1
|
Wu ST, Hou XL, Wang F, Sun W, Chen JJ, Cao YS, Cheng H. IGF2BP2-induced circRNF20 facilitates breast cancer cell proliferation via the HuR/CDCA4 axis. Kaohsiung J Med Sci 2025:e12949. [PMID: 39969065 DOI: 10.1002/kjm2.12949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/05/2024] [Revised: 01/10/2025] [Accepted: 01/20/2025] [Indexed: 02/20/2025] Open
Abstract
This study aimed to explore the mechanism of insulin-like growth factor 2 mRNA-binding protein 2 (IGF2BP2) affecting the proliferation of breast cancer (BC) cells. The expression of IGF2BP2, circRNA ring finger protein 20 (circRNF20), and cell division cycle-associated protein 4 (CDCA4) in human BC cells and normal breast epithelial cells was detected via RT-qPCR or Western blotting. After IGF2BP2 expression was altered, CCK-8 assay, colony formation assay, and EdU staining were performed to evaluate changes in the proliferation of BC cells. RNA immunoprecipitation (RIP) assay was used to analyze the binding of circRNF20 to IGF2BP2 or HuR, as well as the binding of HuR to CDCA4. RNA pull-down confirmed the interaction between circRNF20 and HuR. The stability of circRNF20 was tested after treatment with actinomycin D. A nude mouse xenograft tumor model was established to validate the effect of IGF2BP2 in vivo. IGF2BP2, circRNF20, and CDCA4 were highly expressed in BC cells. Silencing IGF2BP2 decreased the proliferation ability of BC cells. Mechanistically, the binding of IGF2BP2 to circRNF20 prevented circRNF20 degradation, thereby promoting the binding of circRNF20 to HuR and increasing the expression of CDCA4. The overexpression of circRNF20 or CDCA4 abolished the inhibitory effect of IGF2BP2 silencing on BC cell proliferation. In conclusion, the binding of IGF2BP2 to circRNF20 prevents its degradation, thus facilitating BC cell proliferation via the HuR/CDCA4 axis.
Collapse
Affiliation(s)
- Shu-Tao Wu
- Yangzhou University Medical College, Yangzhou, China
| | - Xiao-Li Hou
- Department of Medical Science, Yangzhou Polytechnic College, Yangzhou, China
| | - Fei Wang
- Yangzhou University Medical College, Yangzhou, China
- Department of Clinical Laboratory, Affiliated Hospital of Yangzhou University, Yangzhou, China
| | - Wei Sun
- Yangzhou University Medical College, Jiangsu Key Laboratory of Experimental & Translational Non-coding RNA Research, Institute of Translational Medicine, Yangzhou University, Yangzhou, China
| | - Jia-Jie Chen
- Yangzhou University Medical College, Jiangsu Key Laboratory of Experimental & Translational Non-coding RNA Research, Institute of Translational Medicine, Yangzhou University, Yangzhou, China
| | - Ya-Sen Cao
- Yangzhou University Medical College, Jiangsu Key Laboratory of Experimental & Translational Non-coding RNA Research, Institute of Translational Medicine, Yangzhou University, Yangzhou, China
| | - Hong Cheng
- Yangzhou University Medical College, Jiangsu Key Laboratory of Experimental & Translational Non-coding RNA Research, Institute of Translational Medicine, Yangzhou University, Yangzhou, China
| |
Collapse
|
2
|
Zhao Z, Feng X, Chen B, Wu Y, Wang X, Tang Z, Huang M, Guo X. CDCA genes as prognostic and therapeutic targets in Colon adenocarcinoma. Hereditas 2025; 162:19. [PMID: 39924497 PMCID: PMC11809055 DOI: 10.1186/s41065-025-00368-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/15/2024] [Accepted: 01/13/2025] [Indexed: 02/11/2025] Open
