1
|
Gottiparthy A, Lam K, Kundu S, Yang Z, Tremont-Lukats I, Tummala S. Neurofilament light chain in serum of cancer patients with acute neurological complications. CNS Oncol 2024; 13:2386233. [PMID: 39136375 PMCID: PMC11323868 DOI: 10.1080/20450907.2024.2386233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 07/19/2024] [Indexed: 08/16/2024] Open
Abstract
Aim: Neurofilament light chain (NfL) is a nonspecific sensitive biomarker of axonal damage.Methods: This case series identified cancer patients with neurological complications who had serum NfL measurements and paired these results to outcomes.Results: NfL serum levels were available in 15 patients with hematological malignancies or solid tumors. The neurological complications studied were immune effector cell-associated neurotoxicity syndrome, immune checkpoint inhibitor-related encephalopathy, anoxic brain injury, Guillain-Barre syndrome, hemophagocytic lymphohistiocytosis, transverse myelitis, paraneoplastic syndrome, central nervous system demyelinating disorder and chronic lymphocytic inflammation with pontine perivascular enhancement responsive to steroids. All patients but one with serum NfL >900 pg/ml died during hospitalization.Conclusion: Serum NfL levels consistently corresponded to death, disease severity or recovery in this series.
Collapse
Affiliation(s)
- Amulya Gottiparthy
- Stanley H. Appel Department of Neurology, Houston Methodist Hospital, Houston, TX77030, USA
| | - Keng Lam
- Department of Neuro-Oncology, Division of Cancer Medicine, Unit 431, The University of Texas MD Anderson Cancer Center, Houston, TX77030, USA
| | - Suprateek Kundu
- Department of Biostatistics, Unit 1411, University of Texas MD Anderson Cancer Center, Houston, TX77030, USA
| | - Zixi Yang
- Department of Biostatistics, Unit 1411, University of Texas MD Anderson Cancer Center, Houston, TX77030, USA
| | - Ivo Tremont-Lukats
- Kenneth R Peak Brain & Pituitary Tumor Center, Houston Methodist Hospital, Houston, TX77030, USA
| | - Sudhakar Tummala
- Department of Neuro-Oncology, Division of Cancer Medicine, Unit 431, The University of Texas MD Anderson Cancer Center, Houston, TX77030, USA
| |
Collapse
|
2
|
Velasco R, Marco C, Domingo‐Domenech E, Stradella A, Santos C, Laquente B, Ferrer G, Argyriou AA, Bruna J. Plasma neurofilament light chain levels in chemotherapy-induced peripheral neurotoxicity according to type of anticancer drug. Eur J Neurol 2024; 31:e16369. [PMID: 38952074 PMCID: PMC11295167 DOI: 10.1111/ene.16369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/19/2024] [Accepted: 05/12/2024] [Indexed: 07/03/2024]
Abstract
BACKGROUND AND PURPOSE A real-time biomarker in chemotherapy-induced peripheral neurotoxicity (CIPN) would be useful for clinical decision-making during treatment. Neurofilament light chain (NfL) can be detected in blood in the case of neuroaxonal damage. The aim of the study was to compare the levels of plasma NfL (pNfL) according to the type of chemotherapeutic agent and the severity of CIPN. METHODS This single-center prospective observational longitudinal study included patients treated with paclitaxel (TX; n = 34), brentuximab vedotin (BV; n = 29), or oxaliplatin (PT; n = 19). All patients were assessed using the Total Neuropathy Score-clinical version and Common Terminology Criteria for Adverse Events before, during, and up to 6-12 months after the end of treatment. Nerve conduction studies (NCS) were performed before and after chemotherapy discontinuation. Consecutive plasma samples were analyzed for NfL levels using a Simoa® analyzer. Changes in pNfL were compared between groups and were eventually correlated with clinical and NCS data. Clinically relevant (CR) CIPN was considered to be grade ≥ 2. RESULTS Eighty-two patients, mostly women (59.8%), were included. One third of the patients who received TX (29.4%), BV (31%), or PT (36.8%) developed CR-CIPN, respectively, without differences among them (p = 0.854). Although pNfL significantly increased during treatment and decreased throughout the recovery period in all three groups, patients receiving TX showed significantly greater and earlier changes in pNfL levels compared to the other agents (p < 0.001). CONCLUSIONS A variable change in pNfL is observed depending on the type of agent and mechanism of neurotoxicity with comparable CIPN severity, strongly implying the need to identify different cutoff values for each agent.
