1
|
Hashemi M, Mohandesi Khosroshahi E, Asadi S, Tanha M, Ghatei Mohseni F, Abdolmohammad Sagha R, Taheri E, Vazayefi P, Shekarriz H, Habibi F, Mortazi S, Khorrami R, Nabavi N, Rashidi M, Taheriazam A, Rahimzadeh P, Entezari M. Emerging roles of non-coding RNAs in modulating the PI3K/Akt pathway in cancer. Noncoding RNA Res 2025; 10:1-15. [PMID: 39296640 PMCID: PMC11406677 DOI: 10.1016/j.ncrna.2024.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 07/25/2024] [Accepted: 08/08/2024] [Indexed: 09/21/2024] Open
Abstract
Cancer progression results from the dysregulation of molecular pathways, each with unique features that can either promote or inhibit tumor growth. The complexity of carcinogenesis makes it challenging for researchers to target all pathways in cancer therapy, emphasizing the importance of focusing on specific pathways for targeted treatment. One such pathway is the PI3K/Akt pathway, which is often overexpressed in cancer. As tumor cells progress, the expression of PI3K/Akt increases, further driving cancer advancement. This study aims to explore how ncRNAs regulate the expression of PI3K/Akt. NcRNAs are found in both the cytoplasm and nucleus, and their functions vary depending on their location. They can bind to the promoters of PI3K or Akt, either reducing or increasing their expression, thus influencing tumorigenesis. The ncRNA/PI3K/Akt axis plays a crucial role in determining cell proliferation, metastasis, epithelial-mesenchymal transition (EMT), and even chemoresistance and radioresistance in human cancers. Anti-tumor compounds can target ncRNAs to modulate the PI3K/Akt axis. Moreover, ncRNAs can regulate the PI3K/Akt pathway both directly and indirectly.
Collapse
Affiliation(s)
- Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Elaheh Mohandesi Khosroshahi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Saba Asadi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mahsa Tanha
- Department of Biological Sciences, University of Alabama, Tuscaloosa, AL, United States
| | - Forough Ghatei Mohseni
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Ramina Abdolmohammad Sagha
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Elham Taheri
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Paria Vazayefi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Helya Shekarriz
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Fatemeh Habibi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Shaghayegh Mortazi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Ramin Khorrami
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Noushin Nabavi
- Independent Researchers, Victoria, British Columbia, V8V 1P7, Canada
| | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
- The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Payman Rahimzadeh
- Surgical Research Society (SRS), Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Maliheh Entezari
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| |
Collapse
|
2
|
Mou Z, Chen Y, Hu J, Hu Y, Zou L, Chen X, Liu S, Yin Q, Gong J, Li S, Mao S, Xu C, Jiang H. Icaritin inhibits the progression of urothelial cancer by suppressing PADI2-mediated neutrophil infiltration and neutrophil extracellular trap formation. Acta Pharm Sin B 2024; 14:3916-3930. [PMID: 39309483 PMCID: PMC11413672 DOI: 10.1016/j.apsb.2024.06.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/05/2024] [Accepted: 06/17/2024] [Indexed: 09/25/2024] Open
Abstract
Tumor relapse and metastasis are the major causes of mortality associated with urothelial cancer. In the tumor microenvironment, negative regulatory molecules and various immune cell subtypes suppress antitumor immunity. The inflammatory microenvironment, associated with neutrophils and neutrophil extracellular traps (NETs), promotes tumor metastasis. However, no drugs are currently available to specifically inhibit neutrophils and NETs. In this study, we first demonstrated that icaritin (ICT), a Chinese herbal remedy that is a first-line treatment for advanced and incurable hepatocellular carcinoma, reduces NETs caused by suicidal NETosis and prevents neutrophil infiltration in the tumor microenvironment. Mechanistically, ICT binds to and inhibits the expression of PADI2 in neutrophils, thereby suppressing PADI2-mediated histone citrullination. Moreover, ICT inhibits ROS generation, suppresses the MAPK signaling pathway, and inhibits NET-induced tumor metastasis. Simultaneously, ICT inhibits tumoral PADI2-mediated histone citrullination, which consequently suppresses the transcription of neutrophil-recruiting genes such as GM-CSF and IL-6. The downregulation of IL-6 expression, in turn, forms a regulatory feedback loop through the JAK2/STAT3/IL-6 axis. Through a retrospective study of clinical samples, we found a correlation between neutrophils, NETs, UCa prognosis, and immune evasion. Combining ICT with immune checkpoint inhibitors may have synergistic effects. In summary, our study demonstrated that ICT could be a novel inhibitor of NETs and a novel UCa treatment.
