1
|
Green KJ, Pokorny J, Jarrell B. Dangerous liaisons: Loss of keratinocyte control over melanocytes in melanomagenesis. Bioessays 2024; 46:e2400135. [PMID: 39233509 DOI: 10.1002/bies.202400135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/14/2024] [Accepted: 08/19/2024] [Indexed: 09/06/2024]
Abstract
Melanomas arise from transformed melanocytes, positioned at the dermal-epidermal junction in the basal layer of the epidermis. Melanocytes are completely surrounded by keratinocyte neighbors, with which they communicate through direct contact and paracrine signaling to maintain normal growth control and homeostasis. UV radiation from sunlight reshapes this communication network to drive a protective tanning response. However, repeated rounds of sun exposure result in accumulation of mutations in melanocytes that have been considered as primary drivers of melanoma initiation and progression. It is now clear that mutations in melanocytes are not sufficient to drive tumor formation-the tumor environment plays a critical role. This review focuses on changes in melanocyte-keratinocyte communication that contribute to melanoma initiation and progression, with a particular focus on recent mechanistic insights that lay a foundation for developing new ways to intercept melanoma development.
Collapse
Affiliation(s)
- Kathleen J Green
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, USA
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, USA
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, USA
| | - Jenny Pokorny
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, USA
| | - Brieanna Jarrell
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, USA
| |
Collapse
|
2
|
Chhibber T, Scherzer MT, Prokofyeva A, Becker C, Zitnay RG, Smith E, Khurana N, Skliar M, Deacon DC, VanBrocklin MW, Ghandehari H, Judson-Torres RL, Jafari P. Transdermal Delivery of Ultradeformable Cationic Liposomes Complexed with miR211-5p (UCL-211) Stabilizes BRAFV600E+ Melanocytic Nevi. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.17.618694. [PMID: 39484595 PMCID: PMC11527197 DOI: 10.1101/2024.10.17.618694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Small non-coding RNAs (e.g. siRNA, miRNA) are involved in a variety of melanocyte-associated skin conditions and act as drivers for alterations in gene expression within melanocytes. These molecular changes can potentially affect the cellular stability of melanocytes and promote their oncogenic transformation. Thus, small RNAs can be considered as therapeutic targets for these conditions, however, their topical delivery to the melanocytes through the epidermal barrier is challenging. We synthesized and extensively evaluated ultradeformable cationic liposome (UCLs) carriers complexed with synthetic microRNAs (miR211-5p; UCL-211) for transdermal delivery to melanocytes. UCL-211 complexes were characterized for their physicochemical properties, encapsulation efficiency, and deformability, which revealed a significant advantage over conventional liposomal carriers. Increased expression of miR211-5p stabilizes melanocytic nevi and keeps them in growth-arrested state. We did a comprehensive assessment of cellular delivery, and biological activity of the miR211-5p carried by UCL-211 in vitro and their permeation through the epidermis of intact skin using ex vivo human skin tissue explants. We also demonstrated, in vivo, that topical delivery of miR211-5p by UCL-211 stabilized BRAFV600E+ nevi melanocytes in a benign nevi state.
Collapse
Affiliation(s)
- Tanya Chhibber
- Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, UT 84112, USA
- Utah Center for Nanomedicine, University of Utah, Salt Lake City, UT 84112, USA
| | | | | | - Carly Becker
- Huntsman Cancer Institute, Salt Lake City, UT, USA
- Department of Dermatology, University of Utah, Salt Lake City, UT, USA
| | | | - Eric Smith
- Department of Pathology, University of Utah, Salt Lake City, UT, USA
| | - Nitish Khurana
- Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, UT 84112, USA
- Utah Center for Nanomedicine, University of Utah, Salt Lake City, UT 84112, USA
| | - Mikhail Skliar
- Department of Chemical Engineering, University of Utah, Salt Lake City, UT, USA
| | - Dekker C Deacon
- Huntsman Cancer Institute, Salt Lake City, UT, USA
- Department of Dermatology, University of Utah, Salt Lake City, UT, USA
| | - Matthew W VanBrocklin
- Huntsman Cancer Institute, Salt Lake City, UT, USA
- Department of Surgery, University of Utah, Salt Lake City, UT, USA
| | - Hamidreza Ghandehari
- Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, UT 84112, USA
- Utah Center for Nanomedicine, University of Utah, Salt Lake City, UT 84112, USA
- Huntsman Cancer Institute, Salt Lake City, UT, USA
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, USA
| | - Robert L Judson-Torres
- Huntsman Cancer Institute, Salt Lake City, UT, USA
- Department of Dermatology, University of Utah, Salt Lake City, UT, USA
- Department of Oncological Sciences, University of Utah, Salt Lake City, UT, USA
| | - Paris Jafari
- Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, UT 84112, USA
- Utah Center for Nanomedicine, University of Utah, Salt Lake City, UT 84112, USA
| |
Collapse
|
3
|
Quílez C, Bebiano LB, Jones E, Maver U, Meesters L, Parzymies P, Petiot E, Rikken G, Risueño I, Zaidi H, Zidarič T, Bekeschus S, H van den Bogaard E, Caley M, Colley H, López NG, Letsiou S, Marquette C, Maver T, Pereira RF, Tobin DJ, Velasco D. Targeting the Complexity of In Vitro Skin Models: A Review of Cutting-Edge Developments. J Invest Dermatol 2024:S0022-202X(24)01499-4. [PMID: 39127929 DOI: 10.1016/j.jid.2024.04.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/29/2024] [Accepted: 04/10/2024] [Indexed: 08/12/2024]
Abstract
Skin in vitro models offer much promise for research, testing drugs, cosmetics, and medical devices, reducing animal testing and extensive clinical trials. There are several in vitro approaches to mimicking human skin behavior, ranging from simple cell monolayer to complex organotypic and bioengineered 3-dimensional models. Some have been approved for preclinical studies in cosmetics, pharmaceuticals, and chemicals. However, development of physiologically reliable in vitro human skin models remains in its infancy. This review reports on advances in in vitro complex skin models to study skin homeostasis, aging, and skin disease.
