1
|
Karaca Dogan B, Salman Yilmaz S, Izgi GN, Ozen M. Circulating non-coding RNAs as a tool for liquid biopsy in solid tumors. Epigenomics 2025; 17:335-358. [PMID: 40040488 PMCID: PMC11970797 DOI: 10.1080/17501911.2025.2467021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 02/10/2025] [Indexed: 03/06/2025] Open
Abstract
Solid tumors are significant causes of global mortality and morbidity. Recent research has primarily concentrated on finding pathology-specific molecules that can be acquired non-invasively and that can change as the disease progresses or in response to treatment. The focus of research has moved to RNA molecules that are either freely circulating in body fluids or bundled in microvesicles and exosomes because of their great stability in challenging environments, ease of accessibility, and changes in level in response to therapy. In this context, there are many non-coding RNAs that can be used for this purpose in liquid biopsies. Out of these, microRNAs have been extensively studied. However, there has been an increase of interest in studying long non-coding RNAs, piwi interacting RNAs, circular RNAs, and other small non-coding RNAs. In this article, an overview of the most researched circulating non-coding RNAs in solid tumors will be reviewed, along with a discussion of the significance of these molecules for early diagnosis, prognosis, and therapeutic targets. The publications analyzed were extracted from the PubMed database between 2008 and June 2024.
Collapse
Affiliation(s)
- Beyza Karaca Dogan
- Department of Medical Genetics, Cerrahpaşa Faculty of Medicine, Istanbul University-Cerrahpaşa, Istanbul, Turkiye
| | - Seda Salman Yilmaz
- Department of Medical Genetics, Cerrahpaşa Faculty of Medicine, Istanbul University-Cerrahpaşa, Istanbul, Turkiye
- Department of Medical Services and Techniques Medical Monitoring Techniques Pr. Vocational School of Health Services, Istanbul University-Cerrahpaşa, Istanbul, Turkiye
| | - Gizem Nur Izgi
- Department of Medical Genetics, Cerrahpaşa Faculty of Medicine, Istanbul University-Cerrahpaşa, Istanbul, Turkiye
| | - Mustafa Ozen
- Department of Medical Genetics, Cerrahpaşa Faculty of Medicine, Istanbul University-Cerrahpaşa, Istanbul, Turkiye
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
2
|
Solaimani M, Hosseinzadeh S, Abasi M. Non-coding RNAs, a double-edged sword in breast cancer prognosis. Cancer Cell Int 2025; 25:123. [PMID: 40170036 PMCID: PMC11959806 DOI: 10.1186/s12935-025-03679-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 02/06/2025] [Indexed: 04/03/2025] Open
Abstract
Cancer is a rising issue worldwide, and numerous studies have focused on understanding the underlying reasons for its occurrence and finding proper ways to defeat it. By applying technological advances, researchers are continuously uncovering and updating treatments in cancer therapy. Their vast functions in the regulation of cell growth and proliferation and their significant role in the progression of diseases, including cancer. This review provides a comprehensive analysis of ncRNAs in breast cancer, focusing on long non-coding RNAs such as HOTAIR, MALAT1, and NEAT1, as well as microRNAs such as miR-21, miR-221/222, and miR-155. These ncRNAs are pivotal in regulating cell proliferation, metastasis, drug resistance, and apoptosis. Additionally, we discuss experimental approaches that are useful for studying them and highlight the advantages and challenges of each method. We then explain the results of these clinical trials and offer insights for future studies by discussing major existing gaps. On the basis of an extensive number of studies, this review provides valuable insights into the potential of ncRNAs in cancer therapy. Key findings show that even though the functions of ncRNAs are vast and undeniable in cancer, there are still complications associated with their therapeutic use. Moreover, there is an absence of sufficient experiments regarding their application in mouse models, which is an area to work on. By emphasizing the crucial role of ncRNAs, this review underscores the need for innovative approaches and further studies to explore their potential in cancer therapy.
Collapse
Affiliation(s)
- Maryam Solaimani
- Faculty of Biotechnology, Amol University of Special Modern Technologies, Amol, Iran
| | - Sahar Hosseinzadeh
- Faculty of Pharmacy and Medical Biotechnology, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mozhgan Abasi
- Immunogenetics Research Center, Department of Tissue Engineering and Applied Cell Sciences, Faculty of Advanced Technologies in Medicine, Mazandaran University of Medical Sciences, PO Box: 48175/861, Sari, Iran.
| |
Collapse
|
3
|
Petrogiannakis G, Guadagnino I, Negueruela S, Di Guida M, Marrocco E, Pizzo M, Torella A, Zanobio M, Karali M, Medina DL, Carrella S, Banfi S. In vitro high-content screening reveals miR-429 as a protective molecule in photoreceptor degeneration. MOLECULAR THERAPY. NUCLEIC ACIDS 2025; 36:102434. [PMID: 39877002 PMCID: PMC11773019 DOI: 10.1016/j.omtn.2024.102434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 12/18/2024] [Indexed: 01/31/2025]
Abstract
Inherited retinal diseases (IRDs) are clinically and genetically heterogeneous disorders characterized by progressive photoreceptor degeneration and irreversible vision loss. MicroRNAs (miRNAs), a class of endogenous non-coding RNAs with post-transcriptional regulatory properties, are known to play a major role in retinal function, both in physiological and pathological conditions. Given their ability to simultaneously modulate multiple molecular pathways, miRNAs represent promising therapeutic tools for disorders with high genetic heterogeneity, such as IRDs. In the present study, we performed high-content imaging (HCI) screening to assess the impact of miRNA overexpression on a photoreceptor cell line undergoing light-induced degeneration. More than 1,200 miRNAs were assayed for putative protective effects in light-stressed 661W photoreceptor-like cells, and the top-performing miRNAs were further validated in independent in vitro assays. miR-429 showed the strongest cell-protective effect in vitro. Adeno-associated viral vector-mediated subretinal delivery of miR-429 in the Rho P23H/+ IRD mouse model preserved electrophysiological responses and was associated with reduced inflammatory processes in the retina. We demonstrate that the HCI in vitro assay we devised is a reliable screening method to select candidate molecules for mutation-independent therapeutic approaches for retinal disorders. Moreover, our data indicate that miR-429 represents a potential therapeutic target against photoreceptor degeneration.
Collapse
Affiliation(s)
- Georgios Petrogiannakis
- Telethon Institute of Genetics and Medicine (TIGEM), Via Campi Flegrei 34, 80078 Pozzuoli, Italy
- Department of Environmental, Biological and Pharmaceutical Science and Technology, University of Campania “Luigi Vanvitelli”, Via Vivaldi 43, 81100 Caserta, Italy
| | - Irene Guadagnino
- Telethon Institute of Genetics and Medicine (TIGEM), Via Campi Flegrei 34, 80078 Pozzuoli, Italy
| | - Santiago Negueruela
- Telethon Institute of Genetics and Medicine (TIGEM), Via Campi Flegrei 34, 80078 Pozzuoli, Italy
| | - Martina Di Guida
- Telethon Institute of Genetics and Medicine (TIGEM), Via Campi Flegrei 34, 80078 Pozzuoli, Italy
| | - Elena Marrocco
- Telethon Institute of Genetics and Medicine (TIGEM), Via Campi Flegrei 34, 80078 Pozzuoli, Italy
| | - Mariateresa Pizzo
- Telethon Institute of Genetics and Medicine (TIGEM), Via Campi Flegrei 34, 80078 Pozzuoli, Italy
| | - Annalaura Torella
- Telethon Institute of Genetics and Medicine (TIGEM), Via Campi Flegrei 34, 80078 Pozzuoli, Italy
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Via Luigi De Crecchio 7, 80138 Naples, Italy
| | - Mariateresa Zanobio
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Via Luigi De Crecchio 7, 80138 Naples, Italy
| | - Marianthi Karali
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Via Luigi De Crecchio 7, 80138 Naples, Italy
- Multidisciplinary Department of Medical, Surgical and Dental Sciences, Eye Clinic, University of Campania “Luigi Vanvitelli”, Via Pansini 5, 80131 Naples, Italy
| | - Diego Luis Medina
- Telethon Institute of Genetics and Medicine (TIGEM), Via Campi Flegrei 34, 80078 Pozzuoli, Italy
- Department of Medical and Translational Science, Federico II University, 80131 Naples, Italy
| | - Sabrina Carrella
- Biology and Evolution of Marine Organisms Department, Stazione Zoologica Anton Dohrn, Villa Comunale, 80133 Naples, Italy
| | - Sandro Banfi
- Telethon Institute of Genetics and Medicine (TIGEM), Via Campi Flegrei 34, 80078 Pozzuoli, Italy
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Via Luigi De Crecchio 7, 80138 Naples, Italy
| |
Collapse
|
4
|
Zhao SQ, Chen MJ, Chen F, Gao ZF, Li XP, Hu LY, Cheng HY, Xuan JY, Fei JG, Song ZW. ENTPD8 overexpression enhances anti-PD-L1 therapy in hepatocellular carcinoma via miR-214-5p inhibition. iScience 2025; 28:111819. [PMID: 39995876 PMCID: PMC11849663 DOI: 10.1016/j.isci.2025.111819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 11/20/2024] [Accepted: 01/13/2025] [Indexed: 02/26/2025] Open
Abstract
Hepatocellular carcinoma (HCC) is a leading cause of cancer-related deaths globally, with poor prognosis due to late diagnosis and limited treatment options. In this study, we evaluated the expression of ectonucleoside triphosphate diphosphohydrolase 8 (ENTPD8) in HCC tissues and its clinical significance. Immunohistochemistry, The Cancer Genome Atlas (TCGA) data, and single-cell expression analysis revealed reduced ENTPD8 levels in liver cancer compared to adjacent tissues, with ENTPD8 primarily expressed in tumor cells within the tumor tissue. In vitro assays demonstrated that ENTPD8 inhibits HCC cell proliferation, invasion, and migration. Mechanistically, ENTPD8 regulates programmed death-ligand 1 (PD-L1) expression through miR-214-5p modulation. In vivo, ENTPD8 overexpression combined with anti-PD-L1 treatment enhanced therapeutic efficacy in HCC mouse models. These findings suggest that ENTPD8 may serve as a prognostic marker and therapeutic target for HCC, offering potential strategies for improving treatment outcomes.
