1
|
Tian H, Guo H, Liu J, Du Y, Ren H, Li H. Polymeric nanoparticles in radiopharmaceutical delivery strategies. J Mater Chem B 2025; 13:1270-1285. [PMID: 39693049 DOI: 10.1039/d4tb02076f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
The potential applications of polymer nanoparticles (NPs) in the biomedical field have been the subject of extensive research. Radiopharmaceuticals that combine radionuclides and drugs using polymer nanoparticles (NPs) as carriers can be externally labelled, internally labelled or interfacially labelled with radionuclides at different sites. Consequently, they can be employed as delivery agents for a range of diseases. Currently, polymeric nanoparticles can deliver isotopes via active targeting, passive targeting and stimuli-responsive release systems. The objective is to deliver drugs and nuclides to the target site in an efficient manner, thereby maximizing efficacy and minimizing side effects. The development of drug release systems has the potential to address the growing social and economic challenges currently facing modern healthcare. This paper presents a detailed synthesis of the methods used to create polymer nanoparticles (NPs) and strategies for the targeted delivery of radiopharmaceuticals with radionuclides labelled at different locations. Additionally, the paper outlines the current progress of polymer NPs for use in imaging and therapeutic applications, as well as the future challenges that lie ahead in this field.
Collapse
Affiliation(s)
- Haidong Tian
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China.
- Department of Medical Physics, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China.
- Gansu Provincial Isotope Laboratory, Lanzhou 730300, China
| | - Huijun Guo
- Department of Medical Physics, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China.
- Gansu Provincial Isotope Laboratory, Lanzhou 730300, China
- The First School of Clinical Medicine, Lanzhou University, Lanzhou 730000, Gansu, China
| | - Jiadi Liu
- Department of Medical Physics, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China.
- Gansu Provincial Isotope Laboratory, Lanzhou 730300, China
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou 516029, China
| | - Yongpeng Du
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China.
| | - Haiwei Ren
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China.
| | - Hongyan Li
- Department of Medical Physics, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China.
- School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing 100039, China
- Gansu Provincial Isotope Laboratory, Lanzhou 730300, China
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou 516029, China
| |
Collapse
|
2
|
Gulwani D, Upadhyay P, Goel R, Sarangthem V, Singh TD. Nanomedicine mediated thyroid cancer diagnosis and treatment: an approach from generalized to personalized medicine. Discov Oncol 2024; 15:789. [PMID: 39692930 DOI: 10.1007/s12672-024-01677-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 12/06/2024] [Indexed: 12/19/2024] Open
Abstract
Thyroid cancer (TC) being the common endocrine malignancy is glooming steadily due to its poor prognosis. The treatment strategies of surgery, radiotherapy, and conventional chemotherapy are providing unsatisfactory output. However, combination therapy can negotiate the worse prognosis to the better, where chemoradiotherapy, radiotherapy with surgery, or dual chemotherapeutic drugs are being glorified. Chemotherapy includes the use of doxorubicin or taxanes generally with platinum-based drugs viz. cisplatin or carboplatin that are administered alone or along with multitarget tyrosine kinase inhibitors viz. Lenvatinib, Sorafenib, Sunitinib, Vandetanib, Pyrazolo-pyrimidine compounds, etc., single target tyrosine kinase inhibitors like Dabrafenib plus Trametinib and Vemurafenib against BRAF, Gefitinib against EGFR, Everolimus against mTOR, vascular disruptors like Fosbretabulin, and immunotherapy with viz. Spartalizumab and Pembrolizumab, are anti-PD-1/PD-L1 molecules. Hence, several trials are currently evaluating the possible beneficial role of combinatorial therapy in TC. Since TC is the outcome of multiple genetic alterations, it necessitates targeting the multiple factors in a single shot. These combination strategies for systemically delivering therapeutic drugs seem feasible only with the help of theranostic. To date, nanoparticle-based drug delivery systems (NDDS) have devoted themselves to diagnosis, bioimaging, imaging-assisted surgery, and therapy with high success rates. The ease of handling hybrid technologies is also selectively admirable. However, in this review, we have summarized the sequential progression of chemotherapeutic drugs to NDDS designed for Personalized Medicine (PM) against TC. Personalized medicine is an ever-growing field that will be explored in future discoveries in biomedicine, particularly cancer theranostics. Hence, our review presents a closer view of NDDS as a personalized treatment for TC. We have also discussed the primary challenges facing NDDS in meeting excellence in PM.