Collapse
Affiliation(s)
- Cristina Quílez
- Bioengineering Department, Universidad Carlos III de Madrid, Leganés, Spain; Fundación Instituto de Investigación Sanitaria de la Fundación Jiménez Díaz, Madrid, Spain
| | - Luís B Bebiano
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; Instituto de Engenharia Biomédica (INEB), Universidade do Porto, Porto, Portugal
| | - Eleri Jones
- Centre for Cell Biology and Cutaneous Research, Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Uroš Maver
- Institute of Biomedical Sciences, Faculty of Medicine, University of Maribor, Maribor, Slovenia; Department of Pharmacology, Faculty of Medicine, University of Maribor, Maribor, Slovenia
| | - Luca Meesters
- Department of Dermatology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Piotr Parzymies
- Centre for Cell Biology and Cutaneous Research, Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Emma Petiot
- 3d.FAB, CNRS, INSA, Univ Lyon, CPE-Lyon, UMR5246, ICBMS, Université Lyon 1, Villeurbanne Cedex, France
| | - Gijs Rikken
- Department of Dermatology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Ignacio Risueño
- Bioengineering Department, Universidad Carlos III de Madrid, Leganés, Spain; Fundación Instituto de Investigación Sanitaria de la Fundación Jiménez Díaz, Madrid, Spain
| | - Hamza Zaidi
- 3d.FAB, CNRS, INSA, Univ Lyon, CPE-Lyon, UMR5246, ICBMS, Université Lyon 1, Villeurbanne Cedex, France
| | - Tanja Zidarič
- Institute of Biomedical Sciences, Faculty of Medicine, University of Maribor, Maribor, Slovenia
| | - Sander Bekeschus
- Clinic and Policlinic for Dermatology and Venerology, Rostock University Medical Center, Rostock, Germany; ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP Greifswald), Greifswald, Germany
| | | | - Matthew Caley
- Centre for Cell Biology and Cutaneous Research, Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Helen Colley
- School of Clinical Dentistry, University of Sheffield, Sheffield, United Kingdom
| | - Nuria Gago López
- Melanoma group, Molecular Oncology Programme, Spanish National Cancer Research Center (CNIO), Madrid, Spain
| | - Sophia Letsiou
- Department of Biomedical Sciences, University of West Attica, Athens, Greece; Department of Food Science and Technology, University of West Attica, Athens, Greece
| | - Christophe Marquette
- 3d.FAB, CNRS, INSA, Univ Lyon, CPE-Lyon, UMR5246, ICBMS, Université Lyon 1, Villeurbanne Cedex, France
| | - Tina Maver
- Institute of Biomedical Sciences, Faculty of Medicine, University of Maribor, Maribor, Slovenia; Department of Pharmacology, Faculty of Medicine, University of Maribor, Maribor, Slovenia
| | - Rúben F Pereira
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; Instituto de Engenharia Biomédica (INEB), Universidade do Porto, Porto, Portugal; ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Desmond J Tobin
- Charles Institute of Dermatology, University College Dublin, Dublin, Ireland; Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| | - Diego Velasco
- Bioengineering Department, Universidad Carlos III de Madrid, Leganés, Spain; Fundación Instituto de Investigación Sanitaria de la Fundación Jiménez Díaz, Madrid, Spain.
| |
Collapse
|
4
|
Ascsillán AA, Kemény LV. The Skin-Brain Axis: From UV and Pigmentation to Behaviour Modulation. Int J Mol Sci 2024; 25:6199. [PMID: 38892387 PMCID: PMC11172643 DOI: 10.3390/ijms25116199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/24/2024] [Accepted: 06/01/2024] [Indexed: 06/21/2024] Open
Abstract
The skin-brain axis has been suggested to play a role in several pathophysiological conditions, including opioid addiction, Parkinson's disease and many others. Recent evidence suggests that pathways regulating skin pigmentation may directly and indirectly regulate behaviour. Conversely, CNS-driven neural and hormonal responses have been demonstrated to regulate pigmentation, e.g., under stress. Additionally, due to the shared neuroectodermal origins of the melanocytes and neurons in the CNS, certain CNS diseases may be linked to pigmentation-related changes due to common regulators, e.g., MC1R variations. Furthermore, the HPA analogue of the skin connects skin pigmentation to the endocrine system, thereby allowing the skin to index possible hormonal abnormalities visibly. In this review, insight is provided into skin pigment production and neuromelanin synthesis in the brain and recent findings are summarised on how signalling pathways in the skin, with a particular focus on pigmentation, are interconnected with the central nervous system. Thus, this review may supply a better understanding of the mechanism of several skin-brain associations in health and disease.