Collapse
Affiliation(s)
- Si-qi Zhao
- Department of Surgery, the Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China
| | - Min-jie Chen
- Department of Surgery, the Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China
| | - Fei Chen
- Department of Surgery, the Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China
| | - Zhao-feng Gao
- Department of Surgery, the Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China
| | - Xiao-ping Li
- Department of Surgery, the Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China
| | - Ling-yu Hu
- Department of Surgery, the Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China
| | - Hai-ying Cheng
- Department of Surgery, the Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China
| | - Jin-yan Xuan
- Department of General Practice, the Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China
| | - Jian-guo Fei
- Department of Surgery, the Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China
| | - Zheng-wei Song
- Department of Surgery, the Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China
| |
Collapse
|
5
|
Dieli R, Lioy R, Crispo F, Cascelli N, Martinelli M, Lerose R, Telesca D, Milella MR, Colella M, Loperte S, Mazzoccoli C. The Oncoprotein Mucin 1 in Pancreatic Cancer Onset and Progression: Potential Clinical Implications. Biomolecules 2025; 15:275. [PMID: 40001578 PMCID: PMC11853026 DOI: 10.3390/biom15020275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 02/03/2025] [Accepted: 02/11/2025] [Indexed: 02/27/2025] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly lethal malignancy characterized by poor prognosis, therapeutic resistance, and frequent recurrence. Current therapeutic options for PDAC include surgery, radiotherapy, immunological and targeted approaches. However, all these therapies provide only a slight improvement in patient survival. Consequently, the discovery of novel specific targets is becoming a priority to develop more effective treatments for PDAC. Mucin 1 (MUC1), a transmembrane glycoprotein, is aberrantly glycosylated and frequently overexpressed in pancreatic cancer. Recent studies highlighted the role of this oncoprotein in pancreatic carcinogenesis and its involvement in the acquisition of typical aggressive features of PDAC, like local invasion, metastases, and drug resistance. This review explores the mechanisms by which MUC1 contributes to cancer onset and progression, with a focus on its potential role as a biomarker and novel therapeutic target for pancreatic adenocarcinoma treatment.
Collapse
Affiliation(s)
- Rosalia Dieli
- Laboratory of Pre-Clinical and Translational Research, Centro di Riferimento Oncologico della Basilicata (IRCCS-CROB), 85028 Rionero in Vulture, Italy; (R.D.); (R.L.); (N.C.); (M.M.); (C.M.)
| | - Rosa Lioy
- Laboratory of Pre-Clinical and Translational Research, Centro di Riferimento Oncologico della Basilicata (IRCCS-CROB), 85028 Rionero in Vulture, Italy; (R.D.); (R.L.); (N.C.); (M.M.); (C.M.)
| | - Fabiana Crispo
- Laboratory of Pre-Clinical and Translational Research, Centro di Riferimento Oncologico della Basilicata (IRCCS-CROB), 85028 Rionero in Vulture, Italy; (R.D.); (R.L.); (N.C.); (M.M.); (C.M.)
| | - Nicoletta Cascelli
- Laboratory of Pre-Clinical and Translational Research, Centro di Riferimento Oncologico della Basilicata (IRCCS-CROB), 85028 Rionero in Vulture, Italy; (R.D.); (R.L.); (N.C.); (M.M.); (C.M.)
| | - Mara Martinelli
- Laboratory of Pre-Clinical and Translational Research, Centro di Riferimento Oncologico della Basilicata (IRCCS-CROB), 85028 Rionero in Vulture, Italy; (R.D.); (R.L.); (N.C.); (M.M.); (C.M.)
| | - Rosa Lerose
- Hospital Pharmacy, Centro di Riferimento Oncologico della Basilicata (IRCCS-CROB), 85028 Rionero in Vulture, Italy; (R.L.); (D.T.); (M.R.M.)
| | - Donatella Telesca
- Hospital Pharmacy, Centro di Riferimento Oncologico della Basilicata (IRCCS-CROB), 85028 Rionero in Vulture, Italy; (R.L.); (D.T.); (M.R.M.)
| | - Maria Rita Milella
- Hospital Pharmacy, Centro di Riferimento Oncologico della Basilicata (IRCCS-CROB), 85028 Rionero in Vulture, Italy; (R.L.); (D.T.); (M.R.M.)
| | - Marco Colella
- Department of Systems Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy;
| | - Simona Loperte
- Institute of Methodologies for Environmental Analysis, National Research Council, 85050 Tito Scalo, Italy;
| | - Carmela Mazzoccoli
- Laboratory of Pre-Clinical and Translational Research, Centro di Riferimento Oncologico della Basilicata (IRCCS-CROB), 85028 Rionero in Vulture, Italy; (R.D.); (R.L.); (N.C.); (M.M.); (C.M.)
| |
Collapse
|
6
|
Kavitha L, Kuzhalmozhi M, Vijayashree Priyadharsini J, Arun Kumar A, Umadevi KMR, Ranganathan K. Microbial signatures in head and neck squamous cell carcinoma: an in silico study. J Appl Oral Sci 2025; 33:e20240392. [PMID: 39907412 DOI: 10.1590/1678-7757-2024-0392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 12/12/2024] [Indexed: 02/06/2025] Open
Abstract
OBJECTIVES The oral cavity harbors a plethora of bacterial species. Dysbiosis of oral and gut microbiota is associated with several oral and systemic pathologies, such as cancer, obesity, diabetes, atherosclerosis and gastrointestinal diseases. Imbalance in the oral-gut microbial axis has been associated with head and neck squamous cell carcinoma (HNSCC). This study aims to analyze the bacterial profile of HNSCC across various taxonomic units, investigate molecular patterns associated with prevalent bacterial phylum in HNSCC, and compare the bacterial profile in HNSCC and gastrointestinal (GI) carcinoma using computational analysis. METHODOLOGY The microbe-host transcriptomic, proteomic, and epigenetic analyses of HNSCC and GI carcinomas were performed using The Cancer Microbiome Atlas (TCMA) database. The differential expression of the host's mRNA transcripts and proteins associated with tumor microbiome were analyzed using The University of Alabama at Birmingham Cancer data analysis (UALCAN) and Clinical Proteomic Tumor Analysis Consortium (CPTAC) websites. RESULTS A decrease in Actinobacteria and an enrichment of Flavobacteria at the class level, Neisseriales, Pasteurellales, and Campylobacterales at the order level, Pasteurellaceae, Flavobacteriaceae, Campylobacteraceae, and Peptoniphilaceae at the family level, and Hemophilus, Porphyromonas, and Leptotrichia at the genus level were observed in HNSCC compared to the normal mucosa. RICTOR protein, mRNA transcripts (HIST1H2BB, SCARNA11, TBC1D21 gene), and hsa-miR-200a-5p miRNA were significantly correlated with prevalent bacterial species in HNSCC. A major increase in Actinobacteria, Fusobacteria, and Spirochaetes was observed in HNSCC compared to GI carcinoma. CONCLUSION The oral-gut microbial dysbiosis, as reflected by the differential abundance of bacterial species in oral and GI carcinomas, suggests the implication of tumor microbiome and their genomic interactions with the host in carcinogenesis.
Collapse
Affiliation(s)
- Loganathan Kavitha
- The Tamil Nadu Dr. MGR Medical University, Ragas Dental College and Hospital, Department of Oral and Maxillofacial Pathology, Chennai, India
| | | | | | | | - Krishna Mohan Rao Umadevi
- The Tamil Nadu Dr. MGR Medical University, Ragas Dental College and Hospital, Department of Oral and Maxillofacial Pathology, Chennai, India
| | - Kannan Ranganathan
- The Tamil Nadu Dr. MGR Medical University, Ragas Dental College and Hospital, Department of Oral and Maxillofacial Pathology, Chennai, India
| |
Collapse
|
7
|
Akai M, Maeda Y, Kawami M, Yumoto R, Takano M, Uchida Y. miR-PAIR: microRNA-protein analysis of integrative relationship for the identification of significantly working miRNAs. Biochim Biophys Acta Gen Subj 2025; 1869:130746. [PMID: 39706375 DOI: 10.1016/j.bbagen.2024.130746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 12/07/2024] [Accepted: 12/12/2024] [Indexed: 12/23/2024]
Abstract
MicroRNAs (miRNAs), which are small non-coding RNAs, are recognized as important significant endogenous bio-molecules that regulate the post-transcriptional processes of target genes. However, predictive methods for significantly working miRNAs are poorly understood. The present study aimed to establish a novel method, miRNA protein analysis of integrative relationship (miR-PAIR), for the identification of effectively working miRNAs involved in physiological or pathological events. To establish the miR-PAIR, comprehensive expression data of miRNAs and proteins were obtained using small RNA-sequence and quantitative proteomics approach in the alveolar epithelial cell line, A549 treated with bleomycin (BLM) and methotrexate (MTX) as pulmonary toxic drugs. Differentially expressed miRNAs and proteins were integrated using TargetScan, a freely available web tool for predicting the target gene of miRNAs. Next, the enrichment of the integrated miRNA-protein pairs was analyzed, followed by the determination of significantly working miRNAs in BLM- and MTX-induced protein expression changes. The miR-PAIR method identified 22 downregulated and 9 upregulated miRNAs. Among them, miR-493-5p (p = 1.71E-05), an upregulated miRNA, suppressed approximately 70 % of the target proteins, and miR-598-3p (p = 1.1E-03), a downregulated miRNA, canceled 50 % of the target protein expression changes induced by BLM and MTX. Thus, a miR-PAIR could be an effective method to identify significantly working miRNAs associated with biological events such as drug-induced lung injury.
