1
|
Chen L, He T, Wang R, Liu H, Wang X, Li H, Jing M, Zhou X, Wei S, Zou W, Zhao Y. Integrated Approaches Revealed the Therapeutic Mechanisms of Zuojin Pill Against Gastric Mucosa Injury in a Rat Model with Chronic Atrophic Gastritis. Drug Des Devel Ther 2024; 18:1651-1672. [PMID: 38774485 PMCID: PMC11108080 DOI: 10.2147/dddt.s454758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 05/03/2024] [Indexed: 05/24/2024] Open
Abstract
Background The Zuojin Pill (ZJP) is widely used for treating chronic atrophic gastritis (CAG) in clinical practice, effectively ameliorating symptoms such as vomiting, pain, and abdominal distension in patients. However, the underlying mechanisms of ZJP in treating CAG has not been fully elucidated. Purpose This study aimed to clarify the characteristic function of ZJP in the treatment of CAG and its potential mechanism. Methods The CAG model was established by alternant administrations of ammonia solution and sodium deoxycholate, as well as an irregular diet. Therapeutic effects of ZJP on body weight, serum biochemical indexes and general condition were analyzed. HE staining and AB-PAS staining were analyzed to characterize the mucosal injury and the thickness of gastric mucosa. Furthermore, network pharmacology and molecular docking were used to predict the regulatory mechanism and main active components of ZJP in CAG treatment. RT-PCR, immunohistochemistry, immunofluorescence and Western blotting were used to measure the expression levels of apoptosis-related proteins, gastric mucosal barrier-associated proteins and PI3K/Akt signaling pathway proteins. Results The results demonstrated that ZJP significantly improved the general state of CAG rats, alleviated weight loss and gastric histological damage and reduced the serum biochemical indicators. Network pharmacology and molecular docking found that ZJP in treating CAG by inhibiting inflammation, suppressing apoptosis, and protecting the gastric mucosal barrier via the PI3K/Akt signaling pathway. Further experiments confirmed that ZJP obviously modulated the expression of key proteins involved in gastric mucosal cell apoptosis, such as Bax, Bad, Apaf-1, cleaved-caspase-3, cleaved-caspase-9, Cytochrome C, Bcl-2, and Bcl-xl. Moreover, ZJP significantly reversed the protein expression of Occludin, ZO-1, Claudin-4 and E-cadherin. Conclusion Our study revealed that ZJP treats CAG by inhibiting the PI3K/Akt signaling pathway. This research provided a scientific basis for the rational use of ZJP in clinical practice.
Collapse
Affiliation(s)
- Lisheng Chen
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, People’s Republic of China
- Department of Pharmacy Department, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, People’s Republic of China
| | - Tingting He
- Division of Integrative Medicine, The Fifth Medical Center of General Hospital of PLA, Beijing, People’s Republic of China
| | - Ruilin Wang
- Division of Integrative Medicine, The Fifth Medical Center of General Hospital of PLA, Beijing, People’s Republic of China
| | - Honghong Liu
- Integrated TCM & Western Medicine Department, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, People’s Republic of China
| | - Xin Wang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, People’s Republic of China
- Department of Pharmacy Department, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, People’s Republic of China
| | - Haotian Li
- Department of Pharmacy Department, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, People’s Republic of China
| | - Manyi Jing
- Department of Pharmacy Department, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, People’s Republic of China
| | - Xuelin Zhou
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing, People’s Republic of China
| | - Shizhang Wei
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Peking University, Beijing, People’s Republic of China
| | - Wenjun Zou
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, People’s Republic of China
| | - Yanling Zhao
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, People’s Republic of China
- Department of Pharmacy Department, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, People’s Republic of China
| |
Collapse
|
2
|
Villa-Morales M, Pérez-Gómez L, Pérez-Gómez E, López-Nieva P, Fernández-Navarro P, Santos J. Identification of NRF2 Activation as a Prognostic Biomarker in T-Cell Acute Lymphoblastic Leukaemia. Int J Mol Sci 2023; 24:10350. [PMID: 37373496 DOI: 10.3390/ijms241210350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/15/2023] [Accepted: 06/16/2023] [Indexed: 06/29/2023] Open
Abstract
The standard-of-care treatment of T-cell acute lymphoblastic leukaemia (T-ALL) with chemotherapy usually achieves reasonable rates of initial complete response. However, patients who relapse or do not respond to conventional therapy show dismal outcomes, with cure rates below 10% and limited therapeutic options. To ameliorate the clinical management of these patients, it is urgent to identify biomarkers able to predict their outcomes. In this work, we investigate whether NRF2 activation constitutes a biomarker with prognostic value in T-ALL. Using transcriptomic, genomic, and clinical data, we found that T-ALL patients with high NFE2L2 levels had shorter overall survival. Our results demonstrate that the PI3K-AKT-mTOR pathway is involved in the oncogenic signalling induced by NRF2 in T-ALL. Furthermore, T-ALL patients with high NFE2L2 levels displayed genetic programs of drug resistance that may be provided by NRF2-induced biosynthesis of glutathione. Altogether, our results indicate that high levels of NFE2L2 may be a predictive biomarker of poor treatment response in T-ALL patients, which would explain the poor prognosis associated with these patients. This enhanced understanding of NRF2 biology in T-ALL may allow a more refined stratification of patients and the proposal of targeted therapies, with the ultimate goal of improving the outcome of relapsed/refractory T-ALL patients.