Collapse
Affiliation(s)
- Deepak Gulwani
- Department of Medical Oncology Laboratory, All India Institute of Medical Sciences, New Delhi, India
| | - Priyanka Upadhyay
- Department of Medical Oncology Laboratory, All India Institute of Medical Sciences, New Delhi, India
| | - Ridhima Goel
- Department of Medical Oncology Laboratory, All India Institute of Medical Sciences, New Delhi, India
| | - Vijaya Sarangthem
- Department of Pathology, All India Institute of Medical Sciences, New Delhi, India
- Department of Biochemistry and Cell Biology, School of Medicine, Cell and Matrix Research Institute, Kyungpook National University, Daegu, 41944, Korea
| | - Thoudam Debraj Singh
- Department of Medical Oncology Laboratory, All India Institute of Medical Sciences, New Delhi, India.
| |
Collapse
|
3
|
Sun N, Wang T, Zhang S. Radionuclide-labelled nanoparticles for cancer combination therapy: a review. J Nanobiotechnology 2024; 22:728. [PMID: 39578828 PMCID: PMC11585169 DOI: 10.1186/s12951-024-03020-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 11/14/2024] [Indexed: 11/24/2024] Open
Abstract
Radionuclide therapy (RT) is widely used to advanced local cancers. However, its therapeutic efficacy is limited to the radiation resistance of cancer cells. Combination therapy aims to circumvent tumor resistance, and the combination of RT with photothermal therapy (PTT), photodynamic therapy (PDT), chemotherapy (CMT), and immunotherapy has shown promising treatment outcomes. Nanotechnology holds promise in advancing combination therapy by integrating multiple therapies on a nanostructure platform. This is due to the increased surface area, passive/active targeting capabilities, high payload capacity, and enriched surface of nanomedicines, offering significant advantages in treatment sensitivity and specificity. In the first part of this review, we categorize radionuclide therapy. The second part summarizes the latest developments in combination therapies, specifically focusing on the integration of RT with PTT, PDT, CMT and immunotherapy. The last part provides an overview of the challenges and potential opportunities related to radionuclide-labelled nanoparticles for cancer combination therapy.
Collapse
Affiliation(s)
- Na Sun
- Department of Nuclear Medicine, XinQiao Hospital, Army Medical University, ChongQing, 400037, China
| | - Tao Wang
- Department of Nuclear Medicine, XinQiao Hospital, Army Medical University, ChongQing, 400037, China
| | - Song Zhang
- Department of Nuclear Medicine, XinQiao Hospital, Army Medical University, ChongQing, 400037, China.
| |
Collapse
|
4
|
Uppalapati SS, Guha L, Kumar H, Mandoli A. Nanotechnological Advancements for the Theranostic Intervention in Anaplastic Thyroid Cancer: Current Perspectives and Future Direction. Curr Cancer Drug Targets 2024; 24:245-270. [PMID: 37424349 DOI: 10.2174/1568009623666230707155145] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/30/2023] [Accepted: 06/08/2023] [Indexed: 07/11/2023]
Abstract
Anaplastic thyroid cancer is the rarest, most aggressive, and undifferentiated class of thyroid cancer, accounting for nearly forty percent of all thyroid cancer-related deaths. It is caused by alterations in many cellular pathways like MAPK, PI3K/AKT/mTOR, ALK, Wnt activation, and TP53 inactivation. Although many treatment strategies, such as radiation therapy and chemotherapy, have been proposed to treat anaplastic thyroid carcinoma, they are usually accompanied by concerns such as resistance, which may lead to the lethality of the patient. The emerging nanotechnology-based approaches cater the purposes such as targeted drug delivery and modulation in drug release patterns based on internal or external stimuli, leading to an increase in drug concentration at the site of the action that gives the required therapeutic action as well as modulation in diagnostic intervention with the help of dye property materials. Nanotechnological platforms like liposomes, micelles, dendrimers, exosomes, and various nanoparticles are available and are of high research interest for therapeutic intervention in anaplastic thyroid cancer. The pro gression of the disease can also be traced by using magnetic probes or radio-labeled probes and quantum dots that serve as a diagnostic intervention in anaplastic thyroid cancer.