Abstract
OBJECTIVES The study investigates the role of Cell Division Cycle Associated (CDCA) genes in colorectal cancer (COAD) by analyzing their differential expression, epigenetic alterations, prognostic significance, and functional associations. METHODOLOGY This study employed a detailed in silico and in vitro experiments-based methodology. RESULTS RT-qPCR assays reveal significantly elevated mRNA levels of CDCA2, CDCA3, CDCA4, CDCA5, CDCA7, and CDCA8 genes in COAD cell lines compared to controls. Bisulfite sequencing indicates reduced promoter methylation of CDCA gene promoters in COAD cell lines, suggesting an epigenetic regulatory mechanism. Analysis of large TCGA datasets confirms increased CDCA gene expression in COAD tissues. Survival analysis using cSurvival database demonstrates negative correlations between CDCA gene expression and patient overall survival. Additionally, Lasso regression-based models of CDCA genes predict survival outcomes in COAD patients. Investigating immune modulation, CDCA gene expression inversely correlates with immune cell infiltration and immune modulators. miRNA-mRNA network analysis identifies regulatory miRNAs targeting CDCA genes, validated by RT-qPCR showing up-regulation of has-mir-10a-5p and has-mir-20a-5p in COAD cell lines and tissues. Drug sensitivity analysis suggests resistance to specific drugs in COAD patients with elevated CDCA gene expression. Furthermore, CDCA gene expression correlates with crucial functional states in COAD, including "angiogenesis, apoptosis, differentiation, hypoxia, inflammation, and metastasis." Additional in vitro experiments revealed that CDCA2 and CDCA3 knockdown in SW480 and SW629 cells significantly reduced cell proliferation and colony formation while enhancing cell migration. CONCLUSION Overall, the study elucidates the multifaceted role of CDCA genes in COAD progression, providing insights into potential diagnostic, prognostic, and therapeutic implications.
Collapse
Affiliation(s)
- Zongquan Zhao
- Department of General Practice, Pingjiang New Town Community Health Service Center Sujin Street Gusu District, Suzho, 215000, Jiangsu, China
| | - Xinwei Feng
- Department of Digestive Internal Medicine, Shanghai Changzheng Hospital, Shanghai, 200003, China
| | - Bo Chen
- Department of Oncology, Chengdu First People's Hospital, Chengdu Sichuan, 610041, China
| | - Yihong Wu
- Department of General Practice, Runda Community Health Service Center, Wumenqiao Street, Gusu District, Suzhou, 215000, Jiangsu, China
| | - Xiaohong Wang
- Department of General Practice, Pingjiang New Town Community Health Service Center Sujin Street Gusu District, Suzho, 215000, Jiangsu, China
| | - Zhenyuan Tang
- Department of General Practice, Community Health Management Center of Suzhou Municipal Hospital, Suzhou, 215000, Jiangsu, China
| | - Min Huang
- Department of General Practice, Suzhou Municipal Hospital, Suzhou, 215000, Jiangsu, China
| | - Xiaohua Guo
- Department of Digestive Surgery, Xi'an Jiaotong University School of Medicine Affiliated Honghui Hospital, Xi'an, Shaanxi, 700054, China.