Collapse
Affiliation(s)
- María Villa-Morales
- Department of Biology, Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Department of Genome Dynamics and Function, Centro de Biología Molecular Severo Ochoa (CBMSO), Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), 28049 Madrid, Spain
- Area of Genetics and Genomics, IIS Fundación Jiménez Díaz, 28040 Madrid, Spain
- Institute for Molecular Biology-IUBM, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Laura Pérez-Gómez
- Department of Biology, Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Department of Genome Dynamics and Function, Centro de Biología Molecular Severo Ochoa (CBMSO), Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), 28049 Madrid, Spain
| | - Eduardo Pérez-Gómez
- Departamento de Bioquímica y Biología Molecular, Universidad Complutense de Madrid, 28040 Madrid, Spain
- Instituto de Investigación Hospital 12 de Octubre, 28041 Madrid, Spain
| | - Pilar López-Nieva
- Department of Biology, Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Department of Genome Dynamics and Function, Centro de Biología Molecular Severo Ochoa (CBMSO), Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), 28049 Madrid, Spain
- Area of Genetics and Genomics, IIS Fundación Jiménez Díaz, 28040 Madrid, Spain
- Institute for Molecular Biology-IUBM, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Pablo Fernández-Navarro
- Unit of Cancer and Environmental Epidemiology, Centro Nacional de Epidemiología, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Networking Biomedical Research Centre of Epidemiology and Public Health (CIBERESP), 28029 Madrid, Spain
| | - Javier Santos
- Department of Biology, Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Department of Genome Dynamics and Function, Centro de Biología Molecular Severo Ochoa (CBMSO), Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), 28049 Madrid, Spain
- Area of Genetics and Genomics, IIS Fundación Jiménez Díaz, 28040 Madrid, Spain
- Institute for Molecular Biology-IUBM, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| |
Collapse
|
3
|
Redox-Regulation in Cancer Stem Cells. Biomedicines 2022; 10:biomedicines10102413. [PMID: 36289675 PMCID: PMC9598867 DOI: 10.3390/biomedicines10102413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 09/19/2022] [Accepted: 09/21/2022] [Indexed: 11/18/2022] Open
Abstract
Cancer stem cells (CSCs) represent a small subset of slowly dividing cells with tumor-initiating ability. They can self-renew and differentiate into all the distinct cell populations within a tumor. CSCs are naturally resistant to chemotherapy or radiotherapy. CSCs, thus, can repopulate a tumor after therapy and are responsible for recurrence of disease. Stemness manifests itself through, among other things, the expression of stem cell markers, the ability to induce sphere formation and tumor growth in vivo, and resistance to chemotherapeutics and irradiation. Stemness is maintained by keeping levels of reactive oxygen species (ROS) low, which is achieved by enhanced activity of antioxidant pathways. Here, cellular sources of ROS, antioxidant pathways employed by CSCs, and underlying mechanisms to overcome resistance are discussed.
