MR Scientific Marketing, Siemens Healthineers Ltd. Guangzhou, China
| | - Yingkai Li
- Neuromuscular Division, Department of Neurology, Duke University Medical Center, Durham, United States
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhiyun Yang
- Department of Radiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Weibin Liu
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, Guangzhou, China
- National Key Clinical Department and Key Discipline of Neurology, Guangzhou, China
| | - Pei Chen
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, Guangzhou, China
- National Key Clinical Department and Key Discipline of Neurology, Guangzhou, China
| |
Collapse
|
21
|
Mitea G, Schröder V, Iancu IM, Mireșan H, Iancu V, Bucur LA, Badea FC. Molecular Targets of Plant-Derived Bioactive Compounds in Oral Squamous Cell Carcinoma. Cancers (Basel) 2024; 16:3612. [PMID: 39518052 PMCID: PMC11545343 DOI: 10.3390/cancers16213612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 10/19/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND With a significant increase in both incidence and mortality, oral cancer-particularly oral squamous cell carcinoma (OSCC)-is one of the main causes of death in developing countries. Even though there is evidence of advances in surgery, chemotherapy, and radiotherapy, the overall survival rate for patients with OSCC has improved, but by a small percentage. This may be due, on the one hand, to the fact that the disease is diagnosed when it is at a too-advanced stage, when metastases are already present. METHODS This review explores the therapeutic potential of natural herbal products and their use as adjuvant therapies in the treatment of oral cancer from online sources in databases (PubMed, Web of Science, Google Scholar, Research Gate, Scopus, Elsevier). RESULTS Even if classic therapies are known to be effective, they often produce many serious side effects and can create resistance. Certain natural plant compounds may offer a complementary approach by inducing apoptosis, suppressing tumor growth, and improving chemotherapy effectiveness. The integration of these compounds with conventional treatments to obtain remarkable synergistic effects represents a major point of interest to many authors. This review highlights the study of molecular mechanisms and their efficiency in in vitro and in vivo models, as well as the strategic ways in which drugs can be administered to optimize their use in real contexts. CONCLUSIONS This review may have a significant impact on the oncology community, creating new inspirations for the development of more effective, safer cancer therapies with less toxic potential.
Collapse
Affiliation(s)
- Gabriela Mitea
- Department of Pharmacology, Faculty of Pharmacy, Ovidius University of Constanta, 900470 Constanta, Romania;
| | - Verginica Schröder
- Department of Cellular and Molecular Biology, Faculty of Pharmacy, Ovidius University of Constanta, 900470 Constanta, Romania
| | - Irina Mihaela Iancu
- Department of Toxicology, Faculty of Pharmacy, Ovidius University of Constanta, 900470 Constanta, Romania;
| | - Horațiu Mireșan
- Department of Toxicology, Faculty of Pharmacy, Ovidius University of Constanta, 900470 Constanta, Romania;
| | - Valeriu Iancu
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Ovidius University of Constanta, 900470 Constanta, Romania;
| | - Laura Adriana Bucur
- Department of Pharmacognosy, Faculty of Pharmacy, Ovidius University of Constanta, 900470 Constanta, Romania;
| | - Florin Ciprian Badea
- Department of Dental Medicine, Faculty of Dental Medicine, Ovidius University of Constanta, 900684 Constanta, Romania;
| |
Collapse
|
22
|
Choudhary MK, Pancholi B, Kumar M, Babu R, Garabadu D. A review on endoplasmic reticulum-dependent anti-breast cancer activity of herbal drugs: possible challenges and opportunities. J Drug Target 2024:1-26. [PMID: 39404107 DOI: 10.1080/1061186x.2024.2417189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 10/07/2024] [Accepted: 10/08/2024] [Indexed: 10/25/2024]
Abstract
Breast cancer (BC) is a major cause of cancer-related mortality across the globe and is especially highly prevalent in females. Based on the poor outcomes and several limitations of present management approaches in BC, there is an urgent need to focus and explore an alternate target and possible drug candidates against the target in the management of BC. The accumulation of misfolded proteins and subsequent activation of unfolded protein response (UPR) alters the homeostasis of endoplasmic reticulum (ER) lumen that ultimately causes oxidative stress in ER. The UPR activates stress-detecting proteins such as IRE1α, PERK, and ATF6, these proteins sometimes may lead to the activation of pro-apoptotic signaling pathways in cancerous cells. The ER stress-dependent antitumor activity could be achieved either through suppressing the adaptive UPR to make cells susceptible to ER stress or by causing chronic ER stress that may lead to triggering of pro-apoptotic signaling pathways. Several herbal drugs trigger ER-dependent apoptosis in BC cells. Therefore, this review discussed the role of fifty-two herbal drugs and their active constituents, focusing on disrupting the balance of the ER within cancer cells. Further, several challenges and opportunities have also been discussed in ER-dependent management in BC.Breast cancer (BC) is a major cause of cancer-related mortality across the globe and is especially highly prevalent in females. Based on the poor outcomes and several limitations of present management approaches in BC, there is an urgent need to focus and explore an alternate target and possible drug candidates against the target in the management of BC. The accumulation of misfolded proteins and subsequent activation of unfolded protein response (UPR) alters the homeostasis of endoplasmic reticulum (ER) lumen that ultimately causes oxidative stress in ER. The UPR activates stress-detecting proteins such as IRE1α, PERK, and ATF6, these proteins sometimes may lead to the activation of pro-apoptotic signaling pathways in cancerous cells. The ER stress-dependent antitumor activity could be achieved either through suppressing the adaptive UPR to make cells susceptible to ER stress or by causing chronic ER stress that may lead to triggering of pro-apoptotic signaling pathways. Several herbal drugs trigger ER-dependent apoptosis in BC cells. Therefore, this review discussed the role of fifty-two herbal drugs and their active constituents, focusing on disrupting the balance of the ER within cancer cells. Further, several challenges and opportunities have also been discussed in ER-dependent management in BC.
Collapse
Affiliation(s)
- Mayank Kumar Choudhary
- Department of Pharmacology, School of Health Sciences, Central University of Punjab, Bathinda, India
| | - Bhaskaranand Pancholi
- Department of Pharmacology, School of Health Sciences, Central University of Punjab, Bathinda, India
| | - Manoj Kumar
- Department of Pharmacology, School of Health Sciences, Central University of Punjab, Bathinda, India
| | - Raja Babu
- Department of Pharmacology, School of Health Sciences, Central University of Punjab, Bathinda, India
| | - Debapriya Garabadu
- Department of Pharmacology, School of Health Sciences, Central University of Punjab, Bathinda, India
| |
Collapse
|
23
|
Ameer SF, Mohamed MY, Elzubair QA, Sharif EAM, Ibrahim WN. Curcumin as a novel therapeutic candidate for cancer: can this natural compound revolutionize cancer treatment? Front Oncol 2024; 14:1438040. [PMID: 39507759 PMCID: PMC11537944 DOI: 10.3389/fonc.2024.1438040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 10/02/2024] [Indexed: 11/08/2024] Open
Abstract
Cancer remains one of the leading causes of death worldwide. Despite advances in medical treatments, current therapeutic strategies, including radiotherapy, chemotherapy, targeted therapy, and surgical resection, have not significantly reduced the global incidence and mortality rates of cancer. Oncologists face considerable challenges in devising effective treatment plans due to the adverse side effects associated with standard therapies. Therefore, there is an urgent need for more effective and well-tolerated cancer treatments. Curcumin, a naturally occurring compound, has garnered significant attention for its diverse biological properties. Both preclinical studies and clinical trials have highlighted curcumin's potential in cancer treatment, demonstrating its ability to inhibit the proliferation of various cancer cell types through multiple cellular and molecular pathways. This paper examines the antineoplastic properties, and the therapeutic mechanisms including cell signalling pathways targeted by curcumin that are implicated in cancer development and explores the challenges in advancing curcumin as a viable anticancer therapy.
Collapse
Affiliation(s)
| | | | | | | | - Wisam Nabeel Ibrahim
- Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha, Qatar
| |
Collapse
|
24
|
Chhabra R. Molecular and modular intricacies of precision oncology. Front Immunol 2024; 15:1476494. [PMID: 39507541 PMCID: PMC11537923 DOI: 10.3389/fimmu.2024.1476494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 09/30/2024] [Indexed: 11/08/2024] Open
Abstract
Precision medicine is revolutionizing the world in combating different disease modalities, including cancer. The concept of personalized treatments is not new, but modeling it into a reality has faced various limitations. The last decade has seen significant improvements in incorporating several novel tools, scientific innovations and governmental support in precision oncology. However, the socio-economic factors and risk-benefit analyses are important considerations. This mini review includes a summary of some commendable milestones, which are not just a series of successes, but also a cautious outlook to the challenges and practical implications of the advancing techno-medical era.
Collapse
Affiliation(s)
- Ravneet Chhabra
- Business Department, Biocytogen Boston Corporation, Waltham, MA, United States
| |
Collapse
|
25
|
Iweala EEJ, Amuji DN, Oluwajembola AM, Ugbogu EA. Targeting c-Met in breast cancer: From mechanisms of chemoresistance to novel therapeutic strategies. CURRENT RESEARCH IN PHARMACOLOGY AND DRUG DISCOVERY 2024; 7:100204. [PMID: 39524211 PMCID: PMC11543557 DOI: 10.1016/j.crphar.2024.100204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 09/28/2024] [Accepted: 10/18/2024] [Indexed: 11/16/2024] Open
Abstract
Breast cancer presents a significant challenge due to its heterogeneity and propensity for developing chemoresistance, particularly in the triple-negative subtype. c-Mesenchymal epithelial transition factor (c-Met), a receptor tyrosine kinase, presents a promising target for breast cancer therapy due to its involvement in disease progression and poor prognosis. However, the heterogeneous expression of c-Met within breast cancer subtypes and individual tumors complicates targeted therapy. Also, cancer cells can develop resistance to c-Met inhibitors through various mechanisms, including bypass signaling pathways and genetic mutations. The off-target effects of c-Met inhibitors further limit their clinical utility, necessitating the development of more selective agents. To overcome these challenges, personalized treatment approaches and combination therapies are being explored to improve treatment efficacy while minimizing adverse effects. Novel c-Met inhibitors with improved selectivity and reduced off-target toxicity show promise in preclinical studies. Additionally, targeted delivery systems aim to enhance drug localization and reduce systemic toxicity. Future directions involve refining inhibitor design and integrating c-Met inhibition into personalized treatment regimens guided by molecular profiling. This review explores the mechanisms by which c-Met contributes to chemoresistance in breast cancer and current challenges in targeting c-Met for breast cancer therapy. It discusses strategies to optimize treatment outcomes, ultimately improving patient prognosis and reducing mortality rates associated with this devastating disease.