Collapse
Affiliation(s)
- Mizuki Akai
- Graduate School of Biomedical and Health Sciences, Hiroshima University, Japan
| | - Yuki Maeda
- Graduate School of Biomedical and Health Sciences, Hiroshima University, Japan
| | - Masashi Kawami
- Graduate School of Biomedical and Health Sciences, Hiroshima University, Japan.
| | - Ryoko Yumoto
- Graduate School of Biomedical and Health Sciences, Hiroshima University, Japan
| | | | - Yasuo Uchida
- Graduate School of Biomedical and Health Sciences, Hiroshima University, Japan.
| |
Collapse
|
8
|
Korytina GF, Markelov VA, Gibadullin IA, Zulkarneev SR, Nasibullin TR, Zulkarneev RH, Avzaletdinov AM, Avdeev SN, Zagidullin NS. The Relationship Between Differential Expression of Non-coding RNAs (TP53TG1, LINC00342, MALAT1, DNM3OS, miR-126-3p, miR-200a-3p, miR-18a-5p) and Protein-Coding Genes (PTEN, FOXO3) and Risk of Idiopathic Pulmonary Fibrosis. Biochem Genet 2025:10.1007/s10528-024-11012-z. [PMID: 39881079 DOI: 10.1007/s10528-024-11012-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 12/20/2024] [Indexed: 01/31/2025]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a rapidly progressive interstitial lung disease of unknown pathogenesis with no effective treatment currently available. Given the regulatory roles of lncRNAs (TP53TG1, LINC00342, H19, MALAT1, DNM3OS, MEG3), miRNAs (miR-218-5p, miR-126-3p, miR-200a-3p, miR-18a-5p, miR-29a-3p), and their target protein-coding genes (PTEN, TGFB2, FOXO3, KEAP1) in the TGF-β/SMAD3, Wnt/β-catenin, focal adhesion, and PI3K/AKT signaling pathways, we investigated the expression levels of selected genes in peripheral blood mononuclear cells (PBMCs) and lung tissue from patients with IPF. Lung tissue and blood samples were collected from 33 newly diagnosed, treatment-naive patients and 70 healthy controls. Gene expression levels were analyzed by RT-qPCR. TaqMan assays and TaqMan MicroRNA assay were employed to quantify the expression of target lncRNAs, mRNAs, and miRNAs. Our study identified significant differential expression in PBMCs from IPF patients compared to healthy controls, including lncRNAs MALAT1 (Fold Change = 3.809, P = 0.0001), TP53TG1 (Fold Change = 0.4261, P = 0.0021), and LINC00342 (Fold Change = 1.837, P = 0.0448); miRNAs miR-126-3p (Fold Change = 0.102, P = 0.0028), miR-200a-3p (Fold Change = 0.442, P = 0.0055), and miR-18a-5p (Fold Change = 0.154, P = 0.0034); and mRNAs FOXO3 (Fold Change = 4.604, P = 0.0032) and PTEN (Fold Change = 2.22, P = 0.0011). In lung tissue from IPF patients, significant expression changes were observed in TP53TG1 (Fold Change = 0.2091, P = 0.0305) and DNM3OS (Fold Change = 4.759, P = 0.05). Combined analysis of PBMCs expression levels for TP53TG1, MALAT1, miRNA miR-126-3p, and PTEN distinguished IPF patients from healthy controls with an AUC = 0.971, sensitivity = 0.80, and specificity = 0.955 (P = 6 × 10-8). These findings suggest a potential involvement of the identified ncRNAs and mRNAs in IPF pathogenesis. However, additional functional validation studies are needed to elucidate the precise molecular mechanisms by which these lncRNAs, miRNAs, and their targets contribute to PF.
Collapse
Affiliation(s)
- Gulnaz F Korytina
- Institute of Biochemistry and Genetics-Subdivision of the Ufa Federal Research Centre of the Russian Academy of Sciences (IBG UFRC RAS), Pr. Oktyabrya, 71, Ufa, 450054, Russian Federation.
- Bashkir State Medical University, Lenina Str. 3, Ufa, 450008, Russian Federation.
| | - Vitaly A Markelov
- Institute of Biochemistry and Genetics-Subdivision of the Ufa Federal Research Centre of the Russian Academy of Sciences (IBG UFRC RAS), Pr. Oktyabrya, 71, Ufa, 450054, Russian Federation
- Bashkir State Medical University, Lenina Str. 3, Ufa, 450008, Russian Federation
| | - Irshat A Gibadullin
- Bashkir State Medical University, Lenina Str. 3, Ufa, 450008, Russian Federation
| | - Shamil R Zulkarneev
- Bashkir State Medical University, Lenina Str. 3, Ufa, 450008, Russian Federation
| | - Timur R Nasibullin
- Institute of Biochemistry and Genetics-Subdivision of the Ufa Federal Research Centre of the Russian Academy of Sciences (IBG UFRC RAS), Pr. Oktyabrya, 71, Ufa, 450054, Russian Federation
| | - Rustem H Zulkarneev
- Bashkir State Medical University, Lenina Str. 3, Ufa, 450008, Russian Federation
| | | | - Sergey N Avdeev
- Sechenov First Moscow State Medical University (Sechenov University), 8-2, Trubetskaya Str., Moscow, 119991, Russian Federation
| | - Naufal Sh Zagidullin
- Bashkir State Medical University, Lenina Str. 3, Ufa, 450008, Russian Federation
| |
Collapse
|
9
|
Zheng D, Chen T, Yang K, Yin G, Chen Y, Gui J, Xu C, Lv S. Microfluidic Synthesis of miR-200c-3p Lipid Nanoparticles: Targeting ZEB2 to Alleviate Chondrocyte Damage in Osteoarthritis. Int J Nanomedicine 2025; 20:505-521. [PMID: 39830158 PMCID: PMC11742371 DOI: 10.2147/ijn.s491711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 12/21/2024] [Indexed: 01/22/2025] Open
Abstract
Introduction Osteoarthritis (OA) is a degenerative joint disease characterized by articular cartilage degeneration. Chondrocyte inflammation, apoptosis, and extracellular matrix degradation accelerated OA progression. MicroRNA (miRNA) has the potential to be a therapeutic method for osteoarthritis. However, it is difficult to penetrate the cell to exercise its biological function, and its extracellular effect is unclear. Methods lipo-AgPEI-miR-200c-3p was created by combining miR-200c-3p with silver nitrate polyvinylimine nanoparticles on a microfluidic device. The drug release curve, stability, temperature sensitivity, cytotoxicity, and the impact of lipo-AgPEI-miR-200c-3p on the expression of proteins linked to matrix disintegration, apoptosis, and inflammatory factors were all detected. Results Results showed that the particle size of Lipo-AgPEI-miR-200c-3p was about 130 nm, the Zeta potential was lowered to 1.08±0.12 mV. Lipo-AgPEI-miR-200c-3p could increase cell viability, prevent cell apoptosis, and decrease the expression levels of TNF-α, IL-6, IL-1β, and MCP-1 in ADTC5 cells following LPS stimulation. MMP3, MMP13, and ADAMTS-4 expression was downregulated whereas collagen II expression was upregulated. The ZEB2 expression was greatly elevated following LPS stimulation and dramatically decreased following transfection of miR-200c-3p. Collagen II expression rose following transfection of si-ZEB2, whereas the expression levels of inflammatory factors, apoptosis-related proteins, MMP3, MMP13, and ADAMTS-4 decreased. The dual luciferase experiment demonstrated that ZEB2 was the target gene of miR-200c-3p. Conclusion The synergistic effect of AgPEI and miR-200c-3p can inhibit the inflammatory response, apoptosis, and matrix degradation of chondrocytes. Lipo-AgPEI-miR-200c-3p can also improve transfection efficiency and obtain good physicochemical properties of drugs. miR-200c-3p may be crucial in the development of OA and can influence the target gene ZEB2, control the inflammatory response, apoptosis, and chondrocyte matrix breakdown.
