1
|
Li H, Zhang D, Pei J, Hu J, Li X, Liu B, Wang L. Dual-energy computed tomography iodine quantification combined with laboratory data for predicting microvascular invasion in hepatocellular carcinoma: a two-centre study. Br J Radiol 2024; 97:1467-1475. [PMID: 38870535 PMCID: PMC11256957 DOI: 10.1093/bjr/tqae116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 05/16/2024] [Accepted: 06/05/2024] [Indexed: 06/15/2024] Open
Abstract
OBJECTIVES Microvascular invasion (MVI) is a recognized biomarker associated with poorer prognosis in patients with hepatocellular carcinoma. Dual-energy computed tomography (DECT) is a highly sensitive technique that can determine the iodine concentration (IC) in tumour and provide an indirect evaluation of internal microcirculatory perfusion. This study aimed to assess whether the combination of DECT with laboratory data can improve preoperative MVI prediction. METHODS This retrospective study enrolled 119 patients who underwent DECT liver angiography at 2 medical centres preoperatively. To compare DECT parameters and laboratory findings between MVI-negative and MVI-positive groups, Mann-Whitney U test was used. Additionally, principal component analysis (PCA) was conducted to determine fundamental components. Mann-Whitney U test was applied to determine whether the principal component (PC) scores varied across MVI groups. Finally, a general linear classifier was used to assess the classification ability of each PC score. RESULTS Significant differences were noted (P < .05) in alpha-fetoprotein (AFP) level, normalized arterial phase IC, and normalized portal phase IC between the MVI groups in the primary and validation datasets. The PC1-PC4 accounted for 67.9% of the variance in the primary dataset, with loadings of 24.1%, 16%, 15.4%, and 12.4%, respectively. In both primary and validation datasets, PC3 and PC4 were significantly different across MVI groups, with area under the curve values of 0.8410 and 0.8373, respectively. CONCLUSIONS The recombination of DECT IC and laboratory features based on varying factor loadings can well predict MVI preoperatively. ADVANCES IN KNOWLEDGE Utilizing PCA, the amalgamation of DECT IC and laboratory features, considering diverse factor loadings, showed substantial promise in accurately classifying MVI. There have been limited endeavours to establish such a combination, offering a novel paradigm for comprehending data in related research endeavours.
Collapse
Affiliation(s)
- Huan Li
- Department of Radiology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, China
- Medical Imaging Research Center, Anhui Medical University, Hefei, Anhui 230601, China
| | - Dai Zhang
- Department of Radiology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, China
- Medical Imaging Research Center, Anhui Medical University, Hefei, Anhui 230601, China
| | - Jinxia Pei
- Department of Radiology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, China
- Medical Imaging Research Center, Anhui Medical University, Hefei, Anhui 230601, China
| | - Jingmei Hu
- Department of Radiology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, China
- Medical Imaging Research Center, Anhui Medical University, Hefei, Anhui 230601, China
| | - Xiaohu Li
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, China
| | - Bin Liu
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, China
| | - Longsheng Wang
- Department of Radiology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, China
- Medical Imaging Research Center, Anhui Medical University, Hefei, Anhui 230601, China
| |
Collapse
|
2
|
Wang F, Liao HZ, Chen XL, Lei H, Luo GH, Chen GD, Zhao H. Preoperative prediction of microvascular invasion: new insights into personalized therapy for early-stage hepatocellular carcinoma. Quant Imaging Med Surg 2024; 14:5205-5223. [PMID: 39022260 PMCID: PMC11250313 DOI: 10.21037/qims-24-44] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 05/29/2024] [Indexed: 07/20/2024]
Abstract
Owing to advances in diagnosis and treatment methods over past decades, a growing number of early-stage hepatocellular carcinoma (HCC) diagnoses has enabled a greater of proportion of patients to receive curative treatment. However, a high risk of early recurrence and poor prognosis remain major challenges in HCC therapy. Microvascular invasion (MVI) has been demonstrated to be an essential independent predictor of early recurrence after curative therapy. Currently, biopsy is not generally recommended before treatment to evaluate MVI in HCC according clinical guidelines due to sampling error and the high risk of tumor cell seeding following biopsy. Therefore, the postoperative histopathological examination is recognized as the gold standard of MVI diagnosis, but this lagging indicator greatly impedes clinicians in selecting the optimal effective treatment for prognosis. As imaging can now noninvasively and completely assess the whole tumor and host situation, it is playing an increasingly important role in the preoperative assessment of MVI. Therefore, imaging criteria for MVI diagnosis would be highly desirable for optimizing individualized therapeutic decision-making and achieving a better prognosis. In this review, we summarize the emerging image characteristics of different imaging modalities for predicting MVI. We also discuss whether advances in imaging technique have generated evidence that could be practice-changing and whether advanced imaging techniques will revolutionize therapeutic decision-making of early-stage HCC.