Collapse
Affiliation(s)
- Emeka Eze Joshua Iweala
- Department of Biochemistry, College of Science and Technology, Covenant University, Ota, Nigeria
- Covenant Applied Informatics and Communication Africa Centre of Excellence (CApIC-ACE), Covenant University, Ota, Nigeria
| | - Doris Nnenna Amuji
- Department of Biochemistry, College of Science and Technology, Covenant University, Ota, Nigeria
- Covenant Applied Informatics and Communication Africa Centre of Excellence (CApIC-ACE), Covenant University, Ota, Nigeria
| | - Abimbola Mary Oluwajembola
- Department of Biochemistry, College of Science and Technology, Covenant University, Ota, Nigeria
- Covenant Applied Informatics and Communication Africa Centre of Excellence (CApIC-ACE), Covenant University, Ota, Nigeria
| | | |
Collapse
|
26
|
Akand M, Jatsenko T, Muilwijk T, Gevaert T, Joniau S, Van der Aa F. Deciphering the molecular heterogeneity of intermediate- and (very-)high-risk non-muscle-invasive bladder cancer using multi-layered -omics studies. Front Oncol 2024; 14:1424293. [PMID: 39497708 PMCID: PMC11532112 DOI: 10.3389/fonc.2024.1424293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 09/13/2024] [Indexed: 11/07/2024] Open
Abstract
Bladder cancer (BC) is the most common malignancy of the urinary tract. About 75% of all BC patients present with non-muscle-invasive BC (NMIBC), of which up to 70% will recur, and 15% will progress in stage and grade. As the recurrence and progression rates of NMIBC are strongly associated with some clinical and pathological factors, several risk stratification models have been developed to individually predict the short- and long-term risks of disease recurrence and progression. The NMIBC patients are stratified into four risk groups as low-, intermediate-, high-risk, and very high-risk by the European Association of Urology (EAU). Significant heterogeneity in terms of oncological outcomes and prognosis has been observed among NMIBC patients within the same EAU risk group, which has been partly attributed to the intrinsic heterogeneity of BC at the molecular level. Currently, we have a poor understanding of how to distinguish intermediate- and (very-)high-risk NMIBC with poor outcomes from those with a more benign disease course and lack predictive/prognostic tools that can specifically stratify them according to their pathologic and molecular properties. There is an unmet need for developing a more accurate scoring system that considers the treatment they receive after TURBT to enable their better stratification for further follow-up regimens and treatment selection, based also on a better response prediction to the treatment. Based on these facts, by employing a multi-layered -omics (namely, genomics, epigenetics, transcriptomics, proteomics, lipidomics, metabolomics) and immunohistopathology approach, we hypothesize to decipher molecular heterogeneity of intermediate- and (very-)high-risk NMIBC and to better stratify the patients with this disease. A combination of different -omics will provide a more detailed and multi-dimensional characterization of the tumor and represent the broad spectrum of NMIBC phenotypes, which will help to decipher the molecular heterogeneity of intermediate- and (very-)high-risk NMIBC. We think that this combinatorial multi-omics approach has the potential to improve the prediction of recurrence and progression with higher precision and to develop a molecular feature-based algorithm for stratifying the patients properly and guiding their therapeutic interventions in a personalized manner.
Collapse
Affiliation(s)
- Murat Akand
- Department of Urology, University Hospitals Leuven, Leuven, Belgium
- Laboratory of Experimental Urology, Urogenital, Abdominal and Plastic Surgery, Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Tatjana Jatsenko
- Laboratory for Cytogenetics and Genome Research, KU Leuven, Leuven, Belgium
- Center for Human Genetics, University Hospitals Leuven, Leuven, Belgium
| | - Tim Muilwijk
- Department of Urology, University Hospitals Leuven, Leuven, Belgium
- Laboratory of Experimental Urology, Urogenital, Abdominal and Plastic Surgery, Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | | | - Steven Joniau
- Department of Urology, University Hospitals Leuven, Leuven, Belgium
- Laboratory of Experimental Urology, Urogenital, Abdominal and Plastic Surgery, Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Frank Van der Aa
- Department of Urology, University Hospitals Leuven, Leuven, Belgium
- Laboratory of Experimental Urology, Urogenital, Abdominal and Plastic Surgery, Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| |
Collapse
|
27
|
Debnath SK, Debnath M, Ghosh A, Srivastava R, Omri A. Targeting Tumor Hypoxia with Nanoparticle-Based Therapies: Challenges, Opportunities, and Clinical Implications. Pharmaceuticals (Basel) 2024; 17:1389. [PMID: 39459028 PMCID: PMC11510357 DOI: 10.3390/ph17101389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 10/11/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024] Open
Abstract
Hypoxia is a crucial factor in tumor biology, affecting various solid tumors to different extents. Its influence spans both early and advanced stages of cancer, altering cellular functions and promoting resistance to therapy. Hypoxia reduces the effectiveness of radiotherapy, chemotherapy, and immunotherapy, making it a target for improving therapeutic outcomes. Despite extensive research, gaps persist, necessitating the exploration of new chemical and pharmacological interventions to modulate hypoxia-related pathways. This review discusses the complex pathways involved in hypoxia and the associated pharmacotherapies, highlighting the limitations of current treatments. It emphasizes the potential of nanoparticle-based platforms for delivering anti-hypoxic agents, particularly oxygen (O2), to the tumor microenvironment. Combining anti-hypoxic drugs with conventional cancer therapies shows promise in enhancing remission rates. The intricate relationship between hypoxia and tumor progression necessitates novel therapeutic strategies. Nanoparticle-based delivery systems can significantly improve cancer treatment efficacy by targeting hypoxia-associated pathways. The synergistic effects of combined therapies underscore the importance of multimodal approaches in overcoming hypoxia-mediated resistance. Continued research and innovation in this area hold great potential for advancing cancer therapy and improving patient outcomes.
Collapse
Affiliation(s)
- Sujit Kumar Debnath
- NanoBios Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India; (S.K.D.); (M.D.)
| | - Monalisha Debnath
- NanoBios Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India; (S.K.D.); (M.D.)
| | - Arnab Ghosh
- NanoBios Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India; (S.K.D.); (M.D.)
| | - Rohit Srivastava
- NanoBios Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India; (S.K.D.); (M.D.)
| | - Abdelwahab Omri
- Department of Chemistry and Biochemistry, The Novel Drug and Vaccine Delivery Systems Facility, Laurentian University, Sudbury, ON P3E 2C6, Canada
| |
Collapse
|
28
|
Yu J, Deng X, Lin X, Xie L, Guo S, Lin X, Lin D. DST regulates cisplatin resistance in colorectal cancer via PI3K/Akt pathway. J Pharm Pharmacol 2024:rgae104. [PMID: 39419785 DOI: 10.1093/jpp/rgae104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 07/26/2024] [Indexed: 10/19/2024]
Abstract
OBJECTIVES Dystonin (DST), a potential tumor suppressor gene, plays a crucial role in regulating cancer cell proliferation and resistance to chemotherapy. However, DST's specific role in colorectal cancer (CRC) has not been thoroughly investigated, and this study aims to elucidate its molecular role in modulating cisplatin (DDP) resistance in CRC. METHODS DST expression was analyzed in CRC tumors, DDP-resistant CRC tissues, paracancer tissues, and normal tissues. Lentiviral overexpression and shRNA knockdown were conducted in advanced CRC and DDP-resistant cell lines to assess cell viability, apoptosis, invasion, migration, proliferation, and angiogenesis. Xenograft mouse models studied DST's impact on CRC tumor growth and DDP resistance in vivo. RESULTS DST expression was significantly reduced in CRC tumor and DDP-resistant CRC tissues compared to paracancer and normal tissues (P < .001). Upregulating DST inhibited CRC and DDP-resistant cell viability, proliferation, invasion, and migration while promoting apoptosis. DST overexpression also reduced angiogenesis and attenuated DDP-induced cytotoxicity in CRC cells. Mechanistically, DST upregulation suppressed DDP resistance in CRC cells via the PI3K/Akt signaling pathway. DST upregulation reduced CRC tumor growth and mitigated DDP resistance, in vivo. CONCLUSION DST plays a crucial role in limiting CRC progression and overcoming DDP resistance, suggesting potential for targeted CRC therapies.