Collapse
Affiliation(s)
- Dong Zheng
- Department of Orthopedics, The Affiliated Changzhou No.2 People’s Hospital with Nanjing Medical University, The Third Affiliated Hospital of Nanjing Medical University, Changzhou, People’s Republic of China
| | - Tong Chen
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, People’s Republic of China
| | - Kaiyuan Yang
- Department of Orthopedics, The Affiliated Changzhou No.2 People’s Hospital with Nanjing Medical University, The Third Affiliated Hospital of Nanjing Medical University, Changzhou, People’s Republic of China
| | - Guangrong Yin
- Department of Orthopedics, The Affiliated Changzhou No.2 People’s Hospital with Nanjing Medical University, The Third Affiliated Hospital of Nanjing Medical University, Changzhou, People’s Republic of China
| | - Yang Chen
- Changzhou Productivity Development Center, Changzhou, People’s Republic of China
| | - Jianchao Gui
- Department of Sports Medicine and Joint Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, People’s Republic of China
| | - Chao Xu
- Department of Orthopedics, The Affiliated Changzhou No.2 People’s Hospital with Nanjing Medical University, The Third Affiliated Hospital of Nanjing Medical University, Changzhou, People’s Republic of China
| | - Songwei Lv
- School of Pharmacy, Changzhou University, Changzhou, People’s Republic of China
| |
Collapse
|
10
|
El Saftawy EA, Aboulhoda BE, AbdElkhalek MA, Alghamdi MA, AlHariry NS. Non-coding RNAs in urinary bladder cancer microenvironment: Diagnostic, therapeutic, and prognostic perspective. Pathol Res Pract 2025; 266:155815. [PMID: 39824086 DOI: 10.1016/j.prp.2025.155815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 12/30/2024] [Accepted: 01/05/2025] [Indexed: 01/20/2025]
Abstract
Urinary bladder cancer (UBC) is the ninth most common cancer worldwide. Despite the reliance of UBC therapy on definite pathological grading and classifications, the clinical response among patients varies widely. The molecular basis of this type of cancer appeals to considerable research; hence, new diagnostic and therapeutic options are introduced. Convenient keywords were searched in Google Scholar, PubMed, the Egyptian Knowledge Bank (EKB), and Web of Science. The recent era of UBC research is concerned with non-coding RNAs (ncRNAs), predominantly, microRNAs (miRNAs) and long non-coding RNA (lncRNAs). In addition, snoRNAs, PIWI-interacting RNAs, mitochondrial RNAs, circular, and Schistosoma haematobium-related ncRNAs appeared to contribute to the pathogenesis of the UBC. This review underscored the recently studied ncRNAs and their importance in the pathogenesis of UBC. Besides, we introduced the prospectives regarding their diagnostic, therapeutic, and prognostic significance in UBC clinical settings. Conclusion. Oncogenic and oncosuppressor ncRNAs' definite balances and interaction within the TME of UBC are key players in the fate of the tumor. Thus, profiling ncRNA in-depth inspects the TME of the UBC for better clinical insights.
Collapse
Affiliation(s)
- Enas A El Saftawy
- Department of Medical Parasitology, Faculty of Medicine, Cairo University, Cairo, Egypt; Department of Medical Parasitology, Armed Forces College of Medicine, Cairo, Egypt
| | - Basma Emad Aboulhoda
- Department of Anatomy and Embryology, Faculty of Medicine, Cairo University, Cairo, Egypt.
| | - Marwa Ali AbdElkhalek
- Medical Biochemistry & Molecular Biology, Faculty of Medicine, Ain Shams University, Cairo, Egypt; Department of Medical Biochemistry & Molecular Biology, Armed Forces College of Medicine, Cairo, Egypt
| | - Mansour A Alghamdi
- Central Labs, King Khalid University, P.O. Box 960, AlQura'a, Abha, Saudi Arabia; Department of Anatomy, College of Medicine, King Khalid University, Abha 62529, Saudi Arabia; Genomics and Personalized Medicine Unit, The Center for Medical and Health Research, King Khalid University, Abha 62529, Saudi Arabia
| | | |
Collapse
|
11
|
Wang G, Pan L, Guo R. Restoration of miR-200 expression suppresses proliferation and mobility of pancreatic cancer cell. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-024-03717-0. [PMID: 39754677 DOI: 10.1007/s00210-024-03717-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 12/08/2024] [Indexed: 01/06/2025]
Abstract
A number of various human malignancies have been associated with abnormal microRNAs (miRNA) expression. There are evidence that miR-200 operates as both tumor suppressor and an onco-miR in a variety of tumors. In this study, we evaluated the effects of miR-200 on the proliferation and migration of pancreatic cancer cells, as well as the underlying molecular pathways. Clinical tissue samples were used to investigate the expression of miR-200 in pancreatic cancer and normal tissues, and the gene expression omnibus (GEO) database provided bioinformatics confirmation. Using the pCMV vector, miR-200 was transfected into PANC-1 pancreatic cancer cells. After transfection, expression of cancer-related genes (at the mRNA and protein levels) was evaluated. The miR-200-transfected pancreatic cancer cells' survival, invasion, migration, and apoptosis were also investigated. According to the bioinformatics analysis, decreased miR-200 expression was associated with a worse prognosis in pancreatic cancer patients. Moreover, low levels of miR-200 in pancreatic cancer tissues were approved. After transfection, pancreatic cancer cells exhibit a sustained increase in expression of miR-200, which inhibits cell viability, invasion, and migration. Additional investigations revealed that increasing expression of miR-200 increases the proportion of pancreatic cancer cells that endure apoptosis. Changes in the mRNA and protein expression of apoptosis- and metastasis-related genes may account for these findings. Our results indicate that miR-200 functions as a tumor suppressor in pancreatic cancer cells and that upregulating miR-200 levels may be a useful therapeutic strategy for pancreatic cancer patients to halt the progression of the illness.
Collapse
Affiliation(s)
- Guiming Wang
- Department of General Surgery, NHC Key Laboratory of Hormones and Development and Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianji, 300134, China
| | - Lifeng Pan
- Department of General Surgery, NHC Key Laboratory of Hormones and Development and Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianji, 300134, China
| | - Rende Guo
- Department of General Surgery, Tianjin First Center Hospital, Tianji, 300384, China.
| |
Collapse
|
12
|
Kishta MS, Khamis A, Am H, Elshaar AH, Gül D. Exploring the tumor-suppressive role of miRNA-200c in head and neck squamous cell carcinoma: Potential and mechanisms of exosome-mediated delivery for therapeutic applications. Transl Oncol 2025; 51:102216. [PMID: 39615277 DOI: 10.1016/j.tranon.2024.102216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 11/15/2024] [Accepted: 11/20/2024] [Indexed: 12/11/2024] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) remains a challenging malignancy due to its high rates of recurrence, metastasis, and resistance to conventional therapies. microRNA-200c (miRNA-200c) has emerged as a critical tumor suppressor in HNSCC, with the potential to inhibit epithelial-mesenchymal transition (EMT), which is considered as a key process in cancer metastasis and progression. Interestingly, there are also controversial findings in HNSCC characterizing miRNA-200c as oncogenic factor. This review article provides a comprehensive overview of the current understanding of miRNA-200c's general role in cancer, and particularly in HNSCC, highlighting its mechanisms of action, including the regulation of EMT and other oncogenic pathways. Additionally, the review explores the innovative approach of exosome-mediated delivery of miRNA-200c as a therapeutic strategy. Exosomes, as natural nanocarriers, offer a promising vehicle for the targeted delivery of miRNA-200c to tumor cells, potentially overcoming the limitations of traditional delivery methods and enhancing therapeutic efficacy. The review also discusses the challenges and future directions in the clinical application of miRNA-200c, particularly focusing on its potential to improve outcomes for HNSCC patients. This article seeks to provide valuable insights for researchers and clinicians working towards innovative treatments for this aggressive cancer type.
Collapse
Affiliation(s)
- Mohamed S Kishta
- Hormones Department, Medical Research and Clinical Studies Institute, Stem Cell Lab., Center of Excellence for Advanced Sciences, National Research Centre, 33 El Bohouth St., Dokki, 12622 Cairo, Egypt.
| | - Aya Khamis
- Maxillofacial and Oral Surgery, University Medical Center, 55131 Mainz, Germany; Oral Pathology Department, Faculty of Dentistry, Alexandria University, 5372066 Alexandria, Egypt
| | - Hafez Am
- Medical Biochemistry Department Faculty of medicine KafrElSheikh University, Kafr El-Sheikh, Egypt
| | | | - Désirée Gül
- Department of Otorhinolaryngology Head and Neck Surgery, Molecular and Cellular Oncology, University Medical Center, 55131 Mainz, Germany.
| |
Collapse
|
13
|
Dey A, MacLean AL. Transition paths across the EMT landscape are dictated by network logic. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.03.626660. [PMID: 39677780 PMCID: PMC11642844 DOI: 10.1101/2024.12.03.626660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
During development and cancer metastasis, cells transition reversibly from epithelial to mesenchymal via intermediate cell states during epithelial-mesenchymal transition (EMT). EMT is controlled by gene regulatory networks (GRNs) and can be described by a three-node GRN that permits tristable EMT landscapes. In this GRN, multiple inputs regulate the transcription factor ZEB that induces EMT. It is unknown how to choose the network logic for such regulation. Here we explore the effects of network logic on a tristable EMT network. We discover that the choice of additive vs multiplicative logic affects EMT phenotypes, leading to opposing predictions regarding the factors controlling EMT transition paths. We show that strong inhibition of miR-200 destabilizes the epithelial state and initiates EMT for multiplicative (AND) but not additive (OR) logic, suggesting that AND logic is in better agreement with experimental measurements of the effects of miR-200 regulation on EMT. Using experimental single-cell data, stochastic simulations, and perturbation analysis, we demonstrate how our results can be used to design experiments to infer the network logic of an EMT GRN in live cells. Our results explain how the manipulation of molecular interactions can stabilize or destabilize EMT hybrid states, of relevance during cancer progression and metastasis. More generally, we highlight the importance of the choice of network logic in GRN models in the presence of biological noise and multistability.