Collapse
Affiliation(s)
- Roser Velasco
- Neuro‐Oncology Unit of Institut d´Investigació Biomèdica de Bellvitge, Department of NeurologyHospital Universitari de Bellvitge–Institut Català d'OncologiaBarcelonaSpain
- Department of Cell Biology, Physiology, and ImmunologyInstitute of Neurosciences, Universitat Autònoma de BarcelonaBellaterraSpain
| | - Carla Marco
- Neuro‐Oncology Unit of Institut d´Investigació Biomèdica de Bellvitge, Department of NeurologyHospital Universitari de Bellvitge–Institut Català d'OncologiaBarcelonaSpain
| | - Eva Domingo‐Domenech
- Department of Haemathology, Catalan Institute of OncologyL'Hospitalet de Llobregat, Institut d´Investigació Biomèdica de BellvitgeBarcelonaSpain
| | - Agostina Stradella
- Department of Medical Oncology, Catalan Institute of OncologyL'Hospitalet de Llobregat, Institut d´Investigació Biomèdica de BellvitgeBarcelonaSpain
| | - Cristina Santos
- Department of Medical Oncology, Catalan Institute of OncologyL'Hospitalet de Llobregat, Institut d´Investigació Biomèdica de BellvitgeBarcelonaSpain
| | - Berta Laquente
- Department of Medical Oncology, Catalan Institute of OncologyL'Hospitalet de Llobregat, Institut d´Investigació Biomèdica de BellvitgeBarcelonaSpain
| | - German Ferrer
- Neuro‐Oncology Unit of Institut d´Investigació Biomèdica de Bellvitge, Department of NeurologyHospital Universitari de Bellvitge–Institut Català d'OncologiaBarcelonaSpain
| | | | - Jordi Bruna
- Neuro‐Oncology Unit of Institut d´Investigació Biomèdica de Bellvitge, Department of NeurologyHospital Universitari de Bellvitge–Institut Català d'OncologiaBarcelonaSpain
- Department of Cell Biology, Physiology, and ImmunologyInstitute of Neurosciences, Universitat Autònoma de BarcelonaBellaterraSpain
| |
Collapse
|
3
|
Duranti E, Villa C. Insights into Dysregulated Neurological Biomarkers in Cancer. Cancers (Basel) 2024; 16:2680. [PMID: 39123408 PMCID: PMC11312413 DOI: 10.3390/cancers16152680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/23/2024] [Accepted: 07/26/2024] [Indexed: 08/12/2024] Open
Abstract
The link between neurodegenerative diseases (NDs) and cancer has generated greater interest in biomedical research, with decades of global studies investigating neurodegenerative biomarkers in cancer to better understand possible connections. Tau, amyloid-β, α-synuclein, SOD1, TDP-43, and other proteins associated with nervous system diseases have also been identified in various types of solid and malignant tumors, suggesting a potential overlap in pathological processes. In this review, we aim to provide an overview of current evidence on the role of these proteins in cancer, specifically examining their effects on cell proliferation, apoptosis, chemoresistance, and tumor progression. Additionally, we discuss the diagnostic and therapeutic implications of this interconnection, emphasizing the importance of further research to completely comprehend the clinical implications of these proteins in tumors. Finally, we explore the challenges and opportunities in targeting these proteins for the development of new targeted anticancer therapies, providing insight into how to integrate knowledge of NDs in oncology research.