Collapse
Affiliation(s)
- Zezhong Mou
- Department of Urology, Huashan Hospital, Fudan University, Shanghai 200040, China
- Fudan Institute of Urology, Fudan University, Shanghai 200040, China
| | - Yiling Chen
- Department of Urology, Huashan Hospital, Fudan University, Shanghai 200040, China
- Fudan Institute of Urology, Fudan University, Shanghai 200040, China
| | - Jinzhong Hu
- Department of Urology, Huashan Hospital, Fudan University, Shanghai 200040, China
- Fudan Institute of Urology, Fudan University, Shanghai 200040, China
| | - Yun Hu
- Department of Urology, Huashan Hospital, Fudan University, Shanghai 200040, China
- Fudan Institute of Urology, Fudan University, Shanghai 200040, China
| | - Lujia Zou
- Department of Urology, Huashan Hospital, Fudan University, Shanghai 200040, China
- Fudan Institute of Urology, Fudan University, Shanghai 200040, China
| | - Xinan Chen
- Department of Urology, Huashan Hospital, Fudan University, Shanghai 200040, China
- Fudan Institute of Urology, Fudan University, Shanghai 200040, China
| | - Shenghua Liu
- Department of Urology, Huashan Hospital, Fudan University, Shanghai 200040, China
- Fudan Institute of Urology, Fudan University, Shanghai 200040, China
| | - Qiuping Yin
- Department of Urology, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Jian Gong
- Department of Urology, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Shuchen Li
- Department of Urology, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Shanhua Mao
- Department of Urology, Huashan Hospital, Fudan University, Shanghai 200040, China
- Fudan Institute of Urology, Fudan University, Shanghai 200040, China
| | - Chenyang Xu
- Department of Urology, Huashan Hospital, Fudan University, Shanghai 200040, China
- Fudan Institute of Urology, Fudan University, Shanghai 200040, China
| | - Haowen Jiang
- Department of Urology, Huashan Hospital, Fudan University, Shanghai 200040, China
- Fudan Institute of Urology, Fudan University, Shanghai 200040, China
- National Clinical Research Center for Aging and Medicine, Fudan University, Shanghai 200040, China
| |
Collapse
|
3
|
He Q, Wan S, Jiang M, Li W, Zhang Y, Zhang L, Wu M, Lin J, Zou L, Hu Y. Exploring the therapeutic potential of tonic Chinese herbal medicine for gynecological disorders: An updated review. JOURNAL OF ETHNOPHARMACOLOGY 2024; 329:118144. [PMID: 38583732 DOI: 10.1016/j.jep.2024.118144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/19/2024] [Accepted: 04/01/2024] [Indexed: 04/09/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Gynecological disorders have the characteristics of high incidence and recurrence rate, which sorely affects female's health. Since ancient times, traditional Chinese medicine (TCM), especially tonic medicine (TM), has been used to deal with gynecological disorders and has unique advantages in effectiveness and safety. AIM OF THE REVIEW In this article, we aim to summarize the research progress of TMs in-vivo and in-vitro, including their formulas, single herbs, and compounds, for gynecological disorders treatment in recent years, and to offer a reference for further research on the treatment of gynecological disorders and their clinical application in the treatment of TMs. MATERIALS AND METHODS Relevant information on the therapeutic potential of TMs against gynecological disorders was collected from several scientific databases including Web of Science, PubMed, CNKI, Google Scholar and other literature sources. RESULTS So far, there are 46 different formulas, 3 single herbs, and 24 compounds used in the treatment of various gynecological disorders such as premature ovarian failure, endometriosis breast cancer, and so on. Many experimental results have shown that TMs can regulate apoptosis, invasion, migration, oxidative stress, and the immune system. In addition, the effect of TMs in gynecological disorders treatment may be due to the regulation of VEGF, PI3K-AKT, MAPK, NF-κB, and other signaling pathways. Apparently, TMs play an active role in the treatment of gynecological disorders by regulating these signaling pathways. CONCLUSION TMs have a curative effect on the prevention and treatment of gynecological disorders. It could relieve and treat gynecological disorders through a variety of pathways. Therefore, the appropriate TM treatment program makes it more possible to treat gynecological disorders.