| |
Collapse
|
3
|
Wang XJ, Huo YX, Yang PJ, Gao J, Hu WD. Significance of Ribonucleoside-diphosphate Reductase Subunit M2 in Lung Adenocarcinoma. Curr Gene Ther 2025; 25:136-156. [PMID: 38920074 DOI: 10.2174/0115665232286359240611051307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/09/2023] [Revised: 04/22/2024] [Accepted: 04/23/2024] [Indexed: 06/27/2024]
Abstract
INTRODUCTION The Ribonucleoside-diphosphate Reductase subunit M2 (RRM2) is known to be overexpressed in various cancers, though its specific functional implications remain unclear. This aims to elucidate the role of RRM2 in the progression of Lung Adenocarcinoma (LUAD) by exploring its involvement and potential impact. METHODS RRM2 data were sourced from multiple databases to assess its diagnostic and prognostic significance in LUAD. We evaluated the association between RRM2 expression and immune cell infiltration, analyzed its function, and explored the effects of modulating RRM2 expression on LUAD cell characteristics through laboratory experiments. RESULTS RRM2 was significantly upregulated in LUAD tissues and cells compared to normal counterparts (p < 0.05), with rare genetic alterations noted (approximately 2%). This overexpression clearly distinguished LUAD from normal tissue (area under the curve (AUC): 0.963, 95% confidence intervals (CI): 0.946-0.981). Elevated RRM2 expression was significantly associated with adverse clinicopathological characteristics and poor prognosis in LUAD patients. Furthermore, a positive association was observed between RRM2 expression and immune cell infiltration. Pathway analysis revealed a critical connection between RRM2 and the cell cycle signaling pathway within LUAD. Targeting RRM2 inhibition effectively suppressed LUAD cell proliferation, migration, and invasion while promoting apoptosis. This intervention also modified the expression of several crucial proteins, including the downregulation of CDC25A, CDC25C, RAD1, Bcl-2, and PPM1D and the upregulation of TP53 and Bax (p < 0.05). CONCLUSION Our findings highlight the potential utility of RRM2 expression as a biomarker for diagnosing and predicting prognosis in LUAD, shedding new light on the role of RRM2 in this malignancy.
Collapse
Affiliation(s)
- Xiao-Jun Wang
- Department of Respiratory Medicine, Gansu Province People Hospital, Lanzhou, Gansu, PR China
| | - Yun-Xia Huo
- Department of Neurological Surgery, The Second People Hospital of Lanzhou City, Lanzhou, Gansu, PR China
| | - Peng-Jun Yang
- Department of Internal Medicine, The Xigu Hospital of Lanzhou City, Lanzhou, Gansu, PR China
| | - Jing Gao
- Department of Respiratory Medicine, Gansu Province People Hospital, Lanzhou, Gansu, PR China
- Department of Medicine, Respiratory Medicine Unit , Karolinska Institute, Stockholm, Sweden
- Department of Pulmonary Medicine, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Wei-Dong Hu
- Department of Respiratory Medicine, Gansu Province People Hospital, Lanzhou, Gansu, PR China
| |
Collapse
|
4
|
Shang B, Li L, Wang G, Liu G, Yang X, Gao J, Yin W. Hsa_circ_0087784 enhances non-small cell lung cancer progression via the miR-576-5p/CDCA4 axis. Am J Med Sci 2024:S0002-9629(24)01446-0. [PMID: 39278405 DOI: 10.1016/j.amjms.2024.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/15/2024] [Revised: 09/04/2024] [Accepted: 09/09/2024] [Indexed: 09/18/2024]
Abstract
BACKGROUND Circular RNAs (circRNAs) belong to a family of covalently closed single-stranded RNAs that have been implicated in cancer progression. Previous studies have reported that hsa_circ_0087784 was abnormally expressed in breast cancer. However, the role of hsa_circ_0087784 in non-small cell lung cancer (NSCLC) is unknown. METHODS Here, we used RT-qPCR and FISH to examine hsa_circ_0087784 expression in NSCLC cells and tissue samples. The dual-luciferase reporter assay was used to identify downstream targets of hsa_circ_0087784. Transwell migration, 5-ethynyl-2´-deoxyuridine, and CCK-8 assays were used to examine migration and proliferation. Tumorigenesis and metastasis assays were used to determine the role of hsa_circ_0087784 in NSCLC progression in a mouse tumor xenograft model in vivo. RESULTS We found that hsa_circ_0087784 was expressed at significantly high levels in NSCLC tissue samples and cell lines. Downregulation of hsa_circ_0087784 suppressed NSCLC cellular proliferation, as well as migration. Our dual-luciferase reporter assay revealed that miR-576-5p and CDCA4 were downstream targets of hsa_circ_0087784. CDCA4 overexpression or miR-576-5p suppression reversed the effects of hsa_circ_0087784 silencing on NSCLC cell migration, and EMT-related protein expression levels. CONCLUSION Our findings suggested that downregulation of hsa_circ_0087784 inhibited NSCLC metastasis and progression through the regulation of CDCA4 expression and miR-576-5psponging.