Collapse
Affiliation(s)
- Anupam Dey
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA 90089, USA
| | - Adam L. MacLean
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA 90089, USA
| |
Collapse
|
14
|
Li C, Wang Y, Zhang W, Yang X, Wang Y, Hou G, Wang D, Han B, Zhang Y. The antitumor mechanisms of glabridin and drug delivery strategies for enhancing its bioavailability. Front Oncol 2024; 14:1506588. [PMID: 39723390 PMCID: PMC11668808 DOI: 10.3389/fonc.2024.1506588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Accepted: 11/22/2024] [Indexed: 12/28/2024] Open
Abstract
Glabridin, a flavonoid derived from the plant Glycyrrhiza glabra, has garnered significant attention due to its diverse pharmacological effects, including antioxidant, antibacterial, anti-inflammatory, hypolipidemic, and hypoglycemic activities. Studies have shown that glabridin exhibits substantial antitumor activity by modulating the proliferation, apoptosis, metastasis, and invasion of cancer cells through the targeting of various signaling pathways, thus indicating its potential as a therapeutic agent for malignant tumors. To enhance its solubility, stability, and bioavailability, several drug delivery systems have been developed, including liposomes, cyclodextrin inclusion complexes, nanoparticles, and polymeric micelles. These de.livery systems have shown promise in preclinical studies but face challenges in clinical translation, such as issues with biocompatibility, delivery efficiency, and long-term stability. A comprehensive analysis of the antitumor mechanism of glabridin and its novel drug delivery system is still lacking. Therefore, the authors performed a comprehensive review of recent literature on the antitumor effects of glabridin and its novel drug delivery systems, covering the antitumor mechanism, action targets, and novel drug delivery systems, offering new theoretical insights and development directions for its further advancement and clinical application.
Collapse
Affiliation(s)
- Chong Li
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Yu Wang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Wenjing Zhang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Xiaoman Yang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Yufang Wang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Guanqun Hou
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Dongli Wang
- Department of Spleen and Stomach, Hospital Affiliated to Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Bingbing Han
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Yimin Zhang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
- Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
15
|
Ortiz-Melo MT, Campos JE, Sánchez-Guzmán E, Herrera-Aguirre ME, Castro-Muñozledo F. Regulation of corneal epithelial differentiation: miR-141-3p promotes the arrest of cell proliferation and enhances the expression of terminal phenotype. PLoS One 2024; 19:e0315296. [PMID: 39642122 PMCID: PMC11623785 DOI: 10.1371/journal.pone.0315296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 11/22/2024] [Indexed: 12/08/2024] Open
Abstract
In recent years, different laboratories have provided evidence on the role of miRNAs in regulation of corneal epithelial metabolism, permeability and wound healing, as well as their alteration after surgery and in some ocular pathologies. We searched the available databases reporting miRNA expression in the human eye, looking for miRNAs highly expressed in central cornea, which could be crucial for maintenance of the epithelial phenotype. Using the rabbit RCE1(5T5) cell line as a model of corneal epithelial differentiation, we describe the participation of miR-141-3p as a possible negative regulator of the proliferative/migratory phenotype in corneal epithelial cells. The expression of miR-141-3p followed a time course similar to the differentiation-linked KRT3 cytokeratin, being delayed 24-48 hours relative to PAX6 expression; such result suggested that miR-141-3p only regulates the expression of terminal phenotype. Inhibition of miR-141-3p led to increased cell proliferation and motility, and induced the expression of molecular makers characteristic of an Epithelial Mesenchymal Transition (EMT). Comparison between the transcriptional profile of cells in which miR-141-3p was knocked down, and the transcriptomes from proliferative non-differentiated and differentiated stratified epithelia suggest that miR-141-3p is involved in the expression of terminal differentiation mediating the arrest of cell proliferation and inhibiting the EMT in highly motile early differentiating cells.
Collapse
Affiliation(s)
- María Teresa Ortiz-Melo
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, México City, México
- Unidad de Investigación en Biomedicina (UBIMED), Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Estado de México, México
| | - Jorge E. Campos
- Unidad de Biotecnología y Prototipos (UBIPRO), Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Estado de México, México
| | - Erika Sánchez-Guzmán
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, México City, México
| | - María Esther Herrera-Aguirre
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, México City, México
| | - Federico Castro-Muñozledo
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, México City, México
| |
Collapse
|
16
|
Salum GM, Elaraby NM, Ahmed HA, Abd El Meguid M, Fotouh BE, Ashraf M, Elhusseny Y, Dawood RM. Evaluation of tumorigenesis-related miRNAs in breast cancer in Egyptian women: a retrospective, exploratory analysis. Sci Rep 2024; 14:29757. [PMID: 39614097 DOI: 10.1038/s41598-024-68758-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 07/26/2024] [Indexed: 12/01/2024] Open
Abstract
Breast cancer (BC) is a leading cause of global female cancer-related deaths, despite treatment advancements. A growing focus on investigating microRNA-based therapeutics and their role in BC progression. A computational analysis was performed to identify the potential miRNA-mRNA network involved in the BC pathogenesis and assist with the treatment strategy. Then, the expression levels of five circulatory miRNAs (miR-200a-3p, miR-124-3p, miR-205-5p, miR-15a-5p, and miR-155-5p) were assessed by using qRT-PCR in 75 BC patients (early-stage: n = 26 and late-stage: n = 49) and 20 healthy controls. The analysis included various (a) stages (early and late) and (b) receptor statuses (ER + ve & HER2 -ve), (HER + ve & ER -ve), and triple-negative (TNBC). In-silico analysis suggested that STAT3 serves as an efficacy biomarker suppressed by miR-124-3p. Additionally, the miR-155-5p showed the ability to activate CTNNB1 which acts as a biomarker for BC progression, to inhibit DNA repair genes (ARID2, and WEE1), and the transcriptional factor gene (TCF4). MiR-205-5p and miR-16 suppressed VEGFA expression, a survival factor for BC. MiR-200a-3p, miR-205-5p, and miR-124-3p showed downregulation in the serum of BC patients compared to controls. The ROC analysis of those miRNAs demonstrated their significant diagnostic accuracy for identifying BC patients. Additionally, miR-155-5p exhibited a significant upregulation in TNBC and can be used as an indicative marker for TNBC. This study holds significant promise for the development of noninvasive miRNA biomarkers with potential clinical applications.
Collapse
Affiliation(s)
- Ghada M Salum
- Department of Microbial Biotechnology, Biotechnology Research Institute, National Research Centre, EL Bohouth St. (Former El Tahrir St.), Dokki, P.O. 12622, Giza, Egypt
| | - Nesma M Elaraby
- Medical Molecular Genetic Department, Human Genetics and Genome Research Institute, National Research Centre, P.O. 12622, Dokki, Giza, Egypt
| | - Hoda A Ahmed
- Medical Molecular Genetic Department, Human Genetics and Genome Research Institute, National Research Centre, P.O. 12622, Dokki, Giza, Egypt
| | - Mai Abd El Meguid
- Department of Microbial Biotechnology, Biotechnology Research Institute, National Research Centre, EL Bohouth St. (Former El Tahrir St.), Dokki, P.O. 12622, Giza, Egypt
| | - Basma E Fotouh
- Department of Microbial Biotechnology, Biotechnology Research Institute, National Research Centre, EL Bohouth St. (Former El Tahrir St.), Dokki, P.O. 12622, Giza, Egypt
| | - Muhammed Ashraf
- Egypt Centre for Research and Regenerative Medicine, ECRRM, Cairo, 11517, Egypt
| | - Yasmine Elhusseny
- Medical Biochemistry and Molecular Biology Department, School of Medicine, NewGiza University, Giza, Egypt
| | - Reham M Dawood
- Department of Microbial Biotechnology, Biotechnology Research Institute, National Research Centre, EL Bohouth St. (Former El Tahrir St.), Dokki, P.O. 12622, Giza, Egypt.
| |
Collapse
|
17
|
Diamantopoulos MA, Adamopoulos PG, Scorilas A. Small non-coding RNAs as diagnostic, prognostic and predictive biomarkers of gynecological cancers: an update. Expert Rev Mol Diagn 2024; 24:979-995. [PMID: 39390687 DOI: 10.1080/14737159.2024.2408740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 09/22/2024] [Indexed: 10/12/2024]
Abstract
INTRODUCTION Non-coding RNAs (ncRNAs) comprise a heterogeneous cluster of RNA molecules. Emerging evidence suggests their involvement in various aspects of tumorigenesis, particularly in gynecological malignancies. Notably, ncRNAs have been implicated as mediators within tumor signaling pathways, exerting their influence through interactions with RNA or proteins. These findings further highlight the hypothesis that ncRNAs constitute therapeutic targets and point out their clinical potential as stratification biomarkers. AREAS COVERED The review outlines the use of small ncRNAs, including miRNAs, tRNA-derived small RNAs, PIWI-interacting RNAs and circular RNAs, for diagnostic, prognostic, and predictive purposes in gynecological cancers. It aims to increase our knowledge of their functions in tumor biology and their translation into clinical practice. EXPERT OPINION By leveraging interdisciplinary collaborations, scientists can decipher the riddle of small ncRNA biomarkers as diagnostic, prognostic and predictive biomarkers of gynecological tumors. Integrating small ncRNA-based assays into clinical practice will allow clinicians to provide cure plans for each patient, reducing the likelihood of adverse responses. Nevertheless, addressing challenges such as standardizing experimental methodologies and refining diagnostic assays is imperative for advancing small ncRNA research in gynecological cancer.