Collapse
Affiliation(s)
- Anna A. Ascsillán
- Department of Dermatology, Venereology and Dermatooncology, Faculty of Medicine, Semmelweis University, 1085 Budapest, Hungary
- HCEMM-SU Translational Dermatology Research Group, Semmelweis University, 1094 Budapest, Hungary
- Department of Physiology, Faculty of Medicine, Semmelweis University, 1094 Budapest, Hungary
- Division of Infection and Immunity, University College London, London WC1E 6BT, UK
| | - Lajos V. Kemény
- Department of Dermatology, Venereology and Dermatooncology, Faculty of Medicine, Semmelweis University, 1085 Budapest, Hungary
- HCEMM-SU Translational Dermatology Research Group, Semmelweis University, 1094 Budapest, Hungary
- Department of Physiology, Faculty of Medicine, Semmelweis University, 1094 Budapest, Hungary
| |
Collapse
|
5
|
Brandlmaier M, Hoellwerth M, Koelblinger P, Lang R, Harrer A. Adjuvant PD-1 Checkpoint Inhibition in Early Cutaneous Melanoma: Immunological Mode of Action and the Role of Ultraviolet Radiation. Cancers (Basel) 2024; 16:1461. [PMID: 38672543 PMCID: PMC11047851 DOI: 10.3390/cancers16081461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 04/03/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
Melanoma ranks as the fifth most common solid cancer in adults worldwide and is responsible for a significant proportion of skin-tumor-related deaths. The advent of immune checkpoint inhibition with anti-programmed death protein-1 (PD-1) antibodies has revolutionized the adjuvant treatment of high-risk, completely resected stage III/IV melanoma. However, not all patients benefit equally. Current strategies for improving outcomes involve adjuvant treatment in earlier disease stages (IIB/C) as well as perioperative treatment approaches. Interfering with T-cell exhaustion to counteract cancer immune evasion and the immunogenic nature of melanoma is key for anti-PD-1 effectiveness. Yet, the biological rationale for the efficacy of adjuvant treatment in clinically tumor-free patients remains to be fully elucidated. High-dose intermittent sun exposure (sunburn) is a well-known primary risk factor for melanomagenesis. Also, ultraviolet radiation (UVR)-induced immunosuppression may impair anti-cancer immune surveillance. In this review, we summarize the current knowledge about adjuvant anti-PD-1 blockade, including a characterization of the main cell types most likely responsible for its efficacy. In conclusion, we propose that local and systemic immunosuppression, to some extent UVR-mediated, can be restored by adjuvant anti-PD-1 therapy, consequently boosting anti-melanoma immune surveillance and the elimination of residual melanoma cell clones.
Collapse
Affiliation(s)
- Matthias Brandlmaier
- Department of Dermatology and Allergology, Paracelsus Medical University, 5020 Salzburg, Austria; (M.B.); (M.H.); (P.K.)
| | - Magdalena Hoellwerth
- Department of Dermatology and Allergology, Paracelsus Medical University, 5020 Salzburg, Austria; (M.B.); (M.H.); (P.K.)
| | - Peter Koelblinger
- Department of Dermatology and Allergology, Paracelsus Medical University, 5020 Salzburg, Austria; (M.B.); (M.H.); (P.K.)
| | - Roland Lang
- Department of Dermatology and Allergology, Paracelsus Medical University, 5020 Salzburg, Austria; (M.B.); (M.H.); (P.K.)
| | - Andrea Harrer
- Department of Dermatology and Allergology, Paracelsus Medical University, 5020 Salzburg, Austria; (M.B.); (M.H.); (P.K.)
- Department of Neurology, Christian Doppler University Hospital, Paracelsus Medical University and Center for Cognitive Neuroscience, 5020 Salzburg, Austria
| |
Collapse
|
6
|
Marrapodi R, Bellei B. The Keratinocyte in the Picture Cutaneous Melanoma Microenvironment. Cancers (Basel) 2024; 16:913. [PMID: 38473275 PMCID: PMC10930874 DOI: 10.3390/cancers16050913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/08/2024] [Accepted: 02/20/2024] [Indexed: 03/14/2024] Open
Abstract
Melanoma progression is a multistep evolution from a common melanocytic nevus through a radial superficial growth phase, the invasive vertical growth phase finally leading to metastatic dissemination into distant organs. Melanoma aggressiveness largely depends on the propensity to metastasize, which means the capacity to escape from the physiological microenvironment since tissue damage due to primary melanoma lesions is generally modest. Physiologically, epidermal melanocytes are attached to the basement membrane, and their adhesion/migration is under the control of surrounding keratinocytes. Thus, the epidermal compartment represents the first microenvironment responsible for melanoma spread. This complex process involves cell-cell contact and a broad range of secreted bioactive molecules. Invasion, or at the beginning of the microinvasion, implies the breakdown of the dermo-epidermal basement membrane followed by the migration of neoplastic melanocytic cells in the superficial papillary dermis. Correspondingly, several experimental evidences documented the structural and functional rearrangement of the entire tissue surrounding neoplasm that in some way reflects the atypia of tumor cells. Lastly, the microenvironment must support the proliferation and survival of melanocytes outside the normal epidermal-melanin units. This task presumably is mostly delegated to fibroblasts and ultimately to the self-autonomous capacity of melanoma cells. This review will discuss remodeling that occurs in the epidermis during melanoma formation as well as skin changes that occur independently of melanocytic hyperproliferation having possible pro-tumoral features.