Collapse
Affiliation(s)
- Bin Shang
- Department of Cardio-Thoracic Surgery, The Second Affiliated Hospital of Bengbu Medical University, #633 Longhua Road, Huaishang District, Bengbu 233000 Anhui, China.
| | - Long Li
- Department of Cardio-Thoracic Surgery, The Second Affiliated Hospital of Bengbu Medical University, #633 Longhua Road, Huaishang District, Bengbu 233000 Anhui, China
| | - Gang Wang
- Department of Cardio-Thoracic Surgery, The Second Affiliated Hospital of Bengbu Medical University, #633 Longhua Road, Huaishang District, Bengbu 233000 Anhui, China
| | - Gang Liu
- Department of Cardio-Thoracic Surgery, The Second Affiliated Hospital of Bengbu Medical University, #633 Longhua Road, Huaishang District, Bengbu 233000 Anhui, China
| | - Xiaosong Yang
- Department of Cardio-Thoracic Surgery, The Second Affiliated Hospital of Bengbu Medical University, #633 Longhua Road, Huaishang District, Bengbu 233000 Anhui, China
| | - Jian Gao
- Department of Cardio-Thoracic Surgery, The Second Affiliated Hospital of Bengbu Medical University, #633 Longhua Road, Huaishang District, Bengbu 233000 Anhui, China
| | - Weiwei Yin
- Department of Cardio-Thoracic Surgery, The Second Affiliated Hospital of Bengbu Medical University, #633 Longhua Road, Huaishang District, Bengbu 233000 Anhui, China
| |
Collapse
|
5
|
Liu X, Zhu X, Zhao Y, Shan Y, Gao Z, Yuan K. CDCA gene family promotes progression and prognosis in lung adenocarcinoma. Medicine (Baltimore) 2024; 103:e38581. [PMID: 38875380 PMCID: PMC11175971 DOI: 10.1097/md.0000000000038581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Indexed: 06/16/2024] Open
Abstract
BACKGROUND The cell division cycle-associated (CDCA) family participates in the cell cycle, and the dysregulation of its expression is associated with the development of several types of cancers. However, the roles of CDCAs in lung adenocarcinomas (LUAD) have not been investigated in systematic research. METHODS Using data retrieved from The Cancer Genome Atlas (TCGA), the expression of CDCAs in LUAD and normal tissues was compared, and survival analysis was performed using the data. Also, the correlation between clinical characteristics and the expression of CDCAs was assessed. Using data from cBioPortal, we investigated genetic alterations in CDCAs and their prognostic implications. Immunohistochemical analyses were performed to validate our findings from TCGA data. Following this, we created a risk score model to develop a nomogram. We also performed gene set enrichment analyses (GSEA), gene ontology, and KEGG pathway analysis. We used Timer to analyze the correlation between immune cell infiltration, tumor purity, and expression data. RESULTS Our results indicated that all CDCAs were expressed at high levels in LUAD; this could be associated with poor overall survival, as indicated in TCGA data. Univariate and multivariate Cox analyses revealed that CDCA4/5 could serve as independent risk factors. The results of immunohistochemical analyses confirmed our results. Based on the estimation of expression levels, clinical characteristics, alterations, and immune infiltration, the low-risk group of CDCA4/5 had a better prognosis than the high-risk group. Immune therapy is also a potential treatment option. CONCLUSION In conclusion, our findings indicate that CDCAs play important roles in LUAD, and CDCA4/5 can serve as diagnostic and prognostic biomarkers and therapeutic targets in LUAD.