Collapse
Affiliation(s)
- Jianwei Yu
- Department of Gastroenterology, Longyan First Affiliated Hospital of Fujian Medical University, Longyan 364000, Fujian Province, China
| | - Xueqiong Deng
- Department of Gastroenterology, Longyan First Affiliated Hospital of Fujian Medical University, Longyan 364000, Fujian Province, China
| | - Xueqin Lin
- Department of Gastroenterology, Longyan First Affiliated Hospital of Fujian Medical University, Longyan 364000, Fujian Province, China
| | - Li Xie
- Department of Gastroenterology, Longyan First Affiliated Hospital of Fujian Medical University, Longyan 364000, Fujian Province, China
| | - Sisi Guo
- Department of Gastroenterology, Longyan First Affiliated Hospital of Fujian Medical University, Longyan 364000, Fujian Province, China
| | - Xiaoliang Lin
- Department of Gastroenterology, Longyan First Affiliated Hospital of Fujian Medical University, Longyan 364000, Fujian Province, China
| | - Dong Lin
- Department of Gastroenterology, Longyan First Affiliated Hospital of Fujian Medical University, Longyan 364000, Fujian Province, China
| |
Collapse
|
29
|
Lu W, Huang H, Xu Z, Xu S, Zhao K, Xiao M. MiR-27a inhibits the growth and metastasis of multiple myeloma through regulating Th17/Treg balance. PLoS One 2024; 19:e0311419. [PMID: 39413115 PMCID: PMC11482689 DOI: 10.1371/journal.pone.0311419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 09/18/2024] [Indexed: 10/18/2024] Open
Abstract
BACKGROUND The imbalance between T helper 17 (Th17) and T regulatory (Treg) cells plays a key role in the progression of multiple myeloma (MM). METHODS The gene expression profiles of MM were acquired and examined from the Gene Expression Omnibus (GEO) database (GSE72213). Our research involved experimental investigations conducted using the MOPC-MM mouse model. Dysregulation of Treg and Th17 cells was evaluated through flow cytometry, while the levels of inflammatory factors were measured using the enzyme-linked immunosorbent assay. Cell proliferation was gauged using the Cell Counting Kit-8 assay, and cell apoptosis was quantified via flow cytometry. Cell metastasis capabilities were determined by conducting transwell assays. To confirm the relationship between miR-27a and PI3K, a dual-luciferase reporter assay was employed. Finally, proteins associated with the PI3K/AKT/mTOR signaling pathway were assessed using western blotting. RESULTS MiR-27a exhibited reduced expression levels in MM. Moreover, it exerted control over the equilibrium of Th17 and Treg cells while reducing the expression of inflammatory mediators such as TGF-β1 and IL-10 in an in vivo setting. Elevated miR-27a levels led to the inhibition of cell viability, colony formation capacity, migratory and invasive traits in an in vitro context. The PI3K/AKT/mTOR signaling pathway was identified as a direct target of miR-27a and could reverse the effects induced by miR-27a in MM cells. Notably, PI3K was directly targeted by miR-27a. CONCLUSIONS Our study revealed that miR-27a inhibited MM evolution by regulating the Th17/Treg balance. Inhibition of the PI3K/AKT/mTOR signaling pathway by miR-27a may play a potential mechanistic role.
Collapse
Affiliation(s)
- Weiguo Lu
- The Third Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Hui Huang
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Clinical Research Academy of Chinese Medicine, Guangzhou, China
| | - Zhanjie Xu
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shumin Xu
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Clinical Research Academy of Chinese Medicine, Guangzhou, China
| | - Kewei Zhao
- The Third Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Mingfeng Xiao
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Clinical Research Academy of Chinese Medicine, Guangzhou, China
| |
Collapse
|
30
|
Wang Y, Chen W, Liu J, Wang G, Ou Y. Innovative Categorization and Operative Management of Auditory Ossicle Disruption Following Trauma: Therapeutic Efficacy and Interventional Paradigms. Int J Med Sci 2024; 21:2705-2713. [PMID: 39512687 PMCID: PMC11539377 DOI: 10.7150/ijms.103532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 10/04/2024] [Indexed: 11/15/2024] Open
Abstract
Currently, there is no consensus on the treatment protocol for ossicular chain trauma. This study aims to investigate the classification and treatment strategies for traumatic ossicular chain dislocation. We retrospectively analyzed 15 patients. Traumatic ossicular chain dislocations were categorized based on the location of trauma identified during surgery: Type I-ossicular trauma without stapediovestibular dislocation; Type II-stapediovestibular dislocation (with or without associated incus dislocation). Of the 10 patients with Type I trauma, 9 experienced head trauma, and 1 had a penetrating injury to the external auditory canal. Among these, 2 cases involved incudomalleolar dislocation, 2 cases incus dislocation, 5 cases incudostapedial dislocation, and 1 case a fracture of the anterior and posterior arches of the stapes. Seven patients exhibited conductive hearing loss, while 3 presented with mixed hearing loss. Ossiculoplasty was performed using partial ossicular replacement prostheses (PORP) in 8 patients and total ossicular replacement prostheses (TORP) in 2 patients. Postoperative air conduction thresholds significantly improved in all 10 patients. In Type II trauma, all 5 patients had a penetrating injury to the external auditory canal, resulting in varying degrees of hearing loss. Postoperatively, 3 patients experienced improvement in hearing, while 2 showed no significant change. All patients developed vertigo and tinnitus following the trauma, with vertigo resolving after surgery. Pneumolabyrinth was detected in 2 patients. We propose a novel classification system for traumatic ossicular chain dislocation. Treatment strategies should be tailored according to the specific trauma type.
Collapse
Affiliation(s)
- Yajing Wang
- Department of Otolaryngology, Head and Neck Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, P.R. China
| | - Wenjun Chen
- Department of Otolaryngology, Head and Neck Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, P.R. China
| | - Jiahao Liu
- Department of Otolaryngology, Head and Neck Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, P.R. China
| | - Guowang Wang
- Department of Otolaryngology, Head and Neck Surgery, ShenShan Medical Center, Memorial Hospital of Sun Yat-sen University, Shanwei 516400, P.R. China
| | - Yongkang Ou
- Department of Otolaryngology, Head and Neck Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, P.R. China
| |
Collapse
|
31
|
Ueda H, Ishiguro T, Mori Y, Yamawaki K, Okamoto K, Enomoto T, Yoshihara K. Glycolysis-mTORC1 crosstalk drives proliferation of patient-derived endometrial cancer spheroid cells with ALDH activity. Cell Death Discov 2024; 10:435. [PMID: 39394200 PMCID: PMC11470041 DOI: 10.1038/s41420-024-02204-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 09/29/2024] [Accepted: 10/02/2024] [Indexed: 10/13/2024] Open
Abstract
Cancer stem cells are associated with aggressive phenotypes of malignant tumors. A prominent feature of uterine endometrial cancer is the activation of the PI3K-Akt-mTOR pathway. In this study, we present variations in sensitivities to a PI3K-Akt-mTORC1 inhibitor among in vitro endometrial cancer stem cell-enriched spheroid cells from clinical specimens. The in vitro sensitivity was consistent with the effects observed in in vivo spheroid-derived xenograft tumor models. Our findings revealed a complementary suppressive effect on endometrial cancer spheroid cell growth with the combined use of aldehyde dehydrogenase (ALDH) and PI3K-Akt inhibitors. In the PI3K-Akt-mTORC1 signaling cascade, the influence of ALDH on mTORC1 was partially channeled through retinoic acid-induced lactate dehydrogenase A (LDHA) activation. LDHA inhibition was found to reduce endometrial cancer cell growth, aligning with the effects of mTORC1 inhibition. Building upon our previous findings highlighting ALDH-driven glycolysis through GLUT1 in uterine endometrial cancer spheroid cells, curbing mTORC1 enhanced glucose transport via GLUT1 activation. Notably, elevated LDHA expression correlated with adverse clinical survival and escalated tumor grade, especially in advanced stages. Collectively, our findings emphasize the pivotal role of ALDH-LDHA-mTORC1 cascade in the proliferation of endometrial cancer. Targeting the interaction between mTORC1 and ALDH-influenced glycolysis holds promise for developing novel strategies to combat this aggressive cancer.
Collapse
Affiliation(s)
- Haruka Ueda
- Department of Obstetrics and Gynecology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Tatsuya Ishiguro
- Department of Obstetrics and Gynecology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan.
| | - Yutaro Mori
- Department of Obstetrics and Gynecology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Kaoru Yamawaki
- Department of Obstetrics and Gynecology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Koji Okamoto
- Advanced Comprehensive Research Organization, Teikyo University, Tokyo, Japan
| | - Takayuki Enomoto
- Department of Obstetrics and Gynecology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Kosuke Yoshihara
- Department of Obstetrics and Gynecology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| |
Collapse
|
32
|
Mo X, Rao DP, Kaur K, Hassan R, Abdel-Samea AS, Farhan SM, Bräse S, Hashem H. Indole Derivatives: A Versatile Scaffold in Modern Drug Discovery-An Updated Review on Their Multifaceted Therapeutic Applications (2020-2024). Molecules 2024; 29:4770. [PMID: 39407697 PMCID: PMC11477627 DOI: 10.3390/molecules29194770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/03/2024] [Accepted: 10/07/2024] [Indexed: 10/20/2024] Open
Abstract
Indole derivatives have become an important class of compounds in medicinal chemistry, recognized for their wide-ranging biological activities and therapeutic potential. This review provides a comprehensive overview of recent advances in the evaluation of indole-based compounds in the last five years, highlighting their roles in cancer treatment, infectious disease management, anti-inflammatory therapies, metabolic disorder interventions, and neurodegenerative disease management. Indole derivatives have shown significant efficacy in targeting diverse biological pathways, making them valuable scaffolds in designing new drugs. Notably, these compounds have demonstrated the ability to combat drug-resistant cancer cells and pathogens, a significant breakthrough in the field, and offer promising therapeutic options for chronic diseases such as diabetes and hypertension. By summarizing recent key findings and exploring the underlying biological mechanisms, this review underscores the potential of indole derivatives in addressing major healthcare challenges, thereby instilling hope and optimism in the field of modern medicine.