Collapse
Affiliation(s)
| | - Barbara Bellei
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, Via Elio Chianesi 53, 00144 Rome, Italy;
| |
Collapse
|
7
|
Synoradzki KJ, Paduszyńska N, Solnik M, Toro MD, Bilmin K, Bylina E, Rutkowski P, Yousef YA, Bucolo C, Zweifel SA, Reibaldi M, Fiedorowicz M, Czarnecka AM. From Molecular Biology to Novel Immunotherapies and Nanomedicine in Uveal Melanoma. Curr Oncol 2024; 31:778-800. [PMID: 38392052 PMCID: PMC10887618 DOI: 10.3390/curroncol31020058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/09/2023] [Accepted: 12/19/2023] [Indexed: 02/24/2024] Open
Abstract
Molecular biology studies of uveal melanoma have resulted in the development of novel immunotherapy approaches including tebentafusp-a T cell-redirecting bispecific fusion protein. More biomarkers are currently being studied. As a result, combined immunotherapy is being developed as well as immunotherapy with bifunctional checkpoint inhibitory T cell engagers and natural killer cells. Current trials cover tumor-infiltrating lymphocytes (TIL), vaccination with IKKb-matured dendritic cells, or autologous dendritic cells loaded with autologous tumor RNA. Another potential approach to treat UM could be based on T cell receptor engineering rather than antibody modification. Immune-mobilizing monoclonal T cell receptors (TCR) against cancer, called ImmTAC TM molecules, represent such an approach. Moreover, nanomedicine, especially miRNA approaches, are promising for future trials. Finally, theranostic radiopharmaceuticals enabling diagnosis and therapy with the same molecule bring hope to this research.
Collapse
Affiliation(s)
- Kamil J. Synoradzki
- Environmental Laboratory of Pharmacological and Toxicological Research, Mossakowski Medical Research Institute, Polish Academy of Sciences, 5 Pawinskiego Str., 02-106 Warsaw, Poland;
| | - Natalia Paduszyńska
- Faculty of Medicine, Medical University of Warsaw, 02-091 Warsaw, Poland; (N.P.); (M.S.)
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie National Research Institute of Oncology, 5 Roentgen Str., 02-781 Warsaw, Poland; (E.B.); (P.R.)
| | - Malgorzata Solnik
- Faculty of Medicine, Medical University of Warsaw, 02-091 Warsaw, Poland; (N.P.); (M.S.)
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie National Research Institute of Oncology, 5 Roentgen Str., 02-781 Warsaw, Poland; (E.B.); (P.R.)
| | - Mario Damiano Toro
- Chair and Department of General and Pediatric Ophthalmology, Medical University of Lublin, 1 Chmielna Str., 20-079 Lublin, Poland;
- Eye Clinic, Public Health Department, Federico II University, Via Pansini 5, 80131 Naples, Italy
| | - Krzysztof Bilmin
- Research and Development Centre Novasome Sp. z o.o., 51-423 Wrocław, Poland;
| | - Elżbieta Bylina
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie National Research Institute of Oncology, 5 Roentgen Str., 02-781 Warsaw, Poland; (E.B.); (P.R.)
- Department of Clinical Trials, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland
| | - Piotr Rutkowski
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie National Research Institute of Oncology, 5 Roentgen Str., 02-781 Warsaw, Poland; (E.B.); (P.R.)
| | - Yacoub A. Yousef
- Department of Surgery (Ophthalmology), King Hussein Cancer Centre, Amman 11941, Jordan;
| | - Claudio Bucolo
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia 97, 95123 Catania, Italy;
| | - Sandrine Anne Zweifel
- Department of Ophthalmology, University Hospital Zurich, 8091 Zurich, Switzerland;
- Faculty of Human Medicine, University of Zurich, 8032 Zurich, Switzerland
| | - Michele Reibaldi
- Department of Surgical Sciences, Eye Clinic Section, Citta della Salute e della Scienza, Turin University, 10122 Turin, Italy;
| | - Michal Fiedorowicz
- Small Animal Magnetic Resonance Imaging Laboratory, Mossakowski Medical Research Institute, Polish Academy of Sciences, 5 Pawinskiego Str., 02-106 Warsaw, Poland
| | - Anna M. Czarnecka
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie National Research Institute of Oncology, 5 Roentgen Str., 02-781 Warsaw, Poland; (E.B.); (P.R.)
- Department of Experimental Pharmacology, Mossakowski Medical Research Institute, Polish Academy of Sciences, 5 Pawinskiego Str., 02-106 Warsaw, Poland
| |
Collapse
|
8
|
Sathe A, Prajapati BG, Bhattacharya S. Understanding the charismatic potential of nanotechnology to treat skin carcinoma. Med Oncol 2023; 41:22. [PMID: 38112978 DOI: 10.1007/s12032-023-02258-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 11/16/2023] [Indexed: 12/21/2023]
Abstract
Carcinoma is a condition that continues to pose a significant challenge, despite current medical advances. Skin carcinoma is the leading cause of cancer, and it has seen a massive increase all over the world. The challenges with current treatment are due to toxicity that leads to many more skin complications. Due to this to avoid such complications by designing diverse nanoparticles as delivery carriers, nanomedicine is employed as a hub for diagnostics and therapy. Liposomes, gold nanoparticles, transferases, nanofibers, etc., can all be used as delivery nanocarriers. These nanoparticles' structures and characteristics protect the medicine from degradation and improve its stability. Surface modifying agents and procedures are employed to functionalize nanoparticles, resulting in smart delivery systems. The application of nanotechnology-based approaches systematically increases drug delivery to target cells. Skin cancer has several challenges, including a long time to diagnose early types of cancer and a slower growth rate. This review focuses on innovative skin cancer therapy techniques, focusing on nanotechnology and the challenges associated with current treatment of skin cancer.