Collapse
Affiliation(s)
- XiangSen Liu
- Department of Thoracic Surgery, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, China
| | - Xudong Zhu
- Department of Thoracic Surgery, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, China
| | - Yi Zhao
- Department of Thoracic Surgery, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, China
| | - Yuchen Shan
- Department of Thoracic Surgery, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, China
| | - ZhaoJia Gao
- Department of Thoracic Surgery, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, China
| | - Kai Yuan
- Department of Thoracic Surgery, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, China
- Heart and Lung Disease Laboratory, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, China
| |
Collapse
|
6
|
Liang C, Long K, Zheng W, Zhong R, Li Z, Zhu S, Gu S, Zhu C, Yang Y. Exploring the role of CDCA4 in liver hepatocellular carcinoma using bioinformatics analysis and experiments. Medicine (Baltimore) 2024; 103:e38028. [PMID: 38701314 PMCID: PMC11062718 DOI: 10.1097/md.0000000000038028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 01/24/2024] [Accepted: 04/05/2024] [Indexed: 05/05/2024] Open
Abstract
Liver hepatocellular carcinoma (LIHC) encompasses diverse therapeutic approaches, among which targeted therapy has gained significant prominence in recent years. The identification of numerous targets and the increasing clinical application of targeted drugs have greatly improved LIHC treatment. However, the precise role of CDCA4 (Cell Division Cycle Associated 4), as well as its underlying mechanisms and prognostic implications in LIHC, remains unclear. CDCA4 expression levels in LIHC were analyzed using multiple databases including the cancer genome atlas (TCGA), gene expression profiling interactive analysis (GEPIA), and ULCAN, as well as the datasets E_TABM_36, GSE144269, GSE14520, and GSE54236. The prognostic value of CDCA4 was then evaluated. Subsequently, the association between CDCA4 and immune cells was investigated. Enrichment analysis (GSEA) was utilized to investigate the functional roles and pathways linked to CDCA4. Additionally, the methylation patterns and drug sensitivity of CDCA4 were examined. A predictive model incorporating immune genes related to CDCA4 was developed. The TISCH dataset was used to investigate the single-cell expression patterns of CDCA4. Finally, validation of CDCA4 expression levels was conducted through RT-PCR, Western blotting, and immunohistochemistry. CDCA4 exhibited significant overexpression in LIHC and demonstrated significant correlations with clinical features. High expression of CDCA4 is associated with a poorer prognosis. Analysis of immune infiltration and enrichment revealed its association with the immune microenvironment. Furthermore, its expression is correlated with methylation and mutation patterns. CDCA4 is associated with 19 drugs. Prognostic models utilizing CDCA4 demonstrate favorable effectiveness. T cell subtypes were found to be associated with CDCA4 through single-cell analysis. The conclusive experiment provided evidence of significant upregulation of CDCA4 in LIHC. The high expression of CDCA4 in LIHC is associated with prognostic significance and is highly expressed in T cell subtypes, providing a new therapeutic target and potential therapeutic strategy for LIHC.
Collapse
Affiliation(s)
- Changfu Liang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Hainan Medical College, Haikou, China
| | - Kaijun Long
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Hainan Medical College, Haikou, China
| | - Wenhao Zheng
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Hainan Medical College, Haikou, China
| | - Riqiang Zhong
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Hainan Medical College, Haikou, China
| | - Zhangrui Li
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Hainan Medical College, Haikou, China
| | - Shengwei Zhu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Hainan Medical College, Haikou, China
| | - Shijing Gu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Hainan Medical College, Haikou, China
| | - Chuangshi Zhu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Hainan Medical College, Haikou, China
| | - Yan Yang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Hainan Medical College, Haikou, China
| |
Collapse
|
7
|
Tan J, Chen F, Wang J, Li J, Ouyang B, Li X, Li Y, Zhang W, Jiang Y. ALKBH5 promotes the development of lung adenocarcinoma by regulating the polarization of M2 macrophages through CDCA4. Gene 2024; 895:147975. [PMID: 37949419 DOI: 10.1016/j.gene.2023.147975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/21/2023] [Revised: 11/01/2023] [Accepted: 11/06/2023] [Indexed: 11/12/2023]
Abstract