Collapse
Affiliation(s)
- Xingyou Mo
- School of Engineering, Guangzhou College of Technology and Business, Guangzhou 510850, China
| | - Devendra Pratap Rao
- Coordination Chemistry Laboratory, Department of Chemistry, Dayanand Anglo-Vedic (PG) College, Kanpur 208001, Uttar Pradesh, India
| | - Kirandeep Kaur
- Department of Chemistry, Maharaja Ranjit Singh Punjab Technical University, Bathinda 151001, Punjab, India
| | - Roket Hassan
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Sohag University, Sohag 82524, Egypt
| | - Ahmed S. Abdel-Samea
- Pharmacology & Toxicology Department, Faculty of Pharmacy, Deraya University, New Minia 61768, Egypt
| | - Sara Mahmoud Farhan
- Department of Microbiology and Immunology, Faculty of Pharmacy, Deraya University, New Minia 61768, Egypt
| | - Stefan Bräse
- Institute of Biological and Chemical Systems—Functional Molecular Systems (IBCS-FMS), Karlsruhe Institute of Technology (KIT), Kaiserstrasse 12, 76131 Karlsruhe, Germany
| | - Hamada Hashem
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Sohag University, Sohag 82524, Egypt
| |
Collapse
|
33
|
Aghayants S, Zhu J, Yu J, Tao R, Li S, Zhou S, Zhou Y, Zhu Z. The emerging modulators of non-coding RNAs in diabetic wound healing. Front Endocrinol (Lausanne) 2024; 15:1465975. [PMID: 39439564 PMCID: PMC11493653 DOI: 10.3389/fendo.2024.1465975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 09/23/2024] [Indexed: 10/25/2024] Open
Abstract
Diabetic wound healing is a complex physiological process often hindered by the underlying metabolic dysfunctions associated with diabetes. Despite existing treatments, there remains a critical need to explore innovative therapeutic strategies to improve patient outcomes. This article comprehensively examines the roles of non-coding RNAs (ncRNAs), specifically microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs), in regulating key phases of the wound healing process: inflammation, angiogenesis, re-epithelialization, and tissue remodeling. Through a deep review of current literature, we discuss recent discoveries of ncRNAs that have been shown to either promote or impair the wound healing process in diabetic wound healing, which were not covered in earlier reviews. This review highlights the specific mechanisms by which these ncRNAs impact cellular behaviors and pathways critical to each healing stage. Our findings indicate that understanding these recently identified ncRNAs provides new insights into their potential roles in diabetic wound healing, thereby contributing valuable knowledge for future research directions in this field.
Collapse
Affiliation(s)
- Sis Aghayants
- Department of Plastic Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Jinjin Zhu
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, China
| | - Jing Yu
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Rui Tao
- Department of Plastic Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Sicheng Li
- Department of Plastic Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Shengzhi Zhou
- Department of Plastic Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Yunhua Zhou
- Department of Wound Repair Surgery, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhanyong Zhu
- Department of Plastic Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
34
|
Wang Q, Ren Z, Zhao J, Zheng T, Tong L, Liu J, Dai Z, Tang S. Mechanism and Application Prospects of NLRC3 Regulating cGAS-STING Pathway in Lung Cancer Immunotherapy. Int J Med Sci 2024; 21:2613-2622. [PMID: 39439455 PMCID: PMC11492878 DOI: 10.7150/ijms.102328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 09/10/2024] [Indexed: 10/25/2024] Open
Abstract
NLRC3, a negative regulator, exhibits considerable potential in the realm of lung cancer immunotherapy by virtue of its profound impact on the immune response intensity, primarily through its regulatory effects on the cGAS-STING pathway. The inhibition of NLRC3 has been found to augment the activity of the aforementioned pathway, thereby enhancing the anti-tumor immune response. This comprehensive review endeavors to elucidate the molecular and genetic structures of NLRC3, its role within the immune system, and its interaction with the cGAS-STING pathway, with a particular emphasis on its potential applications in lung cancer immunotherapy. Existing research underscores NLRC3's capacity to mitigate excessive immune responses via the negative regulation of the cGAS-STING pathway, thus underscoring its significant regulatory role in lung cancer immunotherapy. The development of pharmaceutical interventions and gene therapy strategies targeting NLRC3 presents a promising avenue for the creation of novel therapeutic options for individuals afflicted with lung cancer. Nonetheless, the clinical application of these therapies is confronted with both technical and biological challenges. This review aims to provide a theoretical foundation for related research endeavors and delineate future research directions in this field.
Collapse
Affiliation(s)
- Qichao Wang
- Dalian Medical University, Dalian 116044, Liaoning, China
- Department of Medical Oncology, The Fifth People's Hospital of Dalian, Dalian 116021, Liaoning, China
| | - Zhen Ren
- Faculty of Medicine, Dalian University of Technology, Dalian 116024, Liaoning, China
- Central Hospital of Dalian University of Technology, Dalian 116003, Liaoning, China
| | - Jianing Zhao
- Dalian Medical University, Dalian 116044, Liaoning, China
- Central Hospital of Dalian University of Technology, Dalian 116003, Liaoning, China
| | - Tianliang Zheng
- Dalian Medical University, Dalian 116044, Liaoning, China
- Central Hospital of Dalian University of Technology, Dalian 116003, Liaoning, China
| | - Lifei Tong
- Department of Radiotherapy, The Fifth People's Hospital of Dalian, Dalian 116021, Liaoning, China
| | - Jing Liu
- Department of Medical Oncology, The Fifth People's Hospital of Dalian, Dalian 116021, Liaoning, China
| | - Zhaoxia Dai
- Department of Thoracic Oncology, The Second Affiliated Hospital of Dalian Medical University, Dalian 116021, Liaoning, China
| | - Shuhong Tang
- Department of Medical Oncology, The Fifth People's Hospital of Dalian, Dalian 116021, Liaoning, China
| |
Collapse
|
35
|
Liao D, He Y, He B, Zeng S, Cui Y, Li C, Huang H. Inhibiting SNX10 induces autophagy to suppress invasion and EMT and inhibits the PI3K/AKT pathway in cervical cancer. Clin Transl Oncol 2024:10.1007/s12094-024-03715-x. [PMID: 39367898 DOI: 10.1007/s12094-024-03715-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 09/02/2024] [Indexed: 10/07/2024]
Abstract
PURPOSE Cervical cancer (CC) is a prevalent malignancy among women with high morbidity and poor prognosis. Sorting nexin 10 (SNX10) is a newly recognized cancer regulatory factor, while its action on CC progression remains elusive. Hence, this study studied the effect of SNX10 on CC development and investigated the mechanism. METHODS The SNX10 level in CC and the overall survival of CC cases with different SNX10 expressions were determined by bioinformatics analysis in GEPIA. The SNX10 expression in tumor tissues and clinical significance were studied in 64 CC cases. The overall survival was assessed using Kaplan-Meier analysis. The formation of LC3 was evaluated using immunofluorescence. Cell invasion was measured using the Transwell assay. Epithelial-to-mesenchymal transition (EMT) was determined by observing cell morphology and assessing EMT marker levels. A xenograft tumor was constructed to evaluate tumor growth. RESULTS SNX10 was elevated in CC tissues and cells, and the CC cases with high SNX10 levels exhibited poor overall survival. Besides, SNX10 correlated with the FIGO stage, lymph node invasion, and stromal invasion of CC. SNX10 silencing induced CC cell autophagy and suppressed CC cell invasion and EMT. Meanwhile, silenced SNX10 could suppress invasion and EMT via inducing autophagy. Furthermore, SNX10 inhibition suppressed the PI3K/AKT pathway. Moreover, silenced SNX10 restrained the tumor growth, autophagy, and EMT of CC in vivo. CONCLUSION SNX10 was enhanced in CC and correlated with poor prognosis. Silenced SNX10 induced autophagy to suppress invasion and EMT and inhibited the PI3K/AKT pathway in CC, making SNX10 a valuable molecule for CC therapy.
Collapse
Affiliation(s)
- Dan Liao
- Department of Gynaecology, Affiliated Dongguan Songshan Lake Central Hospital, Guangdong Medical University, No.1, Huangzhou Xianglong Road of Shilong Town, Dongguan, 523326, Guangdong, China.
| | - Yanxian He
- Department of Gynaecology, Affiliated Dongguan Songshan Lake Central Hospital, Guangdong Medical University, No.1, Huangzhou Xianglong Road of Shilong Town, Dongguan, 523326, Guangdong, China
| | - Bin He
- Clinical Translational Medical Center, Affiliated Dongguan Songshan Lake Central Hospital, Guangdong Medical University, Dongguan, Guangdong, China
| | - Saitian Zeng
- Department of Gynaecology, Affiliated Dongguan Songshan Lake Central Hospital, Guangdong Medical University, No.1, Huangzhou Xianglong Road of Shilong Town, Dongguan, 523326, Guangdong, China
| | - Yejia Cui
- Department of Clinical Laboratory, Affiliated Dongguan Songshan Lake Central Hospital, Guangdong Medical University, Dongguan, Guangdong, China
| | - Cuifen Li
- Department of Gynaecology, Affiliated Dongguan Songshan Lake Central Hospital, Guangdong Medical University, No.1, Huangzhou Xianglong Road of Shilong Town, Dongguan, 523326, Guangdong, China
| | - Haohai Huang
- Clinical Translational Medical Center, Affiliated Dongguan Songshan Lake Central Hospital, Guangdong Medical University, Dongguan, Guangdong, China.
- Department of Clinical Pharmacy, Affiliated Dongguan Songshan Lake Central Hospital, Guangdong Medical University, No.1, Huangzhou Xianglong Road of Shilong Town, Dongguan, 523326, Guangdong, China.
| |
Collapse
|
36
|
Ouissam AJ, Hind C, Sami Aziz B, Said A. Inhibition of the PI3K/AKT/mTOR pathway in pancreatic cancer: is it a worthwhile endeavor? Ther Adv Med Oncol 2024; 16:17588359241284911. [PMID: 39399412 PMCID: PMC11468005 DOI: 10.1177/17588359241284911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 09/03/2024] [Indexed: 10/15/2024] Open
Abstract
Pancreatic cancer (PC) is an aggressive disease that is challenging to treat and is associated with a high mortality rate. The most common type of PC is pancreatic ductal adenocarcinoma (PDAC), and the existing treatment options are insufficient for PDAC patients. Due to the complexity and heterogeneity of PDAC, personalized medicine is necessary for effectively treating this illness. To achieve this, it is essential to understand the mechanism of PDAC carcinogenesis. Targeted therapies are a promising strategy to improve patient outcomes. Aberrant activation of the phosphatidylinositol 3-kinase/protein kinase B/mammalian target of rapamycin (PI3K/AKT/mTOR) signaling pathway plays a crucial role in PC pathogenesis, from initiation to progression. This review provides a comprehensive overview of the current state of knowledge regarding the PI3K pathway in PDAC, summarizes clinical data on PI3K pathway inhibition in PDAC, and explores potential effective combinations that are a promising direction requiring further investigation in PDAC.