Collapse
Affiliation(s)
- Fang Wang
- Department of Radiology, The First Affiliated Hospital of University of South China, Hengyang Medical School, University of South China, Hengyang, China
- Departments of Radiology, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Hua-Zhi Liao
- Department of Radiology, The First Affiliated Hospital of University of South China, Hengyang Medical School, University of South China, Hengyang, China
| | - Xiao-Long Chen
- Department of Radiology, The First Affiliated Hospital of University of South China, Hengyang Medical School, University of South China, Hengyang, China
| | - Hao Lei
- Department of Radiology, The First Affiliated Hospital of University of South China, Hengyang Medical School, University of South China, Hengyang, China
| | - Guang-Hua Luo
- Department of Radiology, The First Affiliated Hospital of University of South China, Hengyang Medical School, University of South China, Hengyang, China
| | - Guo-Dong Chen
- Department of Hepatobiliary Pancreatic Surgery, The First Affiliated Hospital of University of South China, Hengyang Medical School, University of South China, Hengyang, China
| | - Heng Zhao
- Department of Radiology, The First Affiliated Hospital of University of South China, Hengyang Medical School, University of South China, Hengyang, China
| |
Collapse
|
3
|
Zhang Y, Sheng R, Dai Y, Yang C, Zeng M. The value of varying diffusion curvature MRI for assessing the microvascular invasion of hepatocellular carcinoma. Abdom Radiol (NY) 2024; 49:1154-1164. [PMID: 38311671 DOI: 10.1007/s00261-023-04168-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/13/2023] [Accepted: 12/14/2023] [Indexed: 02/06/2024]
Abstract
PURPOSE Varying diffusion curvature (VDC) MRI is an emerging diffusion-weighted imaging (DWI) technique that can capture non-Gaussian diffusion behavior and reflect tissue heterogeneity. However, its clinical utility has hardly been evaluated. We aimed to investigate the value of the VDC technique in noninvasively assessing microvascular invasion (MVI) in hepatocellular carcinoma (HCC). METHODS 74 patients with HCCs, including 39 MVI-positive and 35 MVI-negative HCCs were included into this prospective study. Quantitative metrics between subgroups, clinical risk factors, as well as diagnostic performance were evaluated. The power analysis was also carried out to determine the statistical power. RESULTS MVI-positive HCCs exhibited significantly higher VDC-derived structural heterogeneity measure, D1 (0.680 ± 0.100 × 10-3 vs 0.572 ± 0.148 × 10-3 mm2/s, p = 0.001) and lower apparent diffusion coefficient (ADC) (1.350 ± 0.166 × 10-3 vs 1.471 ± 0.322 × 10-3 mm2/s, p = 0.0495) compared to MVI-negative HCCs. No statistical significance was observed for VDC-derived diffusion coefficient, D0 between the subgroups (p = 0.562). Tumor size (odds ratio (OR) = 1.242) and alpha-fetoprotein (AFP) (OR = 2.527) were identified as risk factors for MVI. A predictive nomogram was constructed based on D1, ADC, tumor size, and AFP, which exhibited the highest diagnostic accuracy (AUC = 0.817), followed by D1 (AUC = 0.753) and ADC (AUC = 0.647). The diagnostic performance of the nomogram-based model was also validated by the calibration curve and decision curve. CONCLUSION VDC can aid in the noninvasive and preoperative diagnosis of HCC with MVI, which may result in the clinical benefit in terms of prognostic prediction and clinical decision-making.