Collapse
Affiliation(s)
- Sai Swetha Uppalapati
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Ahmedabad, India
| | - Lahanya Guha
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Ahmedabad, India
| | - Hemant Kumar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Ahmedabad, India
| | - Amit Mandoli
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Ahmedabad, India
| |
Collapse
|
5
|
Wang C, Zhang Y. Current Application of Nanoparticle Drug Delivery Systems to the Treatment of Anaplastic Thyroid Carcinomas. Int J Nanomedicine 2023; 18:6037-6058. [PMID: 37904863 PMCID: PMC10613415 DOI: 10.2147/ijn.s429629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 10/18/2023] [Indexed: 11/01/2023] Open
Abstract
Anaplastic thyroid carcinomas (ATCs) are a rare subtype of thyroid cancers with a low incidence but extremely high invasiveness and fatality. The treatment of ATCs is very challenging, and currently, a comprehensive individualized therapeutic strategy involving surgery, radiotherapy (RT), chemotherapy, BRAF/MEK inhibitors (BRAFi/MEKi) and immunotherapy is preferred. For ATC patients in stage IVA/IVB, a surgery-based comprehensive strategy may provide survival benefits. Unfortunately, ATC patients in IVC stage barely get benefits from the current treatment. Recently, nanoparticle delivery of siRNAs, targeted drugs, cytotoxic drugs, photosensitizers and other agents is considered as a promising anti-cancer treatment. Nanoparticle drug delivery systems have been mainly explored in the treatment of differentiated thyroid cancer (DTC). With the rapid development of drug delivery techniques and nanomaterials, using hybrid nanoparticles as the drug carrier to deliver siRNAs, targeted drugs, immune drugs, chemotherapy drugs and phototherapy drugs to ATC patients have become a hot research field. This review aims to describe latest findings of nanoparticle drug delivery systems in the treatment of ATCs, thus providing references for the further analyses.
Collapse
Affiliation(s)
- Chonggao Wang
- Department of Thyroid Surgery, Nanjing Hospital of Chinese Medicine, Nanjing, 210001, People’s Republic of China
- School of Medicine, Southeast University, Nanjing, 210001, People’s Republic of China
| | - Yewei Zhang
- Hepatopancreatobiliary Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210009, People’s Republic of China
| |
Collapse
|
6
|
Wang J, Tan J, Wu B, Wu R, Han Y, Wang C, Gao Z, Jiang D, Xia X. Customizing cancer treatment at the nanoscale: a focus on anaplastic thyroid cancer therapy. J Nanobiotechnology 2023; 21:374. [PMID: 37833748 PMCID: PMC10571362 DOI: 10.1186/s12951-023-02094-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 09/01/2023] [Indexed: 10/15/2023] Open
Abstract
Anaplastic thyroid cancer (ATC) is a rare but highly aggressive kind of thyroid cancer. Various therapeutic methods have been considered for the treatment of ATC, but its prognosis remains poor. With the advent of the nanomedicine era, the use of nanotechnology has been introduced in the treatment of various cancers and has shown great potential and broad prospects in ATC treatment. The current review meticulously describes and summarizes the research progress of various nanomedicine-based therapeutic methods of ATC, including chemotherapy, differentiation therapy, radioiodine therapy, gene therapy, targeted therapy, photothermal therapy, and combination therapy. Furthermore, potential future challenges and opportunities for the currently developed nanomedicines for ATC treatment are discussed. As far as we know, there are few reviews focusing on the nanomedicine of ATC therapy, and it is believed that this review will generate widespread interest from researchers in a variety of fields to further expedite preclinical research and clinical translation of ATC nanomedicines.