Collapse
Affiliation(s)
- Al Jarroudi Ouissam
- Department of Medical Oncology, Mohammed VI University Hospital, Oujda, Morocco
- Faculty of Medicine and Pharmacy, Mohammed Ist University, Oujda, Morocco
| | - Chibani Hind
- Department of Medical Oncology, Mohammed VI University Hospital, Oujda, Morocco
- Faculty of Medicine and Pharmacy, Mohammed Ist University, Oujda, Morocco
| | - Brahmi Sami Aziz
- Department of Medical Oncology, Mohammed VI University Hospital, Oujda, Morocco
- Faculty of Medicine and Pharmacy, Mohammed Ist University, Oujda, Morocco
| | - Afqir Said
- Department of Medical Oncology, Mohammed VI University Hospital, Oujda, Morocco
- Faculty of Medicine and Pharmacy, Mohammed Ist University, Oujda, Morocco
| |
Collapse
|
37
|
Zhang H, Fu L, Leiliang X, Qu C, Wu W, Wen R, Huang N, He Q, Cheng Q, Liu G, Cheng Y. Beyond the Gut: The intratumoral microbiome's influence on tumorigenesis and treatment response. Cancer Commun (Lond) 2024; 44:1130-1167. [PMID: 39087354 PMCID: PMC11483591 DOI: 10.1002/cac2.12597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 06/25/2024] [Accepted: 07/13/2024] [Indexed: 08/02/2024] Open
Abstract
The intratumoral microbiome (TM) refers to the microorganisms in the tumor tissues, including bacteria, fungi, viruses, and so on, and is distinct from the gut microbiome and circulating microbiota. TM is strongly associated with tumorigenesis, progression, metastasis, and response to therapy. This paper highlights the current status of TM. Tract sources, adjacent normal tissue, circulatory system, and concomitant tumor co-metastasis are the main origin of TM. The advanced techniques in TM analysis are comprehensively summarized. Besides, TM is involved in tumor progression through several mechanisms, including DNA damage, activation of oncogenic signaling pathways (phosphoinositide 3-kinase [PI3K], signal transducer and activator of transcription [STAT], WNT/β-catenin, and extracellular regulated protein kinases [ERK]), influence of cytokines and induce inflammatory responses, and interaction with the tumor microenvironment (anti-tumor immunity, pro-tumor immunity, and microbial-derived metabolites). Moreover, promising directions of TM in tumor therapy include immunotherapy, chemotherapy, radiotherapy, the application of probiotics/prebiotics/synbiotics, fecal microbiome transplantation, engineered microbiota, phage therapy, and oncolytic virus therapy. The inherent challenges of clinical application are also summarized. This review provides a comprehensive landscape for analyzing TM, especially the TM-related mechanisms and TM-based treatment in cancer.
Collapse
Affiliation(s)
- Hao Zhang
- Department of NeurosurgeryThe Second Affiliated HospitalChongqing Medical UniversityChongqingP. R. China
| | - Li Fu
- Department of NeurosurgeryThe Second Affiliated HospitalChongqing Medical UniversityChongqingP. R. China
- Department of GastroenterologyThe Second Affiliated HospitalChongqing Medical UniversityChongqingP. R. China
| | - Xinwen Leiliang
- Department of NeurosurgeryThe Second Affiliated HospitalChongqing Medical UniversityChongqingP. R. China
| | - Chunrun Qu
- Department of NeurosurgeryXiangya HospitalCentral South UniversityChangshaHunanP. R. China
- National Clinical Research Center for Geriatric DisordersXiangya HospitalCentral South UniversityChangshaHunanP. R. China
| | - Wantao Wu
- Department of OncologyXiangya HospitalCentral South UniversityChangshaHunanP. R. China
| | - Rong Wen
- Department of NeurosurgeryThe Second Affiliated HospitalChongqing Medical UniversityChongqingP. R. China
| | - Ning Huang
- Department of NeurosurgeryThe Second Affiliated HospitalChongqing Medical UniversityChongqingP. R. China
| | - Qiuguang He
- Department of NeurosurgeryThe Second Affiliated HospitalChongqing Medical UniversityChongqingP. R. China
| | - Quan Cheng
- Department of NeurosurgeryXiangya HospitalCentral South UniversityChangshaHunanP. R. China
- National Clinical Research Center for Geriatric DisordersXiangya HospitalCentral South UniversityChangshaHunanP. R. China
| | - Guodong Liu
- Department of NeurosurgeryThe Second Affiliated HospitalChongqing Medical UniversityChongqingP. R. China
| | - Yuan Cheng
- Department of NeurosurgeryThe Second Affiliated HospitalChongqing Medical UniversityChongqingP. R. China
| |
Collapse
|
38
|
Gu JX, Huang K, Zhao WL, Zheng XM, Wu YQ, Yan SR, Huang YG, Hu P. NCAPD2 augments the tumorigenesis and progression of human liver cancer via the PI3K‑Akt‑mTOR signaling pathway. Int J Mol Med 2024; 54:84. [PMID: 39092569 PMCID: PMC11315656 DOI: 10.3892/ijmm.2024.5408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 07/02/2024] [Indexed: 08/04/2024] Open
Abstract
Non‑SMC condensin I complex subunit D2 (NCAPD2) is a newly identified oncogene; however, the specific biological function and molecular mechanism of NCAPD2 in liver cancer progression remain unknown. In the present study, the aberrant expression of NCAPD2 in liver cancer was investigated using public tumor databases, including TNMplot, The Cancer Genome Atlas and the International Cancer Genome Consortium based on bioinformatics analyses, and it was validated using a clinical cohort. It was revealed that NCAPD2 was significantly upregulated in liver cancer tissues compared with in control liver tissues, and NCAPD2 served as an independent prognostic factor and predicted poor prognosis in liver cancer. In addition, the expression of NCAPD2 was positively correlated with the percentage of Ki67+ cells. Finally, single‑cell sequencing data, gene‑set enrichment analyses and in vitro investigations, including cell proliferation assay, Transwell assay, wound healing assay, cell cycle experiments, cell apoptosis assay and western blotting, were carried out in human liver cancer cell lines to assess the biological mechanisms of NCAPD2 in patients with liver cancer. The results revealed that the upregulation of NCAPD2 enhanced tumor cell proliferation, invasion and cell cycle progression at the G2/M‑phase transition, and inhibited apoptosis in liver cancer cells. Furthermore, NCAPD2 overexpression was closely associated with the phosphatidylinositol 3‑kinase (PI3K)‑Akt‑mammalian target of rapamycin (mTOR)/c‑Myc signaling pathway and epithelial‑mesenchymal transition (EMT) progression in HepG2 and Huh7 cells. In addition, upregulated NCAPD2 was shown to have adverse effects on overall survival and disease‑specific survival in liver cancer. In conclusion, the overexpression of NCAPD2 was shown to lead to cell cycle progression at the G2/M‑phase transition, activation of the PI3K‑Akt‑mTOR/c‑Myc signaling pathway and EMT progression in human liver cancer cells.
Collapse
Affiliation(s)
- Jiang-Xue Gu
- Department of Laboratory Medicine and Department of Pathology, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Ke Huang
- Department of Laboratory Medicine and Department of Pathology, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Wei-Lin Zhao
- Department of Laboratory Medicine and Department of Pathology, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Xiao-Ming Zheng
- Central Operating Room, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Yu-Qin Wu
- Central Operating Room, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Shi-Rong Yan
- Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
- Hubei Key Laboratory of Wudang Local Chinese Medicine Research, School of Pharmaceutical Sciences, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Yu-Gang Huang
- Department of Laboratory Medicine and Department of Pathology, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Pei Hu
- Department of Laboratory Medicine and Department of Pathology, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
- Institute of Biomedical Research, Hubei Clinical Research Center for Precise Diagnosis and Treatment of Hepatocellular Carcinoma, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| |
Collapse
|
39
|
Zheng T, Jiang T, Ma H, Zhu Y, Wang M. Targeting PI3K/Akt in Cerebral Ischemia Reperfusion Injury Alleviation: From Signaling Networks to Targeted Therapy. Mol Neurobiol 2024; 61:7930-7949. [PMID: 38441860 DOI: 10.1007/s12035-024-04039-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 02/09/2024] [Indexed: 09/21/2024]
Abstract
Ischemia/reperfusion (I/R) injury is a pathological event that results in reperfusion due to low blood flow to an organ. Cerebral ischemia is a common cerebrovascular disease with high mortality, and reperfusion is the current standard intervention. However, reperfusion may further induce cellular damage and dysfunction known as cerebral ischemia/reperfusion injury (CIRI). Currently, strategies for the clinical management of CIRI are limited, necessitating the exploration of novel and efficacious treatment modalities for the benefit of patients. PI3K/Akt signaling pathway is an important cellular process associated with the disease. Stimulation of the PI3K/Akt pathway enhances I/R injury in multiple organs such as heart, brain, lung, and liver. It stands as a pivotal signaling pathway crucial for diminishing cerebral infarction size and safeguarding the functionality of brain tissue after CIRI. During CIRI, activation of the PI3K/Akt pathway exhibits a protective effect on CIRI. Furthermore, activation of the PI3K/Akt pathway has the potential to augment the activity of antioxidant enzymes, resulting in a decrease in reactive oxygen species (ROS) and the associated oxidative stress. Meanwhile, PI3K/Akt plays a neuroprotective role by inhibiting inflammatory responses and apoptosis. For example, PI3K/Akt interacts with NF-κB, Nrf2, and MAPK signaling pathways to mitigate CIRI. This article is aimed to explore the pivotal role and underlying mechanism of PI3K/Akt in ameliorating CIRI and investigate the influence of ischemic preconditioning and post-processing, as well as the impact of pertinent drugs or activators targeting the PI3K/Akt pathway on CIRI. The primary objective is to furnish compelling evidence supporting the activation of PI3K/Akt in the context of CIRI, elucidating its mechanistic intricacies. By doing so, the paper aims to underscore the critical contribution of PI3K/Akt in mitigating CIRI, providing a theoretical foundation for considering the PI3K/Akt pathway as a viable target for CIRI treatment.
Collapse
Affiliation(s)
- Ting Zheng
- The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, 730000, People's Republic of China
- Department of Neurology, The Second Hospital of Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Taotao Jiang
- The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, 730000, People's Republic of China
- Department of Neurology, The Second Hospital of Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Hongxiang Ma
- The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, 730000, People's Republic of China
- Department of Neurology, The Second Hospital of Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Yanping Zhu
- The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, 730000, People's Republic of China
- Department of Neurology, The Second Hospital of Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Manxia Wang
- The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, 730000, People's Republic of China.