Collapse
Affiliation(s)
- Yunfei Zhang
- Shanghai Institute of Medical Imaging, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
- Department of Radiology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Ruofan Sheng
- Shanghai Institute of Medical Imaging, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
- Department of Radiology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Yongming Dai
- School of Biomedical Engineering, ShanghaiTech Univerisity, Shanghai, 200032, China
| | - Chun Yang
- Shanghai Institute of Medical Imaging, Fudan University, 180 Fenglin Road, Shanghai, 200032, China.
- Department of Radiology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China.
| | - Mengsu Zeng
- Shanghai Institute of Medical Imaging, Fudan University, 180 Fenglin Road, Shanghai, 200032, China.
- Department of Radiology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China.
| |
Collapse
|
4
|
Zhang Y, Sheng R, Yang C, Dai Y, Zeng M. The Feasibility of Using Tri-Exponential Intra-Voxel Incoherent Motion DWI for Identifying the Microvascular Invasion in Hepatocellular Carcinoma. J Hepatocell Carcinoma 2023; 10:1659-1671. [PMID: 37799828 PMCID: PMC10547827 DOI: 10.2147/jhc.s433948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 09/21/2023] [Indexed: 10/07/2023] Open
Abstract
Purpose To assess the effectiveness of tri-exponential Intra-Voxel Incoherent Motion (tri-IVIM) MRI in preoperatively identifying microvascular invasion (MVI) in hepatocellular carcinoma (HCC). Patients and Methods In this prospective study, 67 patients with HCC were included. Metrics from bi-exponential IVIM (bi-IVIM) and tri-IVIM were calculated. Subgroup comparisons were analyzed using the independent Student's t-test or Mann-Whitney U-test. Logistic regression was performed to explore clinical risk factors. Diagnostic performance was assessed using receiver operating characteristic (ROC) curves, calibration curves and decision curve analysis. Results MVI-positive HCCs exhibited significantly lower true diffusion coefficient (Dt) from bi-IVIM, as well as fast-diffusion coefficients (Df) and slow-diffusion coefficients (Ds) from tri-IVIM, compared to MVI-negative HCCs (p < 0.05). Tumor size and alpha-fetoprotein (AFP) were identified as risk factors. The combination of tri-IVIM-derived metrics (Ds and Df) yielded higher diagnostic accuracy (AUC = 0.808) compared to bi-IVIM (AUC = 0.741). A predictive model based on a nomogram was constructed using Ds, Df, tumor size, and AFP, resulting in the highest diagnostic accuracy (AUC = 0.859). Decision curve analysis indicated that the constructed model, provided the highest net benefit by accurately stratifying the risk of MVI, followed by tri-IVIM and bi-IVIM. Conclusion Tri-IVIM can provide information on perfusion and diffusion for evaluating MVI in HCC. Additionally, tri-IVIM outperformed bi-IVIM in identifying MVI-positive HCC. By integrating clinical risk factors and metrics from tri-IVIM, a predictive nomogram exhibited the highest diagnostic accuracy, potentially aiding in the noninvasive and preoperative assessment of MVI.