Collapse
Affiliation(s)
- Qizhi He
- School of Pharmacy, Zunyi Medical University, Guizhou, China; School of Preclinical Medicine, Chengdu University, Chengdu, China
| | - Shun Wan
- Hunan University of Chinese Medicine, Changsha, China
| | - Mingli Jiang
- School of Pharmacy, Zunyi Medical University, Guizhou, China
| | - Wei Li
- School of Preclinical Medicine, Chengdu University, Chengdu, China
| | - Yan Zhang
- School of Preclinical Medicine, Chengdu University, Chengdu, China
| | - Lele Zhang
- School of Preclinical Medicine, Chengdu University, Chengdu, China
| | - Mengyao Wu
- Department of Pharmacology, Zhuzhou Qianjin Pharmaceutical Co., Ltd., Zhuzhou, China
| | - Jie Lin
- Clinical Medical College & Affiliated Hospital of Chengdu University, Chengdu, China
| | - Liang Zou
- School of Pharmacy, Zunyi Medical University, Guizhou, China; Key Laboratory of Coarse Cereal Processing of Ministry of Agriculture and Rural Affairs, Chengdu University, Chengdu, China.
| | - Yingfan Hu
- School of Preclinical Medicine, Chengdu University, Chengdu, China.
| |
Collapse
|
4
|
Mousaei Ghasroldasht M, Liakath Ali F, Park HS, Hadizadeh M, Weng SHS, Huff A, Vafaei S, Al-Hendy A. A Comparative Analysis of Naïve Exosomes and Enhanced Exosomes with a Focus on the Treatment Potential in Ovarian Disorders. J Pers Med 2024; 14:482. [PMID: 38793064 PMCID: PMC11122298 DOI: 10.3390/jpm14050482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/17/2024] [Accepted: 04/27/2024] [Indexed: 05/26/2024] Open
Abstract
Exosome-based therapy has emerged as a promising strategy for addressing diverse disorders, indicating the need for further exploration of the potential therapeutic effects of the exosome cargos. This study introduces "enhanced exosomes", a novel type of exosomes developed through a novel cell culture system. These specific exosomes may become potent therapeutic agents for treating ovarian disorders. In this study, we conducted a comparative analysis of the protein and miRNA cargo compositions of enhanced exosomes and naïve exosomes. Our findings revealed distinct cargo compositions in enhanced exosomes, featuring upregulated proteins such as EFEMP1, HtrA1, PAM, and SDF4, suggesting their potential for treating ovarian disorders. MicroRNA profiling revealed that miR-1-3p, miR-103a-3p, miR-122-5p, miR-1271-5p, miR-133a-3p, miR-184, miR-203a-3p, and miR-206 are key players in regulating ovarian cancer and chemosensitivity by affecting cell cycle progression, cell proliferation, and cell development. We examined polycystic ovary syndrome and premature ovarian insufficiency and identified the altered expression of various miRNAs, such as miR-125b-5p and miR-130b-3p, for diagnostic insights. This study highlights the potential of enhanced exosomes as new therapeutic agents for women's reproductive health, offering a detailed understanding of the impact of their cargo on ovarian disorders.
Collapse
Affiliation(s)
- Mohammad Mousaei Ghasroldasht
- Department of Obstetrics and Gynecology, University of Chicago, Chicago, IL 60637, USA; (M.M.G.); (F.L.A.); (H.-S.P.); (S.V.)
| | - Farzana Liakath Ali
- Department of Obstetrics and Gynecology, University of Chicago, Chicago, IL 60637, USA; (M.M.G.); (F.L.A.); (H.-S.P.); (S.V.)
| | - Hang-Soo Park
- Department of Obstetrics and Gynecology, University of Chicago, Chicago, IL 60637, USA; (M.M.G.); (F.L.A.); (H.-S.P.); (S.V.)
- Department of Biomedical Science, Sunchon National University, Suncheon 57922, Republic of Korea
| | - Morteza Hadizadeh
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman 76198-13159, Iran
| | - Shao Huan Samuel Weng
- Proteomics Platform, Office of Shared Research Facilities, Biological Sciences Division, University of Chicago, Chicago, IL 60637, USA; (S.H.S.W.); (A.H.)
| | - Allen Huff
- Proteomics Platform, Office of Shared Research Facilities, Biological Sciences Division, University of Chicago, Chicago, IL 60637, USA; (S.H.S.W.); (A.H.)
| | - Somayeh Vafaei
- Department of Obstetrics and Gynecology, University of Chicago, Chicago, IL 60637, USA; (M.M.G.); (F.L.A.); (H.-S.P.); (S.V.)