Collapse
Affiliation(s)
- Aamravi Sathe
- Department of Pharmaceutics, School of Pharmacy & Technology Management, SVKM'S NMIMS Deemed-to-be University, Shirpur, Maharashtra, 425405, India
| | - Bhupendra G Prajapati
- Shree S K Patel College of Pharmaceutical Education and Research, Ganpat University, Mahesana, Gujarat, 384012, India
| | - Sankha Bhattacharya
- Department of Pharmaceutics, School of Pharmacy & Technology Management, SVKM'S NMIMS Deemed-to-be University, Shirpur, Maharashtra, 425405, India.
| |
Collapse
|
9
|
Song B, Wang K, Peng Y, Zhu Y, Cui Z, Chen L, Yu Z, Song B. Combined signature of G protein-coupled receptors and tumor microenvironment provides a prognostic and therapeutic biomarker for skin cutaneous melanoma. J Cancer Res Clin Oncol 2023; 149:18135-18160. [PMID: 38006451 DOI: 10.1007/s00432-023-05486-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 10/19/2023] [Indexed: 11/27/2023]
Abstract
BACKGROUND G protein-coupled receptors (GPCRs) have been shown to have an important role in tumor development and metastasis, and abnormal expression of GPCRs is significantly associated with poor prognosis of tumor patients. In this study, we analyzed the GPCRs-related gene (GPRGs) and tumor microenvironment (TME) in skin cutaneous melanoma (SKCM) to construct a prognostic model to help SKCM patients obtain accurate clinical treatment strategies. METHODS SKCM expression data and clinical information were obtained from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. Differential expression analysis, LASSO algorithm, and univariate and multivariate cox regression analysis were used to screen prognosis-related genes (GPR19, GPR146, S1PR2, PTH1R, ADGRE5, CXCR3, GPR143, and OR2I1P) and multiple prognosis-good immune cells; the data set was analyzed according to above results and build up a GPR-TME classifier. The model was further subjected to immune infiltration, functional enrichment, tumor mutational load, immunotherapy prediction, and scRNA-seq data analysis. Finally, cellular experiments were conducted to validate the functionality of the key gene GPR19 in the model. RESULTS The findings indicate that high expression of GPRGs is associated with a poor prognosis in patients with SKCM, highlighting the significant role of GPRGs and the tumor microenvironment (TME) in SKCM development. Notably, the group characterized by low GPR expression and a high TME exhibited the most favorable prognosis and immunotherapeutic efficacy. Furthermore, cellular assays demonstrated that knockdown of GPR19 significantly reduced the proliferation, migration, and invasive capabilities of melanoma cells in A375 and A2058 cell lines. CONCLUSION This study provides novel insights for the prognosis evaluation and treatment of melanoma, along with the identification of a new biomarker, GPR19.
Collapse
Affiliation(s)
- Binyu Song
- Department of Plastic Surgery, Xijing Hospital, Fourth Military Medical University, 127 Changle West Road, Xi'an, 710032, Shaanxi Province, China
| | - Kai Wang
- Department of Plastic Surgery, Xijing Hospital, Fourth Military Medical University, 127 Changle West Road, Xi'an, 710032, Shaanxi Province, China
| | - Yixuan Peng
- School of Basic Medicine, The Fourth Military Medical University, 169 Changle West Road, Xi'an, 710032, China
| | - Yuhan Zhu
- Department of Plastic Surgery, Xijing Hospital, Fourth Military Medical University, 127 Changle West Road, Xi'an, 710032, Shaanxi Province, China
| | - Zhiwei Cui
- Department of Plastic Surgery, Xijing Hospital, Fourth Military Medical University, 127 Changle West Road, Xi'an, 710032, Shaanxi Province, China
| | - Lin Chen
- Department of Plastic Surgery, Xijing Hospital, Fourth Military Medical University, 127 Changle West Road, Xi'an, 710032, Shaanxi Province, China.
| | - Zhou Yu
- Department of Plastic Surgery, Xijing Hospital, Fourth Military Medical University, 127 Changle West Road, Xi'an, 710032, Shaanxi Province, China.
| | - Baoqiang Song
- Department of Plastic Surgery, Xijing Hospital, Fourth Military Medical University, 127 Changle West Road, Xi'an, 710032, Shaanxi Province, China.
| |
Collapse
|
10
|
Casalou C, Mayatra JM, Tobin DJ. Beyond the Epidermal-Melanin-Unit: The Human Scalp Anagen Hair Bulb Is Home to Multiple Melanocyte Subpopulations of Variable Melanogenic Capacity. Int J Mol Sci 2023; 24:12809. [PMID: 37628992 PMCID: PMC10454394 DOI: 10.3390/ijms241612809] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/26/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023] Open
Abstract
The visual appearance of humans is derived significantly from our skin and hair color. While melanin from epidermal melanocytes protects our skin from the damaging effects of ultraviolet radiation, the biological value of pigmentation in the hair follicle, particularly on the scalp, is less clear. In this study, we explore the heterogeneity of pigment cells in the human scalp anagen hair follicle bulb, a site conventionally viewed to be focused solely on pigment production for transfer to the hair shaft. Using c-KIT/CD117 microbeads, we isolated bulbar c-KIT-positive and c-KIT-negative melanocytes. While both subpopulations expressed MITF, only the c-KIT-positive fraction expressed SOX10. We further localized bulbar melanocyte subpopulations (expressing c-KIT, SOX10, MITF, and DCT) that exhibited distinct/variable expression of downstream differentiation-associated melanosome markers (e.g., gp100 and Melan-A). The localization of a second 'immature' SOX10 negative melanocyte population, which was c-KIT/MITF double-positive, was identified outside of the melanogenic zone in the most peripheral/proximal matrix. This study describes an approach to purifying human scalp anagen hair bulb melanocytes, allowing us to identify unexpected levels of melanocyte heterogeneity. The function of the more immature melanocytes in this part of the hair follicle remains to be elucidated. Could they be in-transit migratory cells ultimately destined to synthesize melanin, or could they contribute to the hair follicle in non-melanogenic ways?