Collapse
Affiliation(s)
| | - Chiara Villa
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy;
| |
Collapse
|
4
|
Baka P, Steenken L, Escolano‐Lozano F, Steffen F, Papagianni A, Sommer C, Pogatzki‐Zahn E, Hirsch S, Protopapa M, Bittner S, Birklein F. Studying serum neurofilament light chain levels as a potential new biomarker for small fiber neuropathy. Eur J Neurol 2024; 31:e16192. [PMID: 38189534 PMCID: PMC11235889 DOI: 10.1111/ene.16192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/01/2023] [Accepted: 12/11/2023] [Indexed: 01/09/2024]
Abstract
BACKGROUND AND PURPOSE Diagnosing small fiber neuropathies can be challenging. To address this issue, whether serum neurofilament light chain (sNfL) could serve as a potential biomarker of damage to epidermal Aδ- and C-fibers was tested. METHODS Serum NfL levels were assessed in 30 patients diagnosed with small fiber neuropathy and were compared to a control group of 19 healthy individuals. Electrophysiological studies, quantitative sensory testing and quantification of intraepidermal nerve fiber density after skin biopsy were performed in both the proximal and distal leg. RESULTS Serum NfL levels were not increased in patients with small fiber neuropathy compared to healthy controls (9.1 ± 3.9 and 9.4 ± 3.8, p = 0.83) and did not correlate with intraepidermal nerve fiber density at the lateral calf or lateral thigh or with other parameters of small fiber impairment. CONCLUSION Serum NfL levels cannot serve as a biomarker for small fiber damage.
Collapse
Affiliation(s)
- Panoraia Baka
- Department of NeurologyUniversity Medical Center of the Johannes Gutenberg University MainzMainzGermany
| | - Livia Steenken
- Department of NeurologyUniversity Medical Center of the Johannes Gutenberg University MainzMainzGermany
| | - Fabiola Escolano‐Lozano
- Department of NeurologyUniversity Medical Center of the Johannes Gutenberg University MainzMainzGermany
| | - Falk Steffen
- Department of NeurologyUniversity Medical Center of the Johannes Gutenberg University MainzMainzGermany
| | | | - Claudia Sommer
- Department of NeurologyUniversity Hospital of WürzburgWürzburgGermany
| | - Esther Pogatzki‐Zahn
- Department of Anaesthesiology, Intensive Care and Pain MedicineUniversity Hospital MünsterMünsterGermany
| | - Silke Hirsch
- Department of NeurologyUniversity Medical Center of the Johannes Gutenberg University MainzMainzGermany
| | - Maria Protopapa
- Department of NeurologyUniversity Medical Center of the Johannes Gutenberg University MainzMainzGermany
| | - Stefan Bittner
- Department of NeurologyUniversity Medical Center of the Johannes Gutenberg University MainzMainzGermany
| | - Frank Birklein
- Department of NeurologyUniversity Medical Center of the Johannes Gutenberg University MainzMainzGermany
| |
Collapse
|
5
|
Gehr NL, Karlsson P, Timm S, Christensen S, Hvid CA, Peric J, Hansen TF, Lauritzen L, Finnerup NB, Ventzel L. Study protocol: fish oil supplement in prevention of oxaliplatin-induced peripheral neuropathy in adjuvant colorectal cancer patients - a randomized controlled trial. (OxaNeuro). BMC Cancer 2024; 24:168. [PMID: 38308227 PMCID: PMC10837958 DOI: 10.1186/s12885-024-11856-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 01/08/2024] [Indexed: 02/04/2024] Open
Abstract
BACKGROUND Oxaliplatin-induced peripheral neuropathy (OIPN) in general and painful OIPN in particular is a debilitating late effect that severely affects cancer survivors' quality of life and causes premature cessation of potentially lifesaving treatment. No preventive treatments and no effective treatment for chronic OIPN exist despite many attempts. One of several suggested mechanisms includes neuroinflammation as a contributing factor to OIPN. Fish oil containing long-chain n-3 polyunsaturated fatty acids (n-3 LCPUFAs) are precursors to specialized proresolving mediators that mediate the resolution of inflammation. Our primary hypothesis is that a high supplementation of n-3 LCPUFAs will lower the prevalence and severity of OIPN. METHODS The OxaNeuro project is an investigator-initiated, multicenter, double-blinded, randomized, placebo-controlled clinical study. We will include 120 patients eligible to receive adjuvant oxaliplatin after colorectal cancer surgery. Patients will receive fish oil capsules containing n-3 LCPUFAs or corn oil daily for 8 months. The primary endpoint is the prevalence of OIPN at 8 months defined as relevant symptoms, including one of the following: abnormal nerve conduction screening, abnormal vibration threshold test, abnormal skin biopsy, or abnormal pinprick test. Additional endpoints include the intensity and severity of OIPN-related neuropathic pain, patient-reported OIPN symptoms, quality of life, mental health symptoms, body composition, and cognitive evaluation. Furthermore, we will evaluate inflammatory biomarkers in blood samples and skin biopsies, including the potential OIPN biomarker neurofilament light protein (NfL) which will be measured before each cycle of chemotherapy. DISCUSSION If readily available fish oil supplementation alleviates OIPN prevalence and severity, it will significantly improve the lives of both cancer survivors and palliative cancer patients receiving oxaliplatin; it will improve their quality of life, optimize chemotherapeutic treatment plans by lowering the need for dose reduction or premature cessation, and potentially increase survival. TRIAL REGISTRATION ClinicalTrial.gov identifier: NCT05404230 Protocol version: 1.2, April 25th. 2023.