Collapse
Affiliation(s)
- Marios A Diamantopoulos
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Panagiotis G Adamopoulos
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Andreas Scorilas
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
18
|
Suri C, Swarnkar S, Bhaskar LVKS, Verma HK. Non-Coding RNA as a Biomarker in Lung Cancer. Noncoding RNA 2024; 10:50. [PMID: 39452836 PMCID: PMC11514784 DOI: 10.3390/ncrna10050050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 09/20/2024] [Accepted: 09/24/2024] [Indexed: 10/26/2024] Open
Abstract
INTRODUCTION Lung cancer remains one of the most prevalent and deadly cancers globally, with high mortality rates largely due to late-stage diagnosis, aggressive progression, and frequent recurrence. Despite advancements in diagnostic techniques and therapeutic interventions, the overall prognosis for lung cancer patients continues to be dismal. METHOD Emerging research has identified non-coding RNAs (ncRNAs), including microRNAs, long non-coding RNAs, and circular RNAs, as critical regulators of gene expression, significantly influencing cancer biology. These ncRNAs play pivotal roles in various aspects of lung cancer pathogenesis, including tumor initiation, progression, metastasis, and resistance to therapy. RESULTS We provide a comprehensive analysis of the current understanding of ncRNAs in lung cancer, emphasizing their potential as biomarkers for early diagnosis, prognostication, and the prediction of the therapeutic response. We explore the biological functions of ncRNAs, their involvement in key oncogenic pathways, and the molecular mechanisms by which they modulate gene expression and cellular processes in lung cancer. Furthermore, this review highlights recent advances in ncRNA-based diagnostic tools and therapeutic strategies, such as miRNA mimics and inhibitors, lncRNA-targeted therapies, and circRNA-modulating approaches, offering promising avenues for personalized medicine. CONCLUSION Finally, we discuss the challenges and future directions in ncRNA research, including the need for large-scale validation studies and the development of efficient delivery systems for ncRNA-based therapies. This review underscores the potential of ncRNAs to revolutionize lung cancer management by providing novel diagnostic and therapeutic options that could improve patient outcomes.
Collapse
Affiliation(s)
- Chahat Suri
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, AB T6G 1Z2, Canada;
| | - Shashikant Swarnkar
- Department of Biochemistry, C.C.M. Medical College, Bhilai 490020, Chhattisgarh, India;
| | - LVKS Bhaskar
- Department of Zoology, Guru Ghasidas Vishwavidyalaya, Bilaspur 495009, Chhattisgarh, India;
| | - Henu Kumar Verma
- Department of Immunopathology, Institute of lungs Health and Immunity, Comprehensive Pnemology Center, Helmholtz Zentrum, Neuherberg, 85764 Munich, Germany
- Lung Health and Immunity, Comprehensive Pneumology Center, Helmholtz Zentrum, Neuherberg, 85764 Munich, Germany
| |
Collapse
|
19
|
Chauhan P, Pramodh S, Hussain A, Elsori D, Lakhanpal S, Kumar R, Alsaweed M, Iqbal D, Pandey P, Al Othaim A, Khan F. Understanding the role of miRNAs in cervical cancer pathogenesis and therapeutic responses. Front Cell Dev Biol 2024; 12:1397945. [PMID: 39263322 PMCID: PMC11387185 DOI: 10.3389/fcell.2024.1397945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 08/08/2024] [Indexed: 09/13/2024] Open
Abstract
Cervical cancer (CC) is the most common cancer in women and poses a serious threat to health. Despite familiarity with the factors affecting its etiology, initiation, progression, treatment strategies, and even resistance to therapy, it is considered a significant problem for women. However, several factors have greatly affected the previous aspects of CC progression and treatment in recent decades. miRNAs are short non-coding RNA sequences that regulate gene expression by inhibiting translation of the target mRNA. miRNAs play a crucial role in CC pathogenesis by promoting cancer stem cell (CSC) proliferation, postponing apoptosis, continuing the cell cycle, and promoting invasion, angiogenesis, and metastasis. Similarly, miRNAs influence important CC-related molecular pathways, such as the PI3K/AKT/mTOR signaling pathway, Wnt/β-catenin system, JAK/STAT signaling pathway, and MAPK signaling pathway. Moreover, miRNAs affect the response of CC patients to chemotherapy and radiotherapy. Consequently, this review aims to provide an acquainted summary of onco miRNAs and tumor suppressor (TS) miRNAs and their potential role in CC pathogenesis and therapy responses by focusing on the molecular pathways that drive them.
Collapse
Affiliation(s)
| | - Sreepoorna Pramodh
- Department of Biomedical Sciences, University of Birmingham Dubai, Dubai, United Arab Emirates
| | - Arif Hussain
- School of Life Sciences, Manipal Academy of Higher Education, Dubai, United Arab Emirates
| | - Deena Elsori
- Faculty of Resilience, Rabdan Academy, Abu Dhabi, United Arab Emirates
| | - Sorabh Lakhanpal
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Rahul Kumar
- Chitkara Centre for Research and Development, Chitkara University, Baddi, Himachal Pradesh, India
| | - Mohammed Alsaweed
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al-Majmaah, Saudi Arabia
| | - Danish Iqbal
- Department of Health Information Management, College of Applied Medical Sciences, Buraydah Private Colleges, Buraydah, Saudi Arabia
| | - Pratibha Pandey
- Centre for Research Impact and Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, Punjab, India
- Centre for Research Impact and Outcome, Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Ayoub Al Othaim
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al-Majmaah, Saudi Arabia
| | - Fahad Khan
- Center for Global Health Research, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, India
| |
Collapse
|
20
|
Carter R, Petrik JJ, Moorehead RA. Overexpression of miR-200s inhibits proliferation and invasion while increasing apoptosis in murine ovarian cancer cells. PLoS One 2024; 19:e0307178. [PMID: 39028700 PMCID: PMC11259287 DOI: 10.1371/journal.pone.0307178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 07/01/2024] [Indexed: 07/21/2024] Open
Abstract
Women diagnosed with ovarian cancer frequently have a poor prognosis as their cancer is often diagnosed at more advanced stages when the cancer has metastasized. At this point surgery cannot remove all the tumor cells and while ovarian cancer cells often initially respond to chemotherapeutic agents like carboplatin and paclitaxel, resistance to these agents frequently occurs. Thus, novel therapies are required for the treatment of advanced stage ovarian cancer. One therapeutic option being explored is the regulation of non-coding RNAs such as microRNAs. An advantage of microRNAs is that they can regulate tens, hundreds and sometimes thousands of mRNAs in cells and thus may be more effective than chemotherapeutic agents or targeted therapies. To investigate the therapeutic potential of miR-200s in ovarian cancer, lentiviral vectors were used to overexpress both miR-200 clusters in two murine ovarian cancer cell lines, ID8 and 28-2. Overexpression of miR-200s reduced the expression of several mesenchymal genes and proteins, significantly inhibited proliferation as assessed by BrdU flow cytometry and significantly reduced invasion through Matrigel coated transwell inserts in both cell lines. Overexpression of miR-200s also increased basal apoptosis approximately 3-fold in both cell lines as determined by annexin V flow cytometry. Pathway analysis of RNA sequencing of control and miR-200 overexpressing ovarian cancer cells revealed that genes regulated by miR-200s were involved in processes like epithelial mesenchymal transition (EMT) and cell migration. Therefore, miR-200s can inhibit proliferation and increase apoptosis while suppressing tumor cell invasion and thus simultaneously target three key cancer pathways.
Collapse
Affiliation(s)
- Resh Carter
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Jim J. Petrik
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Roger A. Moorehead
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
21
|
Yi X, Leng P, Wang S, Liu L, Xie B. Functional Nanomaterials for the Treatment of Osteoarthritis. Int J Nanomedicine 2024; 19:6731-6756. [PMID: 38979531 PMCID: PMC11230134 DOI: 10.2147/ijn.s465243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 06/15/2024] [Indexed: 07/10/2024] Open
Abstract
Osteoarthritis (OA) is the most common degenerative joint disease, affecting more than 595 million people worldwide. Nanomaterials possess superior physicochemical properties and can influence pathological processes due to their unique structural features, such as size, surface interface, and photoelectromagnetic thermal effects. Unlike traditional OA treatments, which suffer from short half-life, low stability, poor bioavailability, and high systemic toxicity, nanotherapeutic strategies for OA offer longer half-life, enhanced targeting, improved bioavailability, and reduced systemic toxicity. These advantages effectively address the limitations of traditional therapies. This review aims to inspire researchers to develop more multifunctional nanomaterials and promote their practical application in OA treatment.