| | - Ayman Al-Hendy
- Department of Obstetrics and Gynecology, University of Chicago, Chicago, IL 60637, USA; (M.M.G.); (F.L.A.); (H.-S.P.); (S.V.)
| |
Collapse
|
5
|
Zhou H, Zhang M, Cao H, Du X, Zhang X, Wang J, Bi X. Research Progress on the Synergistic Anti-Tumor Effect of Natural Anti-Tumor Components of Chinese Herbal Medicine Combined with Chemotherapy Drugs. Pharmaceuticals (Basel) 2023; 16:1734. [PMID: 38139860 PMCID: PMC10748242 DOI: 10.3390/ph16121734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/12/2023] [Accepted: 12/13/2023] [Indexed: 12/24/2023] Open
Abstract
The application of chemotherapy drugs in tumor treatment has a long history, but the lack of selectivity of drugs often leads to serious side effects during chemotherapy. The natural anti-tumor ingredients derived from Chinese herbal medicine are attracting increased attention due to their diverse anti-tumor effects, abundant resources, and minimal side effects. An effective anti-tumor strategy may lie in the combination of these naturally derived anti-tumor ingredients with conventional chemotherapy drugs. This approach could potentially inhibit tumor growth and the development of drug resistance in tumor cells while reducing the adverse effects of chemotherapy drugs. This review provides a comprehensive overview of the combined therapy strategies integrating natural anti-tumor components from Chinese herbal medicine with chemotherapy drugs in current research. We primarily summarize various compounds in Chinese herbal medicine exhibiting natural anti-tumor activities and the relevant mechanisms in synergistic anti-tumor combination therapy. The focus of this paper is on underlining that this integrative approach, combining natural anti-tumor components of Chinese herbal medicine with chemotherapy drugs, presents a novel cancer treatment methodology, thereby providing new insights for future oncological research.
Collapse
Affiliation(s)
- Hongrui Zhou
- College of Life Science, Liaoning University, Shenyang 110036, China
| | - Mengxue Zhang
- College of Life Science, Liaoning University, Shenyang 110036, China
| | - Huihui Cao
- College of Life Science, Liaoning University, Shenyang 110036, China
| | - Xintong Du
- College of Life Science, Liaoning University, Shenyang 110036, China
| | - Xin Zhang
- College of Life Science, Liaoning University, Shenyang 110036, China
| | - Jin Wang
- College of Life Science, Liaoning University, Shenyang 110036, China
| | - Xiuli Bi
- College of Life Science, Liaoning University, Shenyang 110036, China
- Key Laboratory for Chronic Diseases Molecular Mechanism Research and Nutritional Intervention of Shenyang, Shenyang 110036, China
| |
Collapse
|
6
|
Dai S, Li F, Xu S, Hu J, Gao L. The important role of miR-1-3p in cancers. J Transl Med 2023; 21:769. [PMID: 37907984 PMCID: PMC10617136 DOI: 10.1186/s12967-023-04649-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 10/22/2023] [Indexed: 11/02/2023] Open
Abstract
Cancer is a malignant tumor that seriously threatens human life and health. At present, the main treatment methods include surgical resection, chemotherapy, radiotherapy, and immunotherapy. However, the mechanism of tumor occurrence and development is complex, and it produces resistance to some traditional treatment methods, leading to treatment failure and a high mortality rate for patients. Therefore, exploring the molecular mechanisms of tumor occurrence, development, and drug resistance is a very important task. MiRNAs are a type of non-coding small RNA that regulate a series of biological effects by binding to the 3'-UTR of the target mRNA, degrading the mRNA, or inhibiting its translation. MiR-1-3p is an important member of them, which is abnormally expressed in various tumors and closely related to the occurrence and development of tumors. This article introduces miR-1-3p from multiple aspects, including its production and regulation, role in tumor occurrence and development, clinical significance, role in drug resistance, and approaches for targeting miR-1-3p. Intended to provide readers with a comprehensive understanding of the important role of miR-1-3p in tumors.
Collapse
Affiliation(s)
- Shangming Dai
- Department of Pharmacy, School of Pharmacy, Phase I Clinical Trial Centre, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang, China
| | - Fengjiao Li
- Department of Pharmacy, School of Pharmacy, Phase I Clinical Trial Centre, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang, China
| | - Shuoguo Xu
- Department of Pharmacy, School of Pharmacy, Phase I Clinical Trial Centre, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang, China
| | - Jinda Hu
- Department of Pharmacy, School of Pharmacy, Phase I Clinical Trial Centre, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang, China
| | - Lichen Gao
- Department of Pharmacy, School of Pharmacy, Phase I Clinical Trial Centre, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China.