Collapse
Affiliation(s)
- Nina Lykkegaard Gehr
- Danish Pain Research Center, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.
- Department of Oncology, Vejle Hospital, University Hospital of Southern Denmark, Vejle, Denmark.
| | - Páll Karlsson
- Danish Pain Research Center, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Signe Timm
- Department of Oncology, Vejle Hospital, University Hospital of Southern Denmark, Vejle, Denmark
| | - Signe Christensen
- Department of Oncology, Aalborg University Hospital, Aalborg, Denmark
| | | | - Jana Peric
- Department of Oncology, Soenderborg Hospital, University Hospital of Southern Denmark, Soenderborg, Denmark
| | - Torben Frøstrup Hansen
- Department of Oncology, Vejle Hospital, University Hospital of Southern Denmark, Vejle, Denmark
| | - Lotte Lauritzen
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Nanna Brix Finnerup
- Department of Oncology, Vejle Hospital, University Hospital of Southern Denmark, Vejle, Denmark
| | - Lise Ventzel
- Department of Oncology, Vejle Hospital, University Hospital of Southern Denmark, Vejle, Denmark
| |
Collapse
|
6
|
Balayssac D, Durif J, Lambert C, Dalbos C, Chapuy E, Etienne M, Demiot C, Busserolles J, Martin V, Sapin V. Exploring Serum Biomarkers for Neuropathic Pain in Rat Models of Chemotherapy-Induced Peripheral Neuropathy: A Comparative Pilot Study with Oxaliplatin, Paclitaxel, Bortezomib, and Vincristine. TOXICS 2023; 11:1004. [PMID: 38133405 PMCID: PMC10747971 DOI: 10.3390/toxics11121004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/04/2023] [Accepted: 12/07/2023] [Indexed: 12/23/2023]
Abstract
Blood biomarkers, including neurofilament light chain (NfL), have garnered attention as potential indicators for chemotherapy-induced peripheral neuropathy (CIPN), a dose-limiting adverse effect of neurotoxic anticancer drugs. However, no blood biomarker has been established for routine application or translational research. This pilot study aimed to evaluate a limited panel of blood biomarkers in rat models of CIPN and their correlations with neuropathic pain. CIPN models were induced through repeated injections of oxaliplatin, paclitaxel, bortezomib, and vincristine. Electronic von Frey testing was used to assess tactile allodynia. Post anticancer injections, serum concentrations of 31 proteins were measured. Allodynia thresholds decreased in anticancer-treated animals compared to controls. No consistent modifications were observed in the biomarkers across CIPN models. The most noteworthy biomarkers with increased concentrations in at least two CIPN models were NfL (paclitaxel, vincristine), MCP-1, and RANTES (oxaliplatin, vincristine). Vincristine-treated animals exhibited strong correlations between LIX, MCP-1, NfL, and VEGF concentrations and tactile allodynia thresholds. No single biomarker can be recommended as a unique indicator of CIPN-related pain. Because of the study limitations (single dose of each anticancer drug, young animals, and single time measurement of biomarkers), further investigations are necessary to define the kinetics, specificities, and sensitivities of MCP-1, RANTES, and NfL.