- Department of Neurology, The Second Hospital of Lanzhou University, Lanzhou, 730000, People's Republic of China.
| |
Collapse
|
40
|
Yi Q, Zhu G, Zhu W, Wang J, Ouyang X, Yang K, Fan Y, Zhong J. LINC01094: A key long non-coding RNA in the regulation of cancer progression and therapeutic targets. Heliyon 2024; 10:e37527. [PMID: 39309878 PMCID: PMC11415682 DOI: 10.1016/j.heliyon.2024.e37527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 07/25/2024] [Accepted: 09/04/2024] [Indexed: 09/25/2024] Open
Abstract
LINC01094 is a long non-coding RNA that plays a crucial role in cancer progression by modulating key signaling pathways, such as PI3K/AKT, Wnt/β-catenin and TGF-β Signaling Pathway Feedback Loop. In this review we summarize the recent research on the functional mechanisms of LINC01094 in various cancers, including its impact on tumor growth, metastasis, and resistance to therapy. We also discuss the therapeutic potential of targeting LINC01094 and highlight the current strategies and challenges in this area. Perspectives on future development of LINC01094-based therapies are also provided.
Collapse
Affiliation(s)
- Qiang Yi
- The First Clinical Medical College, Gannan Medical University, Ganzhou, Jiangxi Province, 341000, China
| | - Gangfeng Zhu
- The First Clinical Medical College, Gannan Medical University, Ganzhou, Jiangxi Province, 341000, China
| | - Weijian Zhu
- The First Clinical Medical College, Gannan Medical University, Ganzhou, Jiangxi Province, 341000, China
| | - Jiaqi Wang
- The First Clinical Medical College, Gannan Medical University, Ganzhou, Jiangxi Province, 341000, China
| | - Xinting Ouyang
- The First Clinical Medical College, Gannan Medical University, Ganzhou, Jiangxi Province, 341000, China
| | - Kuan Yang
- The First Clinical Medical College, Gannan Medical University, Ganzhou, Jiangxi Province, 341000, China
| | - Yu Fan
- The First Clinical Medical College, Gannan Medical University, Ganzhou, Jiangxi Province, 341000, China
| | - Jinghua Zhong
- Department of Oncology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi Province, 341000, China
| |
Collapse
|
41
|
Zhang Y, Zhu Z, Li Z, Feng J, Long J, Deng Y, Ahmed W, Khan AA, Huang S, Fu Q, Chen L. Sbno1 mediates cell-cell communication between neural stem cells and microglia through small extracellular vesicles. Cell Biosci 2024; 14:125. [PMID: 39343943 PMCID: PMC11441009 DOI: 10.1186/s13578-024-01296-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 08/21/2024] [Indexed: 10/01/2024] Open
Abstract
BACKGROUND Neural stem cells (NSCs) play a crucial role in the progress of ischemic stroke. Research on zebrafish embryonic demonstrates an association between Strawberry Notch 1 (Sbno1) and central nervous system development. However, the regulation and underlying mechanism of Sbno1 in NSCs have not been studied yet. Here, we investigated the role and the mechanism of Sbno1 in NSCs development and the potential therapeutic value of Sbno1 in ischemic stroke. METHODS Adeno-associated virus (AAV) was used for overexpression or knockdown of Sbno1 in vitro or in vivo. A mouse model of MCAO was established to evaluate the neuroprotective effects of AAV-Sbno1, including balance beam test, rotarod test, and strength evaluation. H&E and immunofluorescence assessed neuronal impairment. Western blot and RT-qPCR were used to detect the expression of Sbno1 and its downstream target genes. RNA-seq and western blot were performed to explore further molecular mechanisms by which Sbno1 promoted endogenous repair of NSCs and macrophages M2 polarization. CCK8 was conducted to assess the effects of Sbno1 on NSCs proliferation. The impact of Sbno1 on NSCs apoptosis was evaluated by flow cytometry. NSCs derived from small extracellular vesicles (sEV) were obtained using ultracentrifugation and identified through nanoparticle tracking analysis (NTA) and western blot analysis. RESULTS Our results showed that Sbno1 is highly expressed in the central nervous system, which plays a crucial role in regulating the proliferation of NSCs through the PI3k-Akt-GSK3β-Wnt/β-catenin signaling pathway. In addition, with overexpression of Sbno1 in the hippocampus, post-stroke behavioral scores were superior to the wild-type mice, and immunofluorescence staining revealed an increased number of newly generated neurons. sEV released by NSCs overexpressing Sbno1 inhibited neuroinflammation, which mechanistically impaired the activation of the microglial NF-κB and MAPK signaling pathways. CONCLUSIONS Our studies indicate that sbno1 promotes the proliferation of NSCs and enhances endogenous repairing through the PI3k-Akt-GSK3β-Wnt/β-catenin signaling pathway. Additionally, NSCs overexpressing sbno1 improve ischemic stroke recovery and inhibit neuroinflammation after ischemia by sEV through the MAPK and NF-κB signaling pathways.
Collapse
Affiliation(s)
- Yifan Zhang
- Department of Neurosurgery, Southern Medical University Hospital of Integrated Traditional Chinese and Western Medicine, Southern Medical University, Guangzhou, China
| | - Zhihan Zhu
- Department of Neurosurgery, Southern Medical University Hospital of Integrated Traditional Chinese and Western Medicine, Southern Medical University, Guangzhou, China
| | - Zhinuo Li
- Department of Neurosurgery, Southern Medical University Hospital of Integrated Traditional Chinese and Western Medicine, Southern Medical University, Guangzhou, China
| | - Jia Feng
- Department of Neurosurgery, Southern Medical University Hospital of Integrated Traditional Chinese and Western Medicine, Southern Medical University, Guangzhou, China
| | - Jun Long
- Department of Neurosurgery, Southern Medical University Hospital of Integrated Traditional Chinese and Western Medicine, Southern Medical University, Guangzhou, China
| | - Yushu Deng
- Department of Neurosurgery, Southern Medical University Hospital of Integrated Traditional Chinese and Western Medicine, Southern Medical University, Guangzhou, China
| | - Waqas Ahmed
- Department of Neurology, Zhongda Hospital Southeast University, Nanjing, China
| | - Ahsan Ali Khan
- Department of Neurosurgery, The Aga Khan University, Karachi, Pakistan
| | - Shiying Huang
- Department of Neurosurgery, Southern Medical University Hospital of Integrated Traditional Chinese and Western Medicine, Southern Medical University, Guangzhou, China
| | - Qingling Fu
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Lukui Chen
- Department of Neurosurgery, Southern Medical University Hospital of Integrated Traditional Chinese and Western Medicine, Southern Medical University, Guangzhou, China.
| |
Collapse
|
42
|
Wang J, Zhuang H, Yang X, Guo Z, Zhou K, Liu N, An Y, Chen Y, Zhang Z, Wang M, Chen J, Li C, Chang X. Exploring the Mechanism of Ferroptosis Induction by Sappanone A in Cancer: Insights into the Mitochondrial Dysfunction Mediated by NRF2/xCT/GPX4 Axis. Int J Biol Sci 2024; 20:5145-5161. [PMID: 39430236 PMCID: PMC11488586 DOI: 10.7150/ijbs.96748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 08/21/2024] [Indexed: 10/22/2024] Open
Abstract
Non-small cell lung cancer (NSCLC), a major subtype of lung cancer, encompasses squamous cell carcinoma, adenocarcinoma, and large cell carcinoma. Compared to small cell lung cancer, NSCLC cells grow and divide more slowly, and their metastasis occurs at a later stage. Currently, chemotherapy is the primary treatment for this disease. Sappanone A (SA) is a flavonoid compound extracted from the plant Caesalpinia sappan, known for its antitumor, redox-regulating, and anti-inflammatory properties. Recent studies have investigated the interaction of SA with mitochondrial pathways in regulating cell death through the Nrf-2/GPX-4/xCT axis. This study specifically explores the mechanism by which SA affects mitochondrial morphology and structure through the regulation of mitophagy and mitochondrial biogenesis in tumor cells. The study primarily utilizes second-generation transcriptomic sequencing data and molecular docking techniques to elucidate the role of SA in regulating programmed cell death in tumor cells. The omics results indicate that SA treatment significantly targets genes involved in oxidative phosphorylation, mitophagy, mitochondrial dynamics, and oxidative stress. Further findings confirmed that the Nrf-2/GPX4/xCT pathway serves as a crucial target of SA in the treatment of NSCLC. Knockdown of Nrf-2 (si-Nrf-2) and Nrf-2 overexpression (ad-Nrf-2) were shown to modulate the therapeutic efficacy of SA to varying degrees. Additionally, modifications to the GPX4/xCT genes significantly affected the regulatory effects of SA on mitochondrial autophagy, biogenesis, and energy metabolism. These regulatory mechanisms may be mediated through the caspase pathway and ferroptosis-related signaling. Molecular biology experiments have demonstrated that SA intervention further inhibits the phosphorylation of FUNDC1 at Tyr18 and downregulates TOM20 expression. SA treatment was found to reduce the expression of PGC1α, Nrf-1, and Tfam, resulting in a decrease in mitochondrial respiration and energy metabolism. Overexpression of Nrf-2 was shown to counteract the regulatory effects of SA on mitophagy and mitochondrial biogenesis. Confocal microscopy experiments further revealed that SA treatment increases mitochondrial fragmentation, subsequently inducing mitochondrial pathway-mediated programmed cell death. However, genetic modification of the Nrf-2/GPX4/xCT pathway significantly altered the regulatory effects of SA on tumor cells. In conclusion, SA has been identified as a promising therapeutic agent for NSCLC. The mitochondrial pathway-mediated apoptosis and ferroptosis may represent key mechanisms in regulating tumor cell death. Targeting the Nrf-2/GPX-4/xCT axis offers a novel therapeutic approach for maintaining mitochondrial homeostasis within the cellular microenvironment.