Collapse
Affiliation(s)
- Cristina Casalou
- Charles Institute of Dermatology, School of Medicine, University College Dublin, D04 V1W8 Dublin, Ireland
| | - Jay M. Mayatra
- Charles Institute of Dermatology, School of Medicine, University College Dublin, D04 V1W8 Dublin, Ireland
| | - Desmond J. Tobin
- Charles Institute of Dermatology, School of Medicine, University College Dublin, D04 V1W8 Dublin, Ireland
- Conway Institute of Biomedical and Biomolecular Science, University College Dublin, D04 V1W8 Dublin, Ireland
| |
Collapse
|
11
|
Karimi H, Moskal P, Żak A, Stępień EŁ. 3D melanoma spheroid model for the development of positronium biomarkers. Sci Rep 2023; 13:7648. [PMID: 37169794 PMCID: PMC10175546 DOI: 10.1038/s41598-023-34571-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 05/03/2023] [Indexed: 05/13/2023] Open
Abstract
It was recently demonstrated that newly invented positronium imaging may be used for improving cancer diagnostics by providing additional information about tissue pathology with respect to the standardized uptake value currently available in positron emission tomography (PET). Positronium imaging utilizes the properties of positronium atoms, which are built from the electrons and positrons produced in the body during PET examinations. We hypothesized that positronium imaging would be sensitive to the in vitro discrimination of tumor-like three-dimensional structures (spheroids) built of melanoma cell lines with different cancer activities and biological properties. The lifetime of ortho-positronium (o-Ps) was evaluated in melanoma spheroids from two cell lines (WM266-4 and WM115) differing in the stage of malignancy. Additionally, we considered parameters such as the cell number, spheroid size and melanoma malignancy to evaluate their relationship with the o-Ps lifetime. We demonstrate pilot results for o-Ps lifetime measurement in extracellular matrix-free spheroids. With the statistical significance of two standard deviations, we demonstrated that the higher the degree of malignancy and the rate of proliferation of neoplastic cells, the shorter the lifetime of ortho-positronium. In particular, we observed the following indications encouraging further research: (i) WM266-4 spheroids characterized by a higher proliferation rate and malignancy showed a shorter o-Ps lifetime than WM115 spheroids characterized by a lower growth rate. (ii) Both cell lines showed a decrease in the lifetime of o-Ps after spheroid generation on day 8 compared to day 4 in culture, and the mean o-Ps lifetime was longer for spheroids formed from WM115 cells than for those formed from WM266-4 cells, regardless of spheroid age. The results of this study revealed that positronium is a promising biomarker that may be applied in PET diagnostics for the assessment of the degree of cancer malignancy.
Collapse
Affiliation(s)
- Hanieh Karimi
- Department of Medical Physics, M. Smoluchowski Institute of Physics, Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Łojasiewicza 11 Street, 30-348, Kraków, Poland
- Department of Biochemistry, University of Missouri, Columbia, USA
| | - Paweł Moskal
- Department of Experimental Particle Physics and Applications, M. Smoluchowski Institute of Physics, Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Kraków, Poland
- Center for Theranostics, Jagiellonian University, Kraków, Poland
| | - Agata Żak
- Faculty of Chemistry, Jagiellonian University, Kraków, Poland
| | - Ewa Ł Stępień
- Department of Medical Physics, M. Smoluchowski Institute of Physics, Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Łojasiewicza 11 Street, 30-348, Kraków, Poland.
- Center for Theranostics, Jagiellonian University, Kraków, Poland.
| |
Collapse
|
12
|
Waku T, Nakada S, Masuda H, Sumi H, Wada A, Hirose S, Aketa I, Kobayashi A. The CNC-family transcription factor Nrf3 coordinates the melanogenesis cascade through macropinocytosis and autophagy regulation. Cell Rep 2023; 42:111906. [PMID: 36640303 DOI: 10.1016/j.celrep.2022.111906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 10/06/2022] [Accepted: 12/09/2022] [Indexed: 12/31/2022] Open
Abstract
Melanin is a pigment produced from the amino acid L-tyrosine in melanosomes. The CNC-family transcription factor Nrf3 is expressed in the basal layer of the epidermis, where melanocytes reside, but its melanogenic function is unclear. Here, we show that Nrf3 regulates macropinocytosis and autophagy to coordinate melanogenesis cascade. In response to an exogenous inducer of melanin production, forskolin, Nrf3 upregulates the core melanogenic gene circuit, which includes Mitf, Tyr, Tyrp1, Pmel, and Oca2. Furthermore, Nrf3 induces the gene expression of Cln3, an autophagosome-related factor, for melanin precursor uptake by macropinocytosis. Ulk2 and Gabarapl2 are also identified as Nrf3-target autophagosome-related genes for melanosome formation. In parallel, Nrf3 prompts autolysosomal melanosome degradation for melanocyte survival. An endogenous melanogenic inducer αMSH also activates Nrf3-mediated melanin production, whereas it is suppressed by an HIV-1 protease inhibitor, nelfinavir. These findings indicate the significant role of Nrf3 in the melanogenesis and the anti-melanogenic potential of nelfinavir.