Collapse
Affiliation(s)
- Yunfei Zhang
- Shanghai Institute of Medical Imaging, Fudan University, Shanghai, 200032, People’s Republic of China
- Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, People’s Republic of China
| | - Ruofan Sheng
- Shanghai Institute of Medical Imaging, Fudan University, Shanghai, 200032, People’s Republic of China
- Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, People’s Republic of China
| | - Chun Yang
- Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, People’s Republic of China
| | - Yongming Dai
- School of Biomedical Engineering, ShanghaiTech University, Shanghai, 200032, People’s Republic of China
| | - Mengsu Zeng
- Shanghai Institute of Medical Imaging, Fudan University, Shanghai, 200032, People’s Republic of China
- Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, People’s Republic of China
| |
Collapse
|
5
|
Ippolito D, Maino C, Gatti M, Marra P, Faletti R, Cortese F, Inchingolo R, Sironi S. Radiological findings in non-surgical recurrent hepatocellular carcinoma: From locoregional treatments to immunotherapy. World J Gastroenterol 2023; 29:1669-1684. [PMID: 37077517 PMCID: PMC10107213 DOI: 10.3748/wjg.v29.i11.1669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/10/2023] [Accepted: 03/02/2023] [Indexed: 03/17/2023] Open
Abstract
Since hepatocellular carcinoma (HCC) represents an important cause of mortality and morbidity all over the world. Currently, it is fundamental not only to achieve a curative treatment but also to manage in the best way any possible recurrence. Even if the latest update of the Barcelona Clinic Liver Cancer guidelines for HCC treatment has introduced new locoregional techniques and confirmed others as well-established clinical practices, there is still no consensus about the treatment of recurrent HCC (RHCC). Locoregional treatments and medical therapy represent two of the most widely accepted approaches for disease control, especially in the advanced stage of liver disease. Different medical treatments are now approved, and others are under investigation. On this basis, radiology plays a central role in the diagnosis of RHCC and the assessment of response to locoregional treatments and medical therapy for RHCC. This review summarized the actual clinical practice by underlining the importance of the radiological approach both in the diagnosis and treatment of RHCC.
Collapse
Affiliation(s)
- Davide Ippolito
- Department of Radiology, IRCCS San Gerardo dei Tintori, Monza 20900, Italy
- School of Medicine and Surgery, University of Milano-Bicocca, Milano 20121, Italy
| | - Cesare Maino
- Department of Radiology, IRCCS San Gerardo dei Tintori, Monza 20900, Italy
| | - Marco Gatti
- Department of Surgical Sciences, University of Turin, Turin 10126, Italy
| | - Paolo Marra
- Department of Diagnostic and Interventional Radiology, Papa Giovanni XXIII Hospital, Bergamo 24127, Italy
| | - Riccardo Faletti
- Department of Surgical Sciences, University of Turin, Turin 10126, Italy
| | - Francesco Cortese
- Interventional Radiology Unit, “F. Miulli” Regional General Hospital, Bari 70121, Italy
| | - Riccardo Inchingolo
- Interventional Radiology Unit, “F. Miulli” Regional General Hospital, Bari 70121, Italy
| | - Sandro Sironi
- School of Medicine and Surgery, University of Milano-Bicocca, Milano 20121, Italy
- Department of Diagnostic and Interventional Radiology, Papa Giovanni XXIII Hospital, Bergamo 24127, Italy
| |
Collapse
|
6
|
Xiang L, Yang H, Qin Y, Wen Y, Liu X, Zeng WB. Differential value of diffusion kurtosis imaging and intravoxel incoherent motion in benign and malignant solitary pulmonary lesions. Front Oncol 2023; 12:1075072. [PMID: 36713551 PMCID: PMC9878824 DOI: 10.3389/fonc.2022.1075072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 12/21/2022] [Indexed: 01/13/2023] Open
Abstract