Collapse
Affiliation(s)
- Junyan Wang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Haowen Zhuang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Xiaocui Yang
- The Second Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, 110032, China
| | - Zhijiang Guo
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Kainan Zhou
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Nanyang Liu
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yang An
- Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning, 110032, China
| | - Ye Chen
- Xianning Medical College, Hubei University of Science & Technology, Xianning, 437000, China
| | - Zhongzheng Zhang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Mengyuan Wang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Jinhong Chen
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Chun Li
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Xing Chang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| |
Collapse
|
43
|
Guo Z, Tian Y, Liu N, Chen Y, Chen X, Yuan G, Chang A, Chang X, Wu J, Zhou H. Mitochondrial Stress as a Central Player in the Pathogenesis of Hypoxia-Related Myocardial Dysfunction: New Insights. Int J Med Sci 2024; 21:2502-2509. [PMID: 39439461 PMCID: PMC11492880 DOI: 10.7150/ijms.99359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 09/13/2024] [Indexed: 10/25/2024] Open
Abstract
Hypoxic injury is a critical pathological factor in the development of various cardiovascular diseases, such as congenital heart disease, myocardial infarction, and heart failure. Mitochondrial quality control is essential for protecting cardiomyocytes from hypoxic damage. Under hypoxic conditions, disruptions in mitochondrial homeostasis result in excessive reactive oxygen species (ROS) production, imbalances in mitochondrial dynamics, and initiate pathological processes including oxidative stress, inflammatory responses, and apoptosis. Targeted interventions to enhance mitochondrial quality control, such as coenzyme Q10 and statins, have shown promise in mitigating hypoxia-induced mitochondrial dysfunction. These treatments offer potential therapeutic strategies for hypoxia-related cardiovascular diseases by regulating mitochondrial fission and fusion, restoring mitochondrial biogenesis, reducing ROS production, and promoting mitophagy.
Collapse
Affiliation(s)
- Zhijiang Guo
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Yingjie Tian
- Beijing University of Chinese Medicine, Beijing, 100028, China
| | - Nanyang Liu
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ye Chen
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaohan Chen
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Guoxing Yuan
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - An Chang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Xing Chang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Jie Wu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Hao Zhou
- Senior Department of Cardiology, The Sixth Medical Center of People's Liberation Army General Hospital, Beijing, China
| |
Collapse
|
44
|
Chang X, Wu D, Gao X, Lin J, Tan Y, Wang J, Zhu H, Zhou H. BuyangHuanwu Decoction alleviates Endothelial Cell Apoptosis and Coronary Microvascular Dysfunction via Regulation of the MAPKK4/p38 Signaling Axis. Int J Med Sci 2024; 21:2464-2479. [PMID: 39439466 PMCID: PMC11492876 DOI: 10.7150/ijms.98183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 09/03/2024] [Indexed: 10/25/2024] Open
Abstract
MAPKK4 has been implicated in the pathological mechanisms underlying myocardial and vascular injury, specifically influencing endothelial cell damage and programmed cell death via subcellular pathways. Nevertheless, the regulatory role of MAPKK4 in coronary microvascular injury following myocardial infarction remains unconfirmed, and the exploration of targeted mitochondrial protective therapeutic agents remains unaddressed. In light of this gap, we established a MAPKK4 gene-modified mouse model of ischemia-reperfusion injury and employed Buyang Huanwu decoction (BYHW), a traditional cardiovascular therapeutic formula, to assess its efficacy in treating coronary microvascular injury post-ischemia-reperfusion. The study aimed to elucidate the mechanism by which BYHW mitigates coronary microvascular injury induced by ischemia-reperfusion through the attenuation of endothelial cell apoptosis. Experimental outcomes revealed that high-dose BYHW significantly ameliorated coronary microvascular injury post-ischemia-reperfusion, restoring the structural integrity of the coronary microvasculature and reducing inflammation and oxidative stress. Contrarily, in transgenic mice overexpressing MAPKK4, BYHW intervention failed to attenuate microvascular inflammation and oxidative stress. To further investigate, we simulated hypoxia/reoxygenation injury in vascular endothelial cells using a MAPKK4-related cellular gene modification model. The results indicated that BYHW attenuates inflammatory damage and enhances the viability of vascular endothelial cells following hypoxic stress, inhibiting apoptosis via the mitochondrial pathway. However, overexpression of MAPKK4/p38 negated the therapeutic effects of BYHW, showing no impact on endothelial cell apoptosis and oxidative stress under hypoxic conditions. Molecular interaction studies confirmed that the active components of BYHW, Astragaloside IV and Ligustrazine, interact with the MAPKK4/P38 axis. In vitro experiments further suggested that the interaction between MAPKK4 and P38 play a crucial role in the ability of BYHW to inhibit apoptosis in coronary microvascular endothelial cells. Therapeutically, MAPKK4 may potentiate the apoptotic pathway in microvascular endothelial cells by modulating downstream P38 expression and phosphorylation, thereby exacerbating ischemia-reperfusion-induced coronary microvascular endothelial injury. From an in vivo perspective, the transgenic overexpression of MAPKK4 and P38 inhibited the microvascular protective effects of BYHW. These findings collectively underscore the significance of the MAPKK4-P38 axis in the protection of coronary microvascular endothelial cells.
Collapse
Affiliation(s)
- Xing Chang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Dan Wu
- Division of Vascular Surgery, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510800, China; National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Disease, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Xin Gao
- Outpatient Department of the Sixth Medical Center of the PLA General Hospital, China
| | - Jianguo Lin
- The First Affliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Ying Tan
- Beijing University of Chinese Medicine, Beijing, 100028, China
| | - Junyan Wang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Hang Zhu
- Senior Department of Cardiology, The Sixth Medical Center of People's Liberation Army General Hospital, Beijing, China
| | - Hao Zhou
- Senior Department of Cardiology, The Sixth Medical Center of People's Liberation Army General Hospital, Beijing, China
| |
Collapse
|
45
|
Zglejc-Waszak K, Jozwik M, Thoene M, Wojtkiewicz J. Role of Receptor for Advanced Glycation End-Products in Endometrial Cancer: A Review. Cancers (Basel) 2024; 16:3192. [PMID: 39335163 PMCID: PMC11430655 DOI: 10.3390/cancers16183192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/10/2024] [Accepted: 09/17/2024] [Indexed: 09/30/2024] Open
Abstract
Endometrial cancer (EC) is the most common gynecological malignancy. EC is associated with metabolic disorders that may promote non-enzymatic glycation and activate the receptor for advanced glycation end-products (RAGE) signaling pathways. Thus, we assumed that RAGE and its ligands may contribute to EC. Of particular interest is the interaction between diaphanous-related formin 1 (Diaph1) and RAGE during the progression of human cancers. Diaph1 is engaged in the proper organization of actin cytoskeletal dynamics, which is crucial in cancer invasion, metastasis, angiogenesis, and axonogenesis. However, the detailed molecular role of RAGE in EC remains uncertain. In this review, we discuss epigenetic factors that may play a key role in the RAGE-dependent endometrial pathology. We propose that DNA methylation may regulate the activity of the RAGE pathway in the uterus. The accumulation of negative external factors, such as hyperglycemia, inflammation, and oxidative stress, may interfere with the DNA methylation process. Therefore, further research should take into account the role of epigenetic mechanisms in EC progression.
Collapse
Affiliation(s)
- Kamila Zglejc-Waszak
- Department of Anatomy, Faculty of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, 10-082 Olsztyn, Poland
| | - Marcin Jozwik
- Department of Gynecology and Obstetrics, Collegium Medicum, University of Warmia and Mazury in Olsztyn, 10-045 Olsztyn, Poland
| | - Michael Thoene
- Department of Medical Biology, Faculty of Health Sciences, University of Warmia and Mazury in Olsztyn, Żołnierska 14C Str., 10-561 Olsztyn, Poland
| | - Joanna Wojtkiewicz
- Department of Human Physiology and Pathophysiology, Faculty of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, 10-082 Olsztyn, Poland
| |
Collapse
|
46
|
Li L, Xiao C, Liu H, Chen S, Tang Y, Zhou H, Jiang G, Tian J. A Circular Network of Coregulated L-Threonine and L-Tryptophan Metabolism Dictates Acute Lower Limb Ischemic Injury. Int J Med Sci 2024; 21:2402-2413. [PMID: 39310266 PMCID: PMC11413896 DOI: 10.7150/ijms.102177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 09/08/2024] [Indexed: 09/25/2024] Open
Abstract
Lower limb ischemia is characterized by reduced arterial perfusion in the lower limbs, leading to tissue ischemia and cell death. It is primarily caused by thrombosis and the rupture of arterial plaques, resulting in damage to ischemic muscle tissues. Metabolic processes are crucial in its development. Herein we combined single-cell data with metabolomics data to explore the pathways and mechanisms influencing lower limb ischemia. We analyzed single-cell and metabolomics data. In single-cell analysis, we identified different cell subpopulations and key regulatory genes, and biological enrichment analysis was performed to understand their functions and relationships. For metabolomics, mass spectrometry and chromatography techniques were employed to analyze metabolites in clinical samples. We performed differential analysis, correlation analysis, and Mendelian randomization to determine the relationships between key metabolites and genes. Nebl, Dapl1, Igfbp4, Lef1, Klrd1, Ciita, Il17f, Cd8b1, Il17a, Cd180, Il17re, Trim7, and Slc6a19 were identified to play a crucial role in lower limb ischemia. Important metabolites included L-threonine and L-tryptophan. The metabolism of L-threonine and L-tryptophan is linked to lower limb ischemia and thrombosis. B0AT1, encoded by SLC6A19, is closely related to these metabolites and appears to play a key role in lower limb ischemia development. Our analysis revealed the roles of key genes and metabolites in lower limb ischemia. These findings enhance our understanding of the pathogenesis of lower limb ischemia and provide new insights into its prevention and treatment.