OBJECTIVE Lung adenocarcinoma (LUAD) is the most common subtype of lung cancer, with high morbidity and mortality. N6-methyladenosine (m6A) is an important regulator of LUAD progression. Here, we investigated the potential biological functions of ALKBH5 (a m6A demethylated enzyme) and cell division cycle associated protein 4 (CDCA4) in the progression of LUAD. METHODS The expressions of CDCA4, METTL3, ALKBH5, FTO, YTHDC2 and YTHDC1 mRNA and proteins in LUAD and adjacent tissues, as well as NCI-H1299 and NCI-H157 cells were detected by RT-qPCR and western blot. Meanwhile, the role of ALKBH5 and CDCA4 in macrophage polarization was explored through tumor formation in Lewis lung carcinoma (LLC) mice and the co-culture system of NCI-H1299 and NCI-H157/THP-1 cells. Cell characterization was further analyzed. The expression of Ki-67 in tumor tissue was tested by immunohistochemistry. The scale of M1 and M2 macrophages was determined by flow cytometry. RESULTS CDCA4 was significantly overexpressed in NCI-H1299 and NCI-H157 cell lines compared with BEAS-2B cells. The fold enrichment of CDCA4 m6A level in the overexpression (oe)-METTL3 or short hairpin (sh)-ALKBH5 cells was enhanced. Overexpression of CDCA4 promoted the cell viability, proliferation and migration, and inhibited apoptosis, which was reversed by sh-ALKBH5 intervention. Overexpression of YTHDC2 (not YTHDC1) inhibited the effect of CDCA4 on sh-ALKBH5 cells. sh-CDCA4 inhibited tumor growth and weight of LLC cells in mice, and promoted M1/M2 ratio in LLC mice and NCI-H1299/THP-1 and NCI-H157/THP-1 co-culture systems. Oe-CDCA4 promoted the volume and weight of tumor and inhibited the M1/M2 ratio of tumor tissue in LLC mice, but was reversed by sh-ALKBH5 intervention. CONCLUSION m6A demethylase ALKBH5 promotes the development of LUAD through CDCA4 regulation of malignant characterization and M1/M2 macrophage polarization.
Collapse
Affiliation(s)
- Jianlong Tan
- Department of Respiratory Medicine, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, China
| | - Fengyu Chen
- Department of Respiratory Medicine, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, China
| | - Jufen Wang
- Department of Respiratory Medicine,The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China
| | - Jianmin Li
- Department of Respiratory Medicine, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, China
| | - Bin Ouyang
- Department of Respiratory Medicine, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, China
| | - Xiuying Li
- Department of Respiratory Medicine, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, China
| | - Yun Li
- Department of Respiratory Medicine, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, China
| | - Weidong Zhang
- Department of Respiratory Medicine, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, China.
| | - Yongliang Jiang
- Department of Respiratory Medicine, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, China.
| |
Collapse
|
8
|
Shi L, Zou H, Yi J. Construction of shared gene signature between rheumatoid arthritis and lung adenocarcinoma helps to predict the prognosis and tumor microenvironment of the LUAD patients. Front Mol Biosci 2024; 10:1314753. [PMID: 38268722 PMCID: PMC10806137 DOI: 10.3389/fmolb.2023.1314753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/10/2023] [Accepted: 12/26/2023] [Indexed: 01/26/2024] Open
Abstract
Introduction: Rheumatoid arthritis (RA) is a common chronic autoimmune disease with high incidence rate and high disability rate. One of the top complications is cancer, especially lung adenocarcinoma (LUAD). However, the molecular mechanisms linking RA and LUAD are still not clear. Therefore, in this study, we tried to identify the shared genetic signatures and local immune microenvironment between RA and LUAD and construct a clinical model for survival prediction. Methods: We obtained gene expression profiles and clinical information of patients with RA and LUAD from GEO and TCGA datasets. We performed differential analysis and Weighted Gene Co-expression Network Analysis (WGCNA) to discover the shared genes between RA and LUAD. Then, COX regression and LASSO analysis were employed to figure out genes significantly associated with survival. qRT-PCR and Western blot were utilized to validate the expression level of candidate genes. For clinical application, we constructed a nomogram, and also explored the value of RALUADS in characterizing immune infiltration features by CIBERSORT and xCell. Finally, responses to different drug therapy were predicted according to different RALUADS. Results: Our analysis identified two gene sets from differentially expressed genes and WGCNA gene modules of RA and LUAD. Filtered by survival analysis, three most significant shared genes were selected, CCN6, CDCA4 and ERLIN1, which were all upregulated in tumors and associated with poor prognosis. The three genes constituted RA and LUAD score (RALUADS). Our results demonstrated that RALUADS was higher in tumor patients and predicted poor prognosis in LUAD patients. Clinical nomogram combining RALUADS and other clinicopathological parameters had superior performance in survival prediction (AUC = 0.722). We further explored tumor immune microenvironment (TME) affected by RALUADS and observed RALUADS was closely related to the sensitivity of multiple immune blockades, chemotherapy and targeted drugs. Conclusion: Our findings suggest that there are shared physiopathologic processes and molecular profiles between RA and LUAD. RALUADS represents an excellent prognosis predictor and immune-related biomarker, which can be applied to select potential effective drugs and for LUAD patients with RA.