Collapse
Affiliation(s)
- Xinyue Yi
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, People’s Republic of China
- Clinical Medical College, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, People’s Republic of China
| | - Pengyuan Leng
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, People’s Republic of China
| | - Supeng Wang
- Clinical Medical College, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, People’s Republic of China
| | - Liangle Liu
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, People’s Republic of China
| | - Bingju Xie
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, People’s Republic of China
| |
Collapse
|
22
|
Kural S, Jain G, Agarwal S, Das P, Kumar L. Urinary extracellular vesicles-encapsulated miRNA signatures: A new paradigm for urinary bladder cancer diagnosis and classification. Urol Oncol 2024; 42:179-190. [PMID: 38594151 DOI: 10.1016/j.urolonc.2024.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/09/2024] [Accepted: 03/10/2024] [Indexed: 04/11/2024]
Abstract
Bladder cancer (BCa) stands as prevalent malignancy of the urinary system globally, especially among men. The clinical classification of BCa into non-muscle invasive bladder cancer (NMIBC) and muscle-invasive bladder cancer (MIBC) is crucial for prognosis and treatment decisions. However, challenges persist in current diagnostic methods like Urine cytopathology that shows poor sensitivity therefore compromising on accurately diagnosing and monitoring BCa. In recent years, research has emphasized the importance of identifying urine and blood-based specific biomarkers for BCa that can enable early and precise diagnosis, effective tumor classification, and monitoring. The convenient proximity of urine with the urinary bladder epithelium makes urine a good source of noninvasive biomarkers, in particular urinary EVs because of the packaged existence of tumor-associated molecules. Therefore, the review assesses the potential of urinary extracellular vesicles (uEVs) as noninvasive biomarkers for BCa. We have elaborately reviewed and discussed the research that delves into the role of urinary EVs in the context of BCa diagnosis and classification. Extensive research has been dedicated to investigating differential microRNA (miRNA) expressions, with the goal of establishing distinct, noninvasive biomarkers for BCa. The identification of such biomarkers has the potential to revolutionize early detection, risk stratification, therapeutic interventions, and ultimately, the long-term prognosis of BCa patients. Despite notable advancements, inconsistencies persist in the biomarkers identified, methodologies employed, and study populations. This review meticulously compiles reported miRNA biomarkers, critically assessing the variability and discrepancies observed in existing research. By synthesizing these findings, the article aims to direct future studies toward a more cohesive and dependable approach in BCa biomarker identification, fostering progress in patient care and management.
Collapse
Affiliation(s)
- Sukhad Kural
- Department of Urology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Garima Jain
- Centre for Genetic Disorders, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Sakshi Agarwal
- Department of Obstetrics & Gynaecology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Parimal Das
- Centre for Genetic Disorders, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Lalit Kumar
- Department of Urology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India.
| |
Collapse
|
23
|
Stawiski K, Fortner RT, Pestarino L, Umu SU, Kaaks R, Rounge TB, Elias KM, Fendler W, Langseth H. Validation of miRNA signatures for ovarian cancer earlier detection in the pre-diagnosis setting using machine learning approaches. Front Oncol 2024; 14:1389066. [PMID: 38983926 PMCID: PMC11231195 DOI: 10.3389/fonc.2024.1389066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 06/07/2024] [Indexed: 07/11/2024] Open
Abstract
Introduction Effective strategies for early detection of epithelial ovarian cancer are lacking. We evaluated whether a panel of 14 previously established circulating microRNAs could discriminate between cases diagnosed <2 years after serum collection and those diagnosed 2-7 years after serum collection. miRNA sequencing data from subsequent ovarian cancer cases were obtained as part of the ongoing multi-cancer JanusRNA project, utilizing pre-diagnostic serum samples from the Janus Serum Bank and linked to the Cancer Registry of Norway for cancer outcomes. Methods We included a total of 80 ovarian cancer cases contributing 80 serum samples and compared 40 serum samples from cases with samples collected <2 years prior to diagnosis with 40 serum samples from cases with sample collection ≥2 to 7 years. We employed the extreme gradient boosting (XGBoost) algorithm to train a binary classification model using 70% of the available data, while the model was tested on the remaining 30% of the dataset. Results The performance of the model was evaluated using repeated holdout validation. The previously established set of miRNAs achieved a median area under the receiver operating characteristic curve (AUC) of 0.771 in the test sets. Four out of 14 miRNAs (hsa-miR-200a-3p, hsa-miR-1246, hsa-miR-203a-3p, hsa-miR-23b-3p) exhibited higher expression levels closer to diagnosis, consistent with the previously reported upregulation in cancer cases, with statistical significance observed only for hsa-miR-200a-3p (beta=0.14; p=0.04). Discussion The discrimination potential of the selected models provides evidence of the robustness of the miRNA signature for ovarian cancer.
Collapse
Affiliation(s)
- Konrad Stawiski
- Department of Biostatistics and Translational Medicine, Medical University of Lodz, Lodz, Poland
| | - Renée T Fortner
- Department of Research, Cancer Registry of Norway, Norwegian Institute of Public Health, Oslo, Norway
- Division of Cancer Epidemiology, German Cancer Research Center, Heidelberg, Germany
| | - Luca Pestarino
- Department of Research, Cancer Registry of Norway, Norwegian Institute of Public Health, Oslo, Norway
- Department of Gynecological Oncology, Division of Cancer Medicine, Oslo University Hospital, Oslo, Norway
| | - Sinan U Umu
- Department of Research, Cancer Registry of Norway, Norwegian Institute of Public Health, Oslo, Norway
| | - Rudolf Kaaks
- Division of Cancer Epidemiology, German Cancer Research Center, Heidelberg, Germany
| | - Trine B Rounge
- Department of Research, Cancer Registry of Norway, Norwegian Institute of Public Health, Oslo, Norway
- Centre for Bioinformatics, Department of Pharmacy, University of Oslo, Oslo, Norway
| | - Kevin M Elias
- Division of Gynecologic Oncology, Department of Obstetrics, Gynecology and Reproductive Biology, Brigham and Women's Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
| | - Wojciech Fendler
- Department of Biostatistics and Translational Medicine, Medical University of Lodz, Lodz, Poland
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA, United States
| | - Hilde Langseth
- Department of Research, Cancer Registry of Norway, Norwegian Institute of Public Health, Oslo, Norway
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, United Kingdom
| |
Collapse
|
24
|
Zhang F, Li J, Xu J, Jiang X, Chen S, Nasser QA. Circular RNA circLIFR suppresses papillary thyroid cancer progression by modulating the miR-429/TIMP2 axis. J Cancer Res Clin Oncol 2024; 150:323. [PMID: 38914806 PMCID: PMC11196293 DOI: 10.1007/s00432-024-05839-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 06/06/2024] [Indexed: 06/26/2024]
Abstract
PURPOSE Circular RNAs (circRNAs) are increasingly recognized for their important roles in various cancers, including papillary thyroid cancer (PTC). The specific mechanisms by which the circLIF receptor subunit alpha (circLIFR, hsa_circ_0072309) influences PTC progression remain largely unknown. METHODS In our study, CircLIFR, miR-429, and TIMP2 levels were assessed using reverse transcription-quantitative PCR. The roles of circLIFR and miR-429 in PTC cells were determined using Cell Counting Kit-8, colony formation, wound healing, and Transwell assays. Western blotting was utilized to examine the levels of TIMP2. The direct interaction between circLIFR, TIMP2, and miR-429 was confirmed using dual-luciferase reporter, RNA immunoprecipitation, and fluorescence in situ hybridization assays. RESULTS In PTC tissues and cells, a decrease in circLIFR and TIMP2 levels, accompanied by an increase in miR-429 levels, was observed. Overexpression of circLIFR or downregulation of miR-429 effectively suppressed the proliferation and migration of PTC cells. Conversely, the knockdown of circLIFR or overexpression of miR-429 had the opposite effect. Furthermore, circLIFR overexpression suppressed tumor growth in vivo. Mechanistically, circLIFR modulated TIMP2 expression by serving as a sponge for miR-429. Rescue experiments indicated that the antitumor effect of circLIFR could be reversed by miR-429. CONCLUSION This study confirmed circLIFR as a novel tumor suppressor delayed PTC progression through the miR-429/TIMP2 axis. These findings suggested that circLIFR held promise as a potential therapeutic target for PTC.
Collapse
Affiliation(s)
- Fengyuan Zhang
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, China
| | - Jiazheng Li
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, China
| | - Jingjing Xu
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, China
| | - Xugan Jiang
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, China
| | - Shengxia Chen
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, China.
| | - Qais Ahmad Nasser
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, China.
| |
Collapse
|
25
|
Morton LM, Lee OW, Karyadi DM, Bogdanova TI, Stewart C, Hartley SW, Breeze CE, Schonfeld SJ, Cahoon EK, Drozdovitch V, Masiuk S, Chepurny M, Zurnadzhy LY, Dai J, Krznaric M, Yeager M, Hutchinson A, Hicks BD, Dagnall CL, Steinberg MK, Jones K, Jain K, Jordan B, Machiela MJ, Dawson ET, Vij V, Gastier-Foster JM, Bowen J, Mabuchi K, Hatch M, Berrington de Gonzalez A, Getz G, Tronko MD, Thomas GA, Chanock SJ. Genomic characterization of cervical lymph node metastases in papillary thyroid carcinoma following the Chornobyl accident. Nat Commun 2024; 15:5053. [PMID: 38871684 PMCID: PMC11176192 DOI: 10.1038/s41467-024-49292-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 05/23/2024] [Indexed: 06/15/2024] Open
Abstract
Childhood radioactive iodine exposure from the Chornobyl accident increased papillary thyroid carcinoma (PTC) risk. While cervical lymph node metastases (cLNM) are well-recognized in pediatric PTC, the PTC metastatic process and potential radiation association are poorly understood. Here, we analyze cLNM occurrence among 428 PTC with genomic landscape analyses and known drivers (131I-exposed = 349, unexposed = 79; mean age = 27.9 years). We show that cLNM are more frequent in PTC with fusion (55%) versus mutation (30%) drivers, although the proportion varies by specific driver gene (RET-fusion = 71%, BRAF-mutation = 38%, RAS-mutation = 5%). cLNM frequency is not associated with other characteristics, including radiation dose. cLNM molecular profiling (N = 47) demonstrates 100% driver concordance with matched primary PTCs and highly concordant mutational spectra. Transcriptome analysis reveals 17 differentially expressed genes, particularly in the HOXC cluster and BRINP3; the strongest differentially expressed microRNA also is near HOXC10. Our findings underscore the critical role of driver alterations and provide promising candidates for elucidating the biological underpinnings of PTC cLNM.