Objective To investigate the diagnostic value of diffusion kurtosis imaging (DKI) and intravoxel incoherent motion (IVIM) whole-lesion histogram parameters in differentiating benign and malignant solitary pulmonary lesions (SPLs). Materials and Methods Patients with SPLs detected by chest CT examination and with further routine MRI, DKI and IVIM-DWI functional sequence scanning data were recruited. According to the pathological results, SPLs were divided into a benign group and a malignant group. Independent samples t tests (normal distribution) or Mann‒Whitney U tests (nonnormal distribution) were used to compare the differences in DKI (Dk, K), IVIM (D, D*, f) and ADC whole-lesion histogram parameters between the benign and malignant SPL groups. The receiver operating characteristic (ROC) curve was used to evaluate the diagnostic efficiency of the histogram parameters and determine the optimal threshold. The area under the curve (AUC) of each histogram parameter was compared by the DeLong method. Spearman rank correlation was used to analyze the correlation between histogram parameters and malignant SPLs. Results Most of the histogram parameters for diffusion-related values (Dk, D, ADC) of malignant SPLs were significantly lower than those of benign SPLs, while most of the histogram parameters for the K value of malignant SPLs were significantly higher than those of benign SPLs. DKI (Dk, K), IVIM (D) and ADC were effective in differentiating benign and malignant SPLs and combined with multiple parameters of the whole-lesion histogram for the D value, had the highest diagnostic efficiency, with an AUC of 0.967, a sensitivity of 90.00% and a specificity of 94.03%. Most of the histogram parameters for the Dk, D and ADC values were negatively correlated with malignant SPLs, while most of the histogram parameters for the K value were positively correlated with malignant SPLs. Conclusions DKI (Dk, K) and IVIM (D) whole-lesion histogram parameters can noninvasively distinguish benign and malignant SPLs, and the diagnostic performance is better than that of DWI. Moreover, they can provide additional information on SPL microstructure, which has important significance for guiding clinical individualized precision diagnosis and treatment and has potential clinical application value.
Collapse
Affiliation(s)
- Lu Xiang
- Department of Radiology, Chongqing University Three Gorges Hospital, Chongqing, China,College of Medical Imaging, North Sichuan Medical College, Sichuan, China
| | - Hong Yang
- Department of Radiology, Chongqing University Three Gorges Hospital, Chongqing, China,Chongqing University School of Medicine, Chongqing, China
| | - Yu Qin
- Department of Radiology, Chongqing University Three Gorges Hospital, Chongqing, China,College of Medical Imaging, North Sichuan Medical College, Sichuan, China
| | - Yun Wen
- Department of Radiology, Chongqing University Three Gorges Hospital, Chongqing, China
| | - Xue Liu
- PET-CT Center, Chongqing University Three Gorges Hospital, Chongqing, China,*Correspondence: Xue Liu, ; Wen-Bing Zeng,
| | - Wen-Bing Zeng
- Department of Radiology, Chongqing University Three Gorges Hospital, Chongqing, China,*Correspondence: Xue Liu, ; Wen-Bing Zeng,
| |
Collapse
|
7
|
Clinical and imaging features preoperative evaluation of histological grade and microvascular infiltration of hepatocellular carcinoma. BMC Gastroenterol 2022; 22:369. [PMID: 35915440 PMCID: PMC9341046 DOI: 10.1186/s12876-022-02449-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 07/21/2022] [Indexed: 11/13/2022] Open
Abstract
Background To predict the histological grade and microvascular invasion (MVI) in patients with HCC. Methods A retrospective analysis was conducted on 175 patients who underwent MRI enhancement scanning (from September 2016.9 to October 2020). They were divided into MVI positive, MVI negative, Grade-high and Grade-low groups. Results The AFP of 175 HCC patients distributed in MVI positive and negative groups, Grade-low and Grade-high groups were statistically significant (P = 0.002 and 0.03, respectively). Multiple HCC lesions were more common in MVI positive and Grade-high groups. Correspondingly, more single lesions were found in MVI negative and Grade-low groups (P = 0.005 and 0.019, respectively). Capsule on MRI was more common in MVI negative and Grade-high groups, and the difference was statistically significant (P = 0.02 and 0.011, respectively). There were statistical differences in the distribution of three MRI signs: artistic rim enhancement, artistic peripheral enhancement, and tumor margin between MVI positive and MVI negative groups (P = 0.001, < 0.001, and < 0.001, respectively). Tumor hypointensity on HBP was significantly different between MVI positive and negative groups (P < 0.001). Conclusions Our research shows that preoperative enhanced imaging can be used to predict MVI and tumor differentiation grade of HCC. The prognosis of MVI-negative group was better than that of MVI-positive group.
Collapse
|