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang, China.
| |
Collapse
|
7
|
Liu FY, Ding DN, Wang YR, Liu SX, Peng C, Shen F, Zhu XY, Li C, Tang LP, Han FJ. Icariin as a potential anticancer agent: a review of its biological effects on various cancers. Front Pharmacol 2023; 14:1216363. [PMID: 37456751 PMCID: PMC10347417 DOI: 10.3389/fphar.2023.1216363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 06/20/2023] [Indexed: 07/18/2023] Open
Abstract
Numerous chemical compounds used in cancer treatment have been isolated from natural herbs to address the ever-increasing cancer incidence worldwide. Therein is icariin, which has been extensively studied for its therapeutic potential due to its anti-inflammatory, antioxidant, antidepressant, and aphrodisiac properties. However, there is a lack of comprehensive and detailed review of studies on icariin in cancer treatment. Given this, this study reviews and examines the relevant literature on the chemopreventive and therapeutic potentials of icariin in cancer treatment and describes its mechanism of action. The review shows that icariin has the property of inhibiting cancer progression and reversing drug resistance. Therefore, icariin may be a valuable potential agent for the prevention and treatment of various cancers due to its natural origin, safety, and low cost compared to conventional anticancer drugs, while further research on this natural agent is needed.
Collapse
Affiliation(s)
- Fang-Yuan Liu
- The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Dan-Ni Ding
- First Clinical Medical College, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Yun-Rui Wang
- First Clinical Medical College, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Shao-Xuan Liu
- First Clinical Medical College, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Cheng Peng
- First Clinical Medical College, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Fang Shen
- First Clinical Medical College, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xiao-Ya Zhu
- First Clinical Medical College, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Chan Li
- First Clinical Medical College, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Li-Ping Tang
- Harbin Medical University Cancer Hospital, Harbin, China
| | - Feng-Juan Han
- The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
8
|
Zheng X, Dong Z, Liang Z, Liu Y, Yin X, Han M, Cui Z, Mei X, Gao X. Photothermally responsive icariin and carbon nanofiber modified hydrogels for the treatment of periodontitis. Front Bioeng Biotechnol 2023; 11:1207011. [PMID: 37260832 PMCID: PMC10227505 DOI: 10.3389/fbioe.2023.1207011] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 05/02/2023] [Indexed: 06/02/2023] Open
Abstract
Introduction: Periodontitis is a chronic inflammatory disease brought on by various bacteria, and effective antibacterial, anti-inflammatory and alveolar bone regeneration are the main goals of treating periodontal disease. Methods: In the current work, we employed Icariin (ICA) into a hydrogel modified with carbon nanofiber (CNF) to create a multifunctional composite nanoplatform. The composite was activated in the near infrared (NIR) to treat periodontitis. Results: The antibacterial results showed that the ICA+CNF@H showed 94.2% and 91.7% clearance of S. aureus and E. coli, respectively, under NIR irradiation. In vitro experiments showed that NIR-irradiated composites suppressed inflammatory factor (IL-6) and ROS expression and up-regulated the performance of anti-inflammatory factor (IL-10) in RAW264.7 cells. At the same time, the composites promoted the production of osteogenic factors in BMSCs, with an approximately 3-fold increase in alkaline phosphatase activity after 7 days and an approximately 2-fold increase in the rate of extracellular matrix mineralization after 21 days. In vivo tests showed that the alveolar bone height was clearly greater in the ICA+CNF@H (NIR) group compared to the periodontitis group. Discussion: In conclusion, ICA+CNF@H under NIR irradiation achieved a synergistic effect of antibacterial, anti-inflammatory, reduction of reactive oxygen species and promotion of osteogenesis, offering a novel approach for treating periodontitis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Xifan Mei
- *Correspondence: Xifan Mei, ; Xiuqiu Gao,
| | - Xiuqiu Gao
- *Correspondence: Xifan Mei, ; Xiuqiu Gao,
| |
Collapse
|
9
|