Collapse
Affiliation(s)
- Tsuyoshi Waku
- Laboratory for Genetic Code, Department of Medical Life Systems, Faculty of Life and Medical Sciences, Doshisha University, 1-3 Miyakodani, Tatara, Kyotanabe, Kyoto 610-0394, Japan.
| | - Sota Nakada
- Laboratory for Genetic Code, Department of Medical Life Systems, Faculty of Life and Medical Sciences, Doshisha University, 1-3 Miyakodani, Tatara, Kyotanabe, Kyoto 610-0394, Japan
| | - Haruka Masuda
- Laboratory for Genetic Code, Graduate School of Life and Medical Sciences, Doshisha University, 1-3 Miyakodani, Tatara, Kyotanabe, Kyoto 610-0394, Japan
| | - Haruna Sumi
- Laboratory for Genetic Code, Department of Medical Life Systems, Faculty of Life and Medical Sciences, Doshisha University, 1-3 Miyakodani, Tatara, Kyotanabe, Kyoto 610-0394, Japan
| | - Ayaka Wada
- Laboratory for Genetic Code, Graduate School of Life and Medical Sciences, Doshisha University, 1-3 Miyakodani, Tatara, Kyotanabe, Kyoto 610-0394, Japan
| | - Shuuhei Hirose
- Laboratory for Genetic Code, Graduate School of Life and Medical Sciences, Doshisha University, 1-3 Miyakodani, Tatara, Kyotanabe, Kyoto 610-0394, Japan
| | - Iori Aketa
- Laboratory for Genetic Code, Graduate School of Life and Medical Sciences, Doshisha University, 1-3 Miyakodani, Tatara, Kyotanabe, Kyoto 610-0394, Japan
| | - Akira Kobayashi
- Laboratory for Genetic Code, Department of Medical Life Systems, Faculty of Life and Medical Sciences, Doshisha University, 1-3 Miyakodani, Tatara, Kyotanabe, Kyoto 610-0394, Japan; Laboratory for Genetic Code, Graduate School of Life and Medical Sciences, Doshisha University, 1-3 Miyakodani, Tatara, Kyotanabe, Kyoto 610-0394, Japan.
| |
Collapse
|
13
|
Sevilla A, Chéret J, Lee W, Paus R. Concentration-dependent stimulation of melanin production as well as melanocyte and keratinocyte proliferation by melatonin in human eyelid epidermis. Exp Dermatol 2023; 32:684-693. [PMID: 36601673 DOI: 10.1111/exd.14740] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 12/13/2022] [Accepted: 12/31/2022] [Indexed: 01/06/2023]
Abstract
It remains unclear how the multifunctional indoleamine neurohormone, melatonin, alters melanin production and melanocytes within intact human epidermis under physiologically relevant conditions. In the current pilot study, we aimed to clarify this in long-term organ-cultured, full-thickness human eyelid skin, selected for its clinically recognized sensitivity to pigmentation-modulatory hormones. Warthin-Starry histochemistry showed that 100 μM melatonin significantly increased epidermal melanin content and melanocyte dendricity after 6 days of organ culture, even though tyrosinase activity in situ was inhibited, as assessed by quantitative immunohistomorphometry. While the higher melatonin dose tested here (200 μM) did not change epidermal melanization, but again inhibited tyrosinase activity, it increased the number and proliferation of both gp100+ epidermal melanocytes and keratinocytes as well as protein expression of the premelanosomal marker, gp100, ex vivo. Contrary to most previous studies, these eyelid skin organ culture results suggest that long-term melatonin application exerts overall stimulatory, dose-dependent effects on the epidermal pigmentary unit within intact human skin, which appear surprisingly tyrosinase-independent. While these provocative preliminary findings require further work-up and independent confirmation, they encourage one to systematically explore whether prolonged melatonin therapy can (re-)stimulate melanogenesis and increase the pool/activity of epidermal melanocytes in hypopigmented skin lesions.