Collapse
Affiliation(s)
- Liping Shi
- Department of Pharmacology, Gannan Healthcare Vocational College, Ganzhou, China
| | - Houwen Zou
- Department of Pharmacology, Dermatology Hospital of Ganzhou, Ganzhou, China
| | - Jian Yi
- Department of General Surgery, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| |
Collapse
|
9
|
Lu Z, Liu B, Kong D, Zhou X, Pei D, Liu D. NSUN6 Regulates NM23-H1 Expression in an m5C Manner to Affect Epithelial-Mesenchymal Transition in Lung Cancer. Med Princ Pract 2023; 33:56-65. [PMID: 38029727 PMCID: PMC10896614 DOI: 10.1159/000535479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 06/20/2023] [Accepted: 11/23/2023] [Indexed: 12/01/2023] Open
Abstract
PURPOSE The expression and regulatory mechanism of NSUN6 in lung cancer are still unclear. Our study explored whether NSUN6 mediates progression of lung cancer by affecting NM23-H1 expression in an m5C-dependent manner. METHODS qRT-PCR, CCK-8, colony formation, transwell, and Western blot analysis were employed to probe the impact of NSUN6 on lung cancer cell proliferation, migration, and epithelial-mesenchymal transition (EMT). RMVar database was utilized to forecast the downstream genes of NSUN6. The mode of interaction between NSUN6 and NM23-H1 was determined by dot blot, luciferase assay, m5C RIP, and cell function assays. The effect of NSUN6 expression on tumor growth was verified in vivo. RESULTS Expression of NSUN6 was reduced in lung cancer cells, and over-expression of NSUN6 restricted the proliferation of lung cancer cells, migration, and EMT. NSUN6 regulated NM23-H1 expression by modifying the 3'-UTR of NM23-H1 mRNA through m5C and inhibited lung cancer cell proliferation, migration, and EMT. In vivo experiments also showed that over-expression of NSUN6 inhibited the occurrence of lung cancer. CONCLUSION NSUN6 regulates NM23-H1 expression in an m5C-dependent manner to affect EMT in lung cancer. Thus, NSUN6 may be considered as a potential therapeutic target for lung cancer.
Collapse
Affiliation(s)
- Zhansheng Lu
- Department of Thoracic Surgery, Guizhou Provincial People's Hospital, Guiyang City, China
| | - Bo Liu
- Department of Thoracic Surgery, Guizhou Provincial People's Hospital, Guiyang City, China
| | - Demiao Kong
- Department of Thoracic Surgery, Guizhou Provincial People's Hospital, Guiyang City, China
| | - Xiaojiang Zhou
- Department of Thoracic Surgery, Guizhou Provincial People's Hospital, Guiyang City, China
| | - Dengke Pei
- Department of Thoracic Surgery, Guizhou Provincial People's Hospital, Guiyang City, China
| | - Di Liu
- Department of Thoracic Surgery, Guizhou Provincial People's Hospital, Guiyang City, China
| |
Collapse
|