Gao S, Zhang X, Liu J, Ji F, Zhang Z, Meng Q, Zhang Q, Han X, Wu H, Yin Y, Lv Y, Shi W. Icariin Induces Triple-Negative Breast Cancer Cell Apoptosis and Suppresses Invasion by Inhibiting the JNK/c-Jun Signaling Pathway. Drug Des Devel Ther 2023; 17:821-836. [PMID: 36969705 PMCID: PMC10038011 DOI: 10.2147/dddt.s398887] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 03/04/2023] [Indexed: 03/29/2023] Open
Abstract
Background Breast cancer is a common cancer worldwide. Triple-negative breast cancer (TNBC) is an aggressive form of breast cancer characterized by a poor prognosis. Icariin (ICA) is a flavonoid glycoside purified from the natural product Epimedium, which is reported to exert an inhibitory effect on a variety of cancers. However, molecular mechanisms behind ICA suppressed TNBC remain elusive. Methods The curative effects of ICA on TNBC cells and potential targets were predicted by network pharmacology and molecular biology methods screening, and the mechanism of inhibition was explained through in vitro experiments such as cell function determination, Western blot analysis, molecular docking verification, etc. Results This study showed that ICA inhibits TNBC cell functions such as proliferation, migration, and invasion in a dose-dependent manner. ICA could induce redox-induced apoptosis in TNBC cell, as shown by ROS upregulation. As a result of network pharmacology, ICA was predicted to be able to inhibit the MAPK signaling pathway. ICA treatment inhibited the expression of JNK and c-Jun and downregulated the antiapoptotic gene cIAP-2. Our results suggested that ICA could induce apoptosis by inducing an excessive accumulation of ROS in cells and suppress TNBC cell invasion via the JNK/c-Jun signaling pathway. Conclusion We demonstrated that ICA can effectively inhibit cell proliferation and induced apoptosis of TNBC cells. In addition, ICA could inhibit TNBC cell invasion through the JNK/c-Jun signaling pathway. The above suggests that ICA may become a potential drug for TNBC.
Collapse
Affiliation(s)
- Shenghan Gao
- The College of Life Sciences, Northwest University, Xi’an, 710069People’s Republic of China
- Department of Thyroid Breast Surgery, Xi’an NO.3 Hospital, the Affiliated Hospital of Northwest University, Xi’an, People’s Republic of China
| | - Xinyu Zhang
- The College of Life Sciences, Northwest University, Xi’an, 710069People’s Republic of China
- Department of Thyroid Breast Surgery, Xi’an NO.3 Hospital, the Affiliated Hospital of Northwest University, Xi’an, People’s Republic of China
| | - Jie Liu
- Clinical Medical Center, Xi’an NO.3 Hospital, the Affiliated Hospital of Northwest University, Xi’an, People’s Republic of China
| | - Fuqing Ji
- Department of Thyroid Breast Surgery, Xi’an NO.3 Hospital, the Affiliated Hospital of Northwest University, Xi’an, People’s Republic of China
| | - Zhihao Zhang
- Department of Thyroid Breast Surgery, Xi’an NO.3 Hospital, the Affiliated Hospital of Northwest University, Xi’an, People’s Republic of China
| | - Qingjie Meng
- Department of Thyroid Breast Surgery, Xi’an NO.3 Hospital, the Affiliated Hospital of Northwest University, Xi’an, People’s Republic of China
| | - Qi Zhang
- The College of Life Sciences, Northwest University, Xi’an, 710069People’s Republic of China
| | - Xiaogang Han
- Department of Thyroid Breast Surgery, Xi’an NO.3 Hospital, the Affiliated Hospital of Northwest University, Xi’an, People’s Republic of China
| | - He Wu
- Department of Thyroid Breast Surgery, Xi’an NO.3 Hospital, the Affiliated Hospital of Northwest University, Xi’an, People’s Republic of China
| | - Yulong Yin
- Department of Thyroid Breast Surgery, Xi’an NO.3 Hospital, the Affiliated Hospital of Northwest University, Xi’an, People’s Republic of China
| | - Yonggang Lv
- Department of Thyroid Breast Surgery, Xi’an NO.3 Hospital, the Affiliated Hospital of Northwest University, Xi’an, People’s Republic of China
- Correspondence: Yonggang Lv, Department of Thyroid Breast Surgery, Xi’an NO.3 Hospital, the Affiliated Hospital of Northwest University, Xi’an, People’s Republic of China, Email
| | - Wenzhen Shi
- Clinical Medical Center, Xi’an NO.3 Hospital, the Affiliated Hospital of Northwest University, Xi’an, People’s Republic of China
- Wenzhen Shi, Xi’an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi’an No.3 Hospital, The Affiliated Hospital of Northwest University, School of Life Sciences and Medicine, Northwest University, Xi’an, People’s Republic of China, Tel +8615037916770, Email
| |
Collapse
|