Collapse
Affiliation(s)
- Alec Sevilla
- Dr. Phillip Frost Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Jérémy Chéret
- Dr. Phillip Frost Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Wendy Lee
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine Miami, Miami, Florida, USA
| | - Ralf Paus
- Dr. Phillip Frost Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA.,CUTANEON - Skin & Hair Innovations, Hamburg, Germany.,Monasterium Laboratory, Münster, Germany
| |
Collapse
|
14
|
Markiewicz A, Donizy P, Nowak M, Krzyziński M, Elas M, Płonka PM, Orłowska-Heitzmann J, Biecek P, Hoang MP, Romanowska-Dixon B. Amelanotic Uveal Melanomas Evaluated by Indirect Ophthalmoscopy Reveal Better Long-Term Prognosis Than Pigmented Primary Tumours-A Single Centre Experience. Cancers (Basel) 2022; 14:cancers14112753. [PMID: 35681733 PMCID: PMC9179456 DOI: 10.3390/cancers14112753] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 05/25/2022] [Accepted: 05/30/2022] [Indexed: 02/01/2023] Open
Abstract
(1) Background: There is a constant search for new prognostic factors that would allow us to accurately determine the prognosis, select the type of treatment, and monitor the patient diagnosed with uveal melanoma in a minimally invasive and easily accessible way. Therefore, we decided to evaluate the prognostic role of its pigmentation in a clinical assessment. (2) Methods: The pigmentation of 154 uveal melanomas was assessed by indirect ophthalmoscopy. Two groups of tumours were identified: amelanotic and pigmented. The statistical relationships between these two groups and clinical, pathological parameters and the long-term survival rate were analyzed. (3) Results: There were 16.9% amelanotic tumours among all and they occurred in younger patients (p = 0.022). In pigmented melanomas, unfavourable prognostic features such as: epithelioid cells (p = 0.0013), extrascleral extension (p = 0.027), macronucleoli (p = 0.0065), and the absence of BAP1 expression (p = 0.029) were statistically more frequently observed. Kaplan−Meier analysis demonstrated significantly better overall (p = 0.017) and disease-free (p < 0.001) survival rates for patients with amelanotic tumours. However, this relationship was statistically significant for lower stage tumours (AJCC stage II), and was not present in larger and more advanced stages (AJCC stage III). (4) Conclusions: The results obtained suggested that the presence of pigmentation in uveal melanoma by indirect ophthalmoscopy was associated with a worse prognosis, compared to amelanotic lesions. These findings could be useful in the choice of therapeutic and follow-up options in the future.
Collapse
Affiliation(s)
- Anna Markiewicz
- Department of Ophthalmology and Ocular Oncology, Faculty of Medicine, Jagiellonian University Medical College, 31-501 Krakow, Poland;
- Department of Ophthalmology and Ocular Oncology, University Hospital, 31-501 Krakow, Poland;
- Correspondence: or ; Tel.: +48-124247540; Fax: +48-124247563
| | - Piotr Donizy
- Department of Clinical and Experimental Pathology, Division of Clinical Pathology, Wroclaw Medical University, 50-556 Wroclaw, Poland;
| | - Monika Nowak
- Department of Ophthalmology and Ocular Oncology, University Hospital, 31-501 Krakow, Poland;
| | - Mateusz Krzyziński
- Faculty of Mathematics and Information Science, Warsaw University of Technology, 00-628 Warsaw, Poland; (M.K.); (P.B.)
| | - Martyna Elas
- Department of Biophysics and Cancer Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Krakow, Poland; (M.E.); (P.M.P.)
| | - Przemysław M. Płonka
- Department of Biophysics and Cancer Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Krakow, Poland; (M.E.); (P.M.P.)
| | | | - Przemysław Biecek
- Faculty of Mathematics and Information Science, Warsaw University of Technology, 00-628 Warsaw, Poland; (M.K.); (P.B.)
| | - Mai P. Hoang
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA;
| | - Bożena Romanowska-Dixon
- Department of Ophthalmology and Ocular Oncology, Faculty of Medicine, Jagiellonian University Medical College, 31-501 Krakow, Poland;
- Department of Ophthalmology and Ocular Oncology, University Hospital, 31-501 Krakow, Poland;
| |
Collapse
|
15
|
Gelmi MC, Houtzagers LE, Strub T, Krossa I, Jager MJ. MITF in Normal Melanocytes, Cutaneous and Uveal Melanoma: A Delicate Balance. Int J Mol Sci 2022; 23:6001. [PMID: 35682684 PMCID: PMC9181002 DOI: 10.3390/ijms23116001] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 02/04/2023] Open
Abstract
Microphthalmia-associated transcription factor (MITF) is an important regulator of melanogenesis and melanocyte development. Although it has been studied extensively in cutaneous melanoma, the role of MITF in uveal melanoma (UM) has not been explored in much detail. We review the literature about the role of MITF in normal melanocytes, in cutaneous melanoma, and in UM. In normal melanocytes, MITF regulates melanocyte development, melanin synthesis, and melanocyte survival. The expression profile and the behaviour of MITF-expressing cells suggest that MITF promotes local proliferation and inhibits invasion, inflammation, and epithelial-to-mesenchymal (EMT) transition. Loss of MITF expression leads to increased invasion and inflammation and is more prevalent in malignant cells. Cutaneous melanoma cells switch between MITF-high and MITF-low states in different phases of tumour development. In UM, MITF loss is associated with loss of BAP1 protein expression, which is a marker of poor prognosis. These data indicate a dual role for MITF in benign and malignant melanocytic cells.
Collapse
Affiliation(s)
- Maria Chiara Gelmi
- Department of Ophthalmology, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden, The Netherlands; (M.C.G.); (L.E.H.)
| | - Laurien E. Houtzagers
- Department of Ophthalmology, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden, The Netherlands; (M.C.G.); (L.E.H.)
| | - Thomas Strub
- Université Côte d’Azur, 06103 Nice, France; (T.S.); (I.K.)
- Inserm, Biology and Pathologies of Melanocytes, Team1, Equipe Labellisée Ligue 2020, Centre Méditerranéen de Médecine Moléculaire, 06204 Nice, France
| | - Imène Krossa
- Université Côte d’Azur, 06103 Nice, France; (T.S.); (I.K.)
- Inserm, Biology and Pathologies of Melanocytes, Team1, Equipe Labellisée Ligue 2020, Centre Méditerranéen de Médecine Moléculaire, 06204 Nice, France
| | - Martine J. Jager
- Department of Ophthalmology, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden, The Netherlands; (M.C.G.); (L.E.H.)
| |
Collapse
|