Collapse
Affiliation(s)
- Jingjing Wang
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1277 Jiefang Avenue, 430022, Wuhan, Hubei, PR China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
- Key Laboratory of Biological Targeted Therapy, the Ministry of Education, Wuhan, China
| | - Jie Tan
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bian Wu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Ruolin Wu
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1277 Jiefang Avenue, 430022, Wuhan, Hubei, PR China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
- Key Laboratory of Biological Targeted Therapy, the Ministry of Education, Wuhan, China
| | - Yanmei Han
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1277 Jiefang Avenue, 430022, Wuhan, Hubei, PR China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
- Key Laboratory of Biological Targeted Therapy, the Ministry of Education, Wuhan, China
| | - Chenyang Wang
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1277 Jiefang Avenue, 430022, Wuhan, Hubei, PR China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
- Key Laboratory of Biological Targeted Therapy, the Ministry of Education, Wuhan, China
| | - Zairong Gao
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1277 Jiefang Avenue, 430022, Wuhan, Hubei, PR China.
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China.
- Key Laboratory of Biological Targeted Therapy, the Ministry of Education, Wuhan, China.
| | - Dawei Jiang
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1277 Jiefang Avenue, 430022, Wuhan, Hubei, PR China.
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China.
- Key Laboratory of Biological Targeted Therapy, the Ministry of Education, Wuhan, China.
| | - Xiaotian Xia
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1277 Jiefang Avenue, 430022, Wuhan, Hubei, PR China.
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China.
- Key Laboratory of Biological Targeted Therapy, the Ministry of Education, Wuhan, China.
| |
Collapse
|
7
|
Li L, Wang Z, Guo H, Lin Q. Nanomaterials: a promising multimodal theranostics platform for thyroid cancer. J Mater Chem B 2023; 11:7544-7566. [PMID: 37439780 DOI: 10.1039/d3tb01175e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
Thyroid cancer is the most prevalent malignant neoplasm of the cervical region and endocrine system, characterized by a discernible upward trend in incidence over recent years. Ultrasound-guided fine needle aspiration is the current standard for preoperative diagnosis of thyroid cancer, albeit with limitations and a certain degree of false-negative outcomes. Although differentiated thyroid carcinoma generally exhibits a favorable prognosis, dedifferentiation is associated with an unfavorable clinical course. Anaplastic thyroid cancer, characterized by high malignancy and aggressiveness, remains an unmet clinical need with no effective treatments available. The emergence of nanomedicine has opened new avenues for cancer theranostics. The unique features of nanomaterials, including multifunctionality, modifiability, and various detection modes, enable non-invasive and convenient thyroid cancer diagnosis through multimodal imaging. For thyroid cancer treatment, nanomaterial-based photothermal therapy or photodynamic therapy, combined with chemotherapy, radiotherapy, or gene therapy, holds promise in reducing invasiveness and prolonging patient survival or alleviating pain in individuals with anaplastic thyroid carcinoma. Furthermore, nanomaterials enable simultaneous diagnosis and treatment of thyroid cancer. This review aims to provide a comprehensive survey of the latest developments in nanomaterials for thyroid cancer diagnosis and treatment and encourage further research in developing innovative and effective theranostic approaches for thyroid cancer.
Collapse
Affiliation(s)
- Lei Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China.
- Department of Endocrinology, Lequn Branch, The First Hospital of Jilin University, Changchun, 130031, China.
| | - Ze Wang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China.
| | - Hui Guo
- Department of Endocrinology, Lequn Branch, The First Hospital of Jilin University, Changchun, 130031, China.
| | - Quan Lin
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China.
| |
Collapse
|