Collapse
Affiliation(s)
- Liheng Li
- Department of Interventional Radiology, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou 510317, China
- The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou 510317, China
| | - Chengjiang Xiao
- Department of Interventional Radiology, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou 510317, China
| | - Hao Liu
- Department of Interventional Radiology, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou 510317, China
| | - Siliang Chen
- Department of Interventional Radiology, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou 510317, China
| | - Yinhong Tang
- Department of Interventional Radiology, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou 510317, China
| | - Hao Zhou
- Xianning Medical College, Hubei University of Science & Technology, Xianning 437000, China
| | - Guihua Jiang
- Department of Radiography, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou 510317, China
| | - Junzhang Tian
- The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou 510317, China
- Department of Radiography, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou 510317, China
| |
Collapse
|
47
|
Şeker Karatoprak G, Dumlupınar B, Celep E, Kurt Celep I, Küpeli Akkol E, Sobarzo-Sánchez E. A comprehensive review on the potential of coumarin and related derivatives as multi-target therapeutic agents in the management of gynecological cancers. Front Pharmacol 2024; 15:1423480. [PMID: 39364049 PMCID: PMC11447453 DOI: 10.3389/fphar.2024.1423480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 08/16/2024] [Indexed: 10/05/2024] Open
Abstract
Current treatments for gynecological cancers include surgery, radiotherapy, and chemotherapy. However, these treatments often have significant side effects. Phytochemicals, natural compounds derived from plants, offer promising anticancer properties. Coumarins, a class of benzopyrone compounds found in various plants like tonka beans, exhibit notable antitumor effects. These compounds induce cell apoptosis, target PI3K/Akt/mTOR signaling pathways, inhibit carbonic anhydrase, and disrupt microtubules. Additionally, they inhibit tumor multidrug resistance and angiogenesis and regulate reactive oxygen species. Specific coumarin derivatives, such as auraptene, praeruptorin, osthole, and scopoletin, show anti-invasive, anti-migratory, and antiproliferative activities by arresting the cell cycle and inducing apoptosis. They also inhibit metalloproteinases-2 and -9, reducing tumor cell migration, invasion, and metastasis. These compounds can sensitize tumor cells to radiotherapy and chemotherapy. Synthetic coumarin derivatives also demonstrate potent antitumor and anticancer activities with minimal side effects. Given their diverse mechanisms of action and minimal side effects, coumarin-class phytochemicals hold significant potential as therapeutic agents in gynecological cancers, potentially improving treatment outcomes and reducing side effects. This review will aid in the synthesis and development of novel coumarin-based drugs for these cancers.
Collapse
Affiliation(s)
| | - Berrak Dumlupınar
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Istanbul Okan University, İstanbul, Türkiye
| | - Engin Celep
- Department of Pharmacognosy, Faculty of Pharmacy, Acıbadem Mehmet Ali Aydinlar University, Atasehir, Istanbul, Türkiye
| | - Inci Kurt Celep
- Department of Biotechnology, Faculty of Pharmacy, Istanbul Okan University, Istanbul, Türkiye
| | - Esra Küpeli Akkol
- Department of Pharmacognosy, Faculty of Pharmacy, Gazi University, Ankara, Türkiye
| | - Eduardo Sobarzo-Sánchez
- Instituto de Investigación y Postgrado Facultad de Ciencias de la Salud Universidad Central de Chile, Santiago, Chile
- Department of Organic Chemistry, Faculty of Pharmacy, University of Santiago de Compostela, Santiago de Compostela, Spain
| |
Collapse
|
48
|
Kutwin M, Sosnowska-Ławnicka M, Nasiłowska B, Lange A, Wierzbicki M, Jaworski S. The Delivery of Mimic miRNA-7 into Glioblastoma Cells and Tumour Tissue by Graphene Oxide Nanosystems. Nanotechnol Sci Appl 2024; 17:167-188. [PMID: 39280996 PMCID: PMC11402368 DOI: 10.2147/nsa.s469193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 07/28/2024] [Indexed: 09/18/2024] Open
Abstract
Purpose The use of nanotechnology in medicine has gained attention in developing drug delivery systems. GO has the potential to deliver microRNA (miRNA) mimics or antisense structures. MiRNAs regulate gene expression and their dysregulation is implicated in diseases, including cancer. This study aims to observe changes in morphology, viability, mRNA expression of mTOR/PI3K/Akt and PTEN genes in U87, U118, U251, A172 and T98 glioblastoma cells and xenograft models after GO self-assembly with mimic miRNA-7. Methods Colloidal suspension of graphene oxide (GO) was used for obtaining the GO-mimic miRNA-7 nanosystems by self-assembly method. The ultrastructure, size distribution and ATR-FTIR and UV-Vis spectrum were analyzed. The Zeta potential was measured to verify the stability of obtained nanosystem. The entrapment efficiency, loading capacity and released kinetics of mimic miRNA-7 form GO-mimic miRNA-7 nanosystems were analyzed. The transfection efficiency into the glioblastoma cell lines U87, U118, U251, A172 and T98 of mimic miRNA-7 delivered by GO nanosystems was measure by confocal microscopy and flow cytometry. The changes at mRNA expression level of mTOR, PI3K, AKT1 and PTEN genes was measured by qPCR analysis. The xenograft model of U87 and A172 tumour tissue was performed to analyze the effect at tumor size and volume after GO- mimic miRNA-7 nanosystem administration. Results The ultrastructure of GO-mimic miRNA-7 nanosystems showed high affinity of mimic miRNA into the GO. The results of transfection efficiency, cell morphology and viability showed that GO -miRNA-7 effectively deliver mimics miRNA-7 into U87, U118, U251, A172 and T98 glioblastoma cells. This approach can reverse miRNA-7 expression's downstream effects and target the mTOR PI3K/Akt pathway observed at gene expression level, reducing xenograft tumour size and volume. Conclusion The findings of the study could have significant implications for the development of advanced and precise GO based nanosystems specifically designed for miRNA therapy in cancer treatment.
Collapse
Affiliation(s)
- Marta Kutwin
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences, Warsaw, Poland
| | - Malwina Sosnowska-Ławnicka
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences, Warsaw, Poland
| | - Barbara Nasiłowska
- Institute of Optoelectronics, Military University of Technology, Warsaw, Poland
| | - Agata Lange
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences, Warsaw, Poland
| | - Mateusz Wierzbicki
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences, Warsaw, Poland
| | - Sławomir Jaworski
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences, Warsaw, Poland
| |
Collapse
|
49
|
Zhu X, Si Y, Gai C, Li Z. Investigating the molecular mechanisms of Fuzheng Yiliu Shenji prescription in SH-SY5Y neuroblastoma cells. Front Oncol 2024; 14:1447666. [PMID: 39319058 PMCID: PMC11420165 DOI: 10.3389/fonc.2024.1447666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 08/15/2024] [Indexed: 09/26/2024] Open
Abstract
Background Neuroblastoma is the most common extracranial solid tumor in childhood. Fuzheng Yiliu Shenji Prescription (FYSP) has shown potential in treating malignant pediatric tumors in clinical settings. This study aims to explore the molecular mechanisms behind its effects, specifically in the context of neuroblastoma cell lines. Objective To elucidate the active compounds in FYSP and their mechanisms of action in inhibiting neuroblastoma cell viability, inducing apoptosis, and affecting the cell cycle in SH-SY5Y cells through network pharmacology and empirical validation. Materials and methods We identified the major compounds in FYSP and their predicted targets, constructing a protein-protein interaction (PPI) network and performing GO and KEGG pathway analyses. The effects of FYSP were empirically validated through assays on cell viability, cell cycle, apoptosis, and protein expression in SH-SY5Y cells. Results The study identified 172 active chemical components in FYSP, with 188 common targets related to neuroblastoma. Network analysis highlighted the PI3K-Akt pathway as a significant target. Experimental validation in SH-SY5Y cells confirmed that FYSP could inhibit cell viability, induce G2/M cell cycle arrest, and promote apoptosis through modulation of the PI3K-Akt pathway, specifically upregulating caspase-3 and downregulating Bcl-2/Bax expression. Conclusion The study elucidates the molecular basis of FYSP's effects on neuroblastoma cells in vitro, demonstrating its ability to modulate key pathways involved in cell cycle and apoptosis. While these findings suggest a potential therapeutic role for FYSP, they are limited to in vitro observations, and further research, including in vivo studies, is necessary to explore its clinical applicability.
Collapse
Affiliation(s)
- Xueying Zhu
- Department of Anatomy, School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yinchu Si
- Department of Anatomy, School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Cong Gai
- Department of Anatomy, School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Zhong Li
- Department of Oncology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
50
|
Lica JJ, Pradhan B, Safi K, Jakóbkiewicz-Banecka J, Hellmann A. Promising Therapeutic Strategies for Hematologic Malignancies: Innovations and Potential. Molecules 2024; 29:4280. [PMID: 39275127 PMCID: PMC11397263 DOI: 10.3390/molecules29174280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/04/2024] [Accepted: 09/06/2024] [Indexed: 09/16/2024] Open
Abstract
In this review we explore innovative approaches in the treatment of hematologic cancers by combining various therapeutic modalities. We discuss the synergistic potential of combining inhibitors targeting different cellular pathways with immunotherapies, molecular therapies, and hormonal therapies. Examples include combining PI3K inhibitors with proteasome inhibitors, NF-κB inhibitors with immunotherapy checkpoint inhibitors, and neddylation inhibitors with therapies targeting the tumor microenvironment. Additionally, we discuss the potential use of small molecules and peptide inhibitors in hematologic cancer treatment. These multidimensional therapeutic combinations present promising strategies for enhancing treatment efficacy and overcoming resistance mechanisms. However, further clinical research is required to validate their effectiveness and safety profiles in hematologic cancer patients.
Collapse
Affiliation(s)
- Jan Jakub Lica
- Faculty of Health Science, Powiśle University, 80-214 Gdańsk, Poland
| | - Bhaskar Pradhan
- Department of Biochemistry, Faculty of Pharmacy, Medical University of Warsaw, 02-097 Warsaw, Poland
| | - Kawthar Safi
- Department of Biochemistry and Clinical Chemistry, Faculty of Biology, Medical University of Warsaw, 02-097 Warsaw, Poland
| | | | - Andrzej Hellmann
- Department of Hematology and Transplantology, Faculty of Medicine, Medical University of Gdańsk, 80-214 Gdańsk, Poland
| |
Collapse
|