Collapse
Affiliation(s)
- David Balayssac
- Direction de la Recherche Clinique et de l’Innovation, CHU Clermont-Ferrand, F-63000 Clermont-Ferrand, France
- INSERM U1107 NEURO-DOL, Université Clermont Auvergne, F-63000 Clermont-Ferrand, France; (C.D.); (E.C.); (J.B.)
| | - Julie Durif
- Laboratoire de Biochimie et de Génétique Moléculaire, CHU Clermont-Ferrand, F-63000 Clermont-Ferrand, France;
| | - Céline Lambert
- Unité de Biostatistiques, Direction de la Recherche Clinique et de l’Innovation, CHU Clermont-Ferrand, F-63000 Clermont-Ferrand, France;
| | - Cristelle Dalbos
- INSERM U1107 NEURO-DOL, Université Clermont Auvergne, F-63000 Clermont-Ferrand, France; (C.D.); (E.C.); (J.B.)
| | - Eric Chapuy
- INSERM U1107 NEURO-DOL, Université Clermont Auvergne, F-63000 Clermont-Ferrand, France; (C.D.); (E.C.); (J.B.)
| | - Monique Etienne
- Metabolic Adaptations to Exercise under Physiological and Pathological Conditions (AME2P), Université Clermont Auvergne, F-63000 Clermont-Ferrand, France; (M.E.)
| | - Claire Demiot
- UR 20218—Neuropathies et Innovations Thérapeutiques (NeurIT), Faculties of Medicine and Pharmacy, University of Limoges, F-87025 Limoges, France;
| | - Jérôme Busserolles
- INSERM U1107 NEURO-DOL, Université Clermont Auvergne, F-63000 Clermont-Ferrand, France; (C.D.); (E.C.); (J.B.)
| | - Vincent Martin
- Metabolic Adaptations to Exercise under Physiological and Pathological Conditions (AME2P), Université Clermont Auvergne, F-63000 Clermont-Ferrand, France; (M.E.)
- Institut Universitaire de France (IUF), F-75000 Paris, France
| | - Vincent Sapin
- Laboratoire de Biochimie et de Génétique Moléculaire, CNRS, INSERM, iGReD, CHU Clermont-Ferrand, Université Clermont Auvergne, F-63000 Clermont-Ferrand, France;
| |
Collapse
|
7
|
Park SB, Cetinkaya-Fisgin A, Argyriou AA, Höke A, Cavaletti G, Alberti P. Axonal degeneration in chemotherapy-induced peripheral neurotoxicity: clinical and experimental evidence. J Neurol Neurosurg Psychiatry 2023; 94:962-972. [PMID: 37015772 PMCID: PMC10579520 DOI: 10.1136/jnnp-2021-328323] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 02/15/2023] [Indexed: 04/06/2023]
Abstract
Multiple pathological mechanisms are involved in the development of chemotherapy-induced peripheral neurotoxicity (CIPN). Recent work has provided insights into the molecular mechanisms underlying chemotherapy-induced axonal degeneration. This review integrates evidence from preclinical and clinical work on the onset, progression and outcome of axonal degeneration in CIPN. We review likely triggers of axonal degeneration in CIPN and highlight evidence of molecular pathways involved in axonal degeneration and their relevance to CIPN, including SARM1-mediated axon degeneration pathway. We identify potential clinical markers of axonal dysfunction to provide early identification of toxicity as well as present potential treatment strategies to intervene in axonal degeneration pathways. A greater understanding of axonal degeneration processes in CIPN will provide important information regarding the development and progression of axonal dysfunction more broadly and will hopefully assist in the development of successful interventions for CIPN and other neurodegenerative disorders.
Collapse
Affiliation(s)
- Susanna B Park
- Brain and Mind Centre, Faculty of Medicine and Health, School of Medical Sciences, University of Sydney, Camperdown, New South Wales, Australia
| | - Aysel Cetinkaya-Fisgin
- Department of Neurology, Neuromuscular Division, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Andreas A Argyriou
- Department of Neurology, "Agios Andreas" State General Hospital of Patras, Patras, Greece
| | - Ahmet Höke
- Department of Neurology, Neuromuscular Division, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Guido Cavaletti
- Experimental Neurology Unit and Milan Center for Neuroscience, University of Milano-Bicocca, Monza, Italy
| | - Paola Alberti
- Experimental Neurology Unit and Milan Center for Neuroscience, University of Milano-Bicocca, Monza, Italy
| |
Collapse
|