Collapse
|
4
|
Jorge J, Magalhães N, Alves R, Lapa B, Gonçalves AC, Sarmento-Ribeiro AB. Antitumor Effect of Brusatol in Acute Lymphoblastic Leukemia Models Is Triggered by Reactive Oxygen Species Accumulation. Biomedicines 2022; 10:biomedicines10092207. [PMID: 36140308 PMCID: PMC9496058 DOI: 10.3390/biomedicines10092207] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 08/31/2022] [Accepted: 09/02/2022] [Indexed: 11/16/2022] Open
Abstract
Acute lymphoblastic leukemia (ALL) is one of the most common hematological malignancies at pediatric ages and is characterized by different chromosomal rearrangements and genetic abnormalities involved in the differentiation and proliferation of lymphoid precursor cells. Brusatol is a quassinoid plant extract extensively studied due to its antineoplastic effect through global protein synthesis and nuclear factor erythroid 2-related factor-2 (NRF2) signaling inhibition. NRF2 is the main regulator of cellular antioxidant response and reactive oxygen species (ROS), which plays an important role in oxidative stress regulation. This study aimed to evaluate the effect of brusatol in in vitro models of ALL. KOPN-8 (B-ALL), CEM (T-ALL), and MOLT-4 (T-ALL) cell lines were incubated with increasing concentrations of brusatol, and the metabolic activity was evaluated using the resazurin assay. Flow cytometry was used to evaluate cell death, cell cycle, mitochondrial membrane potential (Δψmit), and to measure ROS and reduced glutathione (GSH) levels. Our results show that brusatol promoted a decrease in metabolic activity in ALL cell lines in a time-, dose-, and cell-line-dependent manner. Brusatol induced a cytostatic effect by cell cycle arrest in G0/G1 in all cell lines; however, cell death mediated by apoptosis was only observed in T-ALL cells. Brusatol leads to an oxidative stress imbalance by the increase in ROS levels, namely, superoxide anion. Redox imbalance and cellular apoptosis induced by brusatol are highly modulated by mitochondria disruption as a decrease in mitochondrial membrane potential is detected. These data suggest that brusatol might represent a new therapeutic approach for acute lymphoblastic leukemia, particularly for ALL T-cell lineage.
Collapse
Affiliation(s)
- Joana Jorge
- Laboratory of Oncobiology and Hematology (LOH) and University Clinic of Hematology, Faculty of Medicine University of Coimbra (FMUC), University of Coimbra, 3000-548 Coimbra, Portugal
- Coimbra Institute for Clinical and Biomedical Research (iCBR)—Group of Environmental Genetics of Oncobiology (CIMAGO), Faculty of Medicine University of Coimbra (FMUC), University of Coimbra, 3000-548 Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), 3004-504 Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), 3000-061 Coimbra, Portugal
| | - Nisa Magalhães
- Laboratory of Oncobiology and Hematology (LOH) and University Clinic of Hematology, Faculty of Medicine University of Coimbra (FMUC), University of Coimbra, 3000-548 Coimbra, Portugal
| | - Raquel Alves
- Laboratory of Oncobiology and Hematology (LOH) and University Clinic of Hematology, Faculty of Medicine University of Coimbra (FMUC), University of Coimbra, 3000-548 Coimbra, Portugal
- Coimbra Institute for Clinical and Biomedical Research (iCBR)—Group of Environmental Genetics of Oncobiology (CIMAGO), Faculty of Medicine University of Coimbra (FMUC), University of Coimbra, 3000-548 Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), 3004-504 Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), 3000-061 Coimbra, Portugal
| | - Beatriz Lapa
- Laboratory of Oncobiology and Hematology (LOH) and University Clinic of Hematology, Faculty of Medicine University of Coimbra (FMUC), University of Coimbra, 3000-548 Coimbra, Portugal
- Coimbra Institute for Clinical and Biomedical Research (iCBR)—Group of Environmental Genetics of Oncobiology (CIMAGO), Faculty of Medicine University of Coimbra (FMUC), University of Coimbra, 3000-548 Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), 3004-504 Coimbra, Portugal
| | - Ana Cristina Gonçalves
- Laboratory of Oncobiology and Hematology (LOH) and University Clinic of Hematology, Faculty of Medicine University of Coimbra (FMUC), University of Coimbra, 3000-548 Coimbra, Portugal
- Coimbra Institute for Clinical and Biomedical Research (iCBR)—Group of Environmental Genetics of Oncobiology (CIMAGO), Faculty of Medicine University of Coimbra (FMUC), University of Coimbra, 3000-548 Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), 3004-504 Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), 3000-061 Coimbra, Portugal
- Correspondence: (A.C.G.); (A.B.S.-R.); Tel.: +351-239-480-024 (A.C.G.)
| | - Ana Bela Sarmento-Ribeiro
- Laboratory of Oncobiology and Hematology (LOH) and University Clinic of Hematology, Faculty of Medicine University of Coimbra (FMUC), University of Coimbra, 3000-548 Coimbra, Portugal
- Coimbra Institute for Clinical and Biomedical Research (iCBR)—Group of Environmental Genetics of Oncobiology (CIMAGO), Faculty of Medicine University of Coimbra (FMUC), University of Coimbra, 3000-548 Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), 3004-504 Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), 3000-061 Coimbra, Portugal
- Hematology Service, Centro Hospitalar e Universitário de Coimbra (CHUC), 3000-061 Coimbra, Portugal
- Correspondence: (A.C.G.); (A.B.S.-R.); Tel.: +351-239-480-024 (A.C.G.)
| |
Collapse
|