Collapse
Affiliation(s)
- Lindsay M Morton
- Radiation Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| | - Olivia W Lee
- Laboratory of Genetic Susceptibility, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Danielle M Karyadi
- Laboratory of Genetic Susceptibility, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Tetiana I Bogdanova
- Laboratory of Morphology of the Endocrine System, V.P. Komisarenko Institute of Endocrinology and Metabolism of the National Academy of Medical Sciences of Ukraine, Kyiv, Ukraine
| | - Chip Stewart
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Stephen W Hartley
- Laboratory of Genetic Susceptibility, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Charles E Breeze
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Sara J Schonfeld
- Radiation Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Elizabeth K Cahoon
- Radiation Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Vladimir Drozdovitch
- Radiation Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Sergii Masiuk
- National Research Center for Radiation Medicine of the National Academy of Medical Sciences of Ukraine, Kyiv, Ukraine
| | - Mykola Chepurny
- National Research Center for Radiation Medicine of the National Academy of Medical Sciences of Ukraine, Kyiv, Ukraine
| | - Liudmyla Yu Zurnadzhy
- Laboratory of Morphology of the Endocrine System, V.P. Komisarenko Institute of Endocrinology and Metabolism of the National Academy of Medical Sciences of Ukraine, Kyiv, Ukraine
| | - Jieqiong Dai
- Cancer Genomics Research Laboratory, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Bethesda, MD, USA
| | - Marko Krznaric
- Department of Surgery and Cancer, Imperial College London, Charing Cross Hospital, London, United Kingdom
| | - Meredith Yeager
- Cancer Genomics Research Laboratory, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Bethesda, MD, USA
| | - Amy Hutchinson
- Cancer Genomics Research Laboratory, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Bethesda, MD, USA
| | - Belynda D Hicks
- Cancer Genomics Research Laboratory, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Bethesda, MD, USA
| | - Casey L Dagnall
- Cancer Genomics Research Laboratory, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Bethesda, MD, USA
| | - Mia K Steinberg
- Cancer Genomics Research Laboratory, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Bethesda, MD, USA
| | - Kristine Jones
- Cancer Genomics Research Laboratory, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Bethesda, MD, USA
| | - Komal Jain
- Cancer Genomics Research Laboratory, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Bethesda, MD, USA
| | - Ben Jordan
- Cancer Genomics Research Laboratory, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Bethesda, MD, USA
| | - Mitchell J Machiela
- Integrative Tumor Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Eric T Dawson
- Laboratory of Genetic Susceptibility, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
- Nvidia Corporation, Santa Clara, CA, USA
| | - Vibha Vij
- Radiation Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Julie M Gastier-Foster
- Nationwide Children's Hospital, Biospecimen Core Resource, Columbus, OH, USA
- Departments of Pathology and Pediatrics, Ohio State University College of Medicine, Columbus, OH, USA
| | - Jay Bowen
- Nationwide Children's Hospital, Biospecimen Core Resource, Columbus, OH, USA
| | - Kiyohiko Mabuchi
- Radiation Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Maureen Hatch
- Radiation Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Amy Berrington de Gonzalez
- Radiation Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Gad Getz
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Cancer Research and Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Mykola D Tronko
- Department of Fundamental and Applied Problems of Endocrinology, V.P. Komisarenko Institute of Endocrinology and Metabolism of the National Academy of Medical Sciences of Ukraine, Kyiv, Ukraine
| | - Gerry A Thomas
- Department of Surgery and Cancer, Imperial College London, Charing Cross Hospital, London, United Kingdom
| | - Stephen J Chanock
- Laboratory of Genetic Susceptibility, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
26
|
Mok ETY, Chitty JL, Cox TR. miRNAs in pancreatic cancer progression and metastasis. Clin Exp Metastasis 2024; 41:163-186. [PMID: 38240887 PMCID: PMC11213741 DOI: 10.1007/s10585-023-10256-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 12/06/2023] [Indexed: 06/30/2024]
Abstract
Small non-coding RNA or microRNA (miRNA) are critical regulators of eukaryotic cells. Dysregulation of miRNA expression and function has been linked to a variety of diseases including cancer. They play a complex role in cancers, having both tumour suppressor and promoter properties. In addition, a single miRNA can be involved in regulating several mRNAs or many miRNAs can regulate a single mRNA, therefore assessing these roles is essential to a better understanding in cancer initiation and development. Pancreatic cancer is a leading cause of cancer death worldwide, in part due to the lack of diagnostic tools and limited treatment options. The most common form of pancreatic cancer, pancreatic ductal adenocarcinoma (PDAC), is characterised by major genetic mutations that drive cancer initiation and progression. The regulation or interaction of miRNAs with these cancer driving mutations suggests a strong link between the two. Understanding this link between miRNA and PDAC progression may give rise to novel treatments or diagnostic tools. This review summarises the role of miRNAs in PDAC, the downstream signalling pathways that they play a role in, how these are being used and studied as therapeutic targets as well as prognostic/diagnostic tools to improve the clinical outcome of PDAC.
Collapse
Affiliation(s)
- Ellie T Y Mok
- Matrix & Metastasis Lab, Cancer Ecosystems Program, The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, NSW, Australia
- School of Clinical Medicine, St Vincent's Healthcare Clinical Campus, UNSW Medicine and Health, UNSW Sydney, Sydney, NSW, Australia
| | - Jessica L Chitty
- Matrix & Metastasis Lab, Cancer Ecosystems Program, The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, NSW, Australia.
- School of Clinical Medicine, St Vincent's Healthcare Clinical Campus, UNSW Medicine and Health, UNSW Sydney, Sydney, NSW, Australia.
| | - Thomas R Cox
- Matrix & Metastasis Lab, Cancer Ecosystems Program, The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, NSW, Australia.
- School of Clinical Medicine, St Vincent's Healthcare Clinical Campus, UNSW Medicine and Health, UNSW Sydney, Sydney, NSW, Australia.
| |
Collapse
|
27
|
Hui San S, Ching Ngai S. E-cadherin re-expression: Its potential in combating TRAIL resistance and reversing epithelial-to-mesenchymal transition. Gene 2024; 909:148293. [PMID: 38373660 DOI: 10.1016/j.gene.2024.148293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 02/08/2024] [Accepted: 02/15/2024] [Indexed: 02/21/2024]
Abstract
The major limitation of conventional chemotherapy drugs is their lack of specificity for cancer cells. As a selective apoptosis-inducing agent, tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) has emerged as an attractive alternative. However, most of the cancer cells are found to be either intrinsically resistant to the TRAIL protein or may develop resistance after multiple treatments, and TRAIL resistance can induce epithelial-to-mesenchymal transition (EMT) at a later stage, promoting cancer invasion and migration. Interestingly, E-cadherin loss has been linked to TRAIL resistance and initiation of EMT, making E-cadherin re-expression a potential target to overcome these obstacles. Recent research suggests that re-expressing E-cadherin may reduce TRAIL resistance by enhancing TRAIL-induced apoptosis and preventing EMT by modulating EMT signalling factors. This reversal of EMT, can also aid in improving TRAIL-induced apoptosis. Therefore, this review provides remarkable insights into the mechanisms underlying E-cadherin re-expression, clinical implications, and potentiation, as well as the research gaps of E-cadherin re-expression in the current cancer treatment.
Collapse
Affiliation(s)
- Ser Hui San
- School of Biosciences, Faculty of Science and Engineering, University of Nottingham Malaysia, 43500 Semenyih, Selangor, Malaysia
| | - Siew Ching Ngai
- School of Biosciences, Faculty of Science and Engineering, University of Nottingham Malaysia, 43500 Semenyih, Selangor, Malaysia.
| |
Collapse
|
28
|
Ling Z, Yang L. Diagnostic value of miR-200 family in non-small cell lung cancer: a meta-analysis. Biomark Med 2024; 18:419-431. [PMID: 39041844 DOI: 10.2217/bmm-2024-0087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 03/19/2024] [Indexed: 07/24/2024] Open
Abstract
Aim: To investigate the diagnostic potential of the miR-200 family for early detection in non-small cell lung cancer (NSCLC). Materials & methods: A systematic search was conducted of PubMed, Embase and Web of Science databases to identify studies of the miR-200 family in NSCLC. Sixteen studies meeting the inclusion criteria were included in the analysis with a total of 20 cohorts. Results: The combined sensitivity and specificity reached 73% and 85%, with an area under the curve of 0.83. Notably, miR-200b introduced heterogeneity. Subgroup analysis highlighted miR-200a and miR-141 as more sensitive, while blood-derived miRNAs showed slightly lower accuracy. Conclusion: The miR-200 family, predominantly assessed in blood, exhibits significant diagnostic potential for NSCLC, especially in distinguishing it from benign diseases.
Collapse
Affiliation(s)
- Zhen Ling
- Graduate School, Anhui University of Chinese Medicine, Hefei, 230012, Anhui, China
| | - Lichang Yang
- Graduate School, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China
| |
Collapse
|
29
|
Nagai T, Sato M, Nishita M. miR-200c-141 induces a hybrid E/M state and promotes collective cell migration in MDA-MB-231 cells. Biochem Biophys Res Commun 2024; 709:149829. [PMID: 38552553 DOI: 10.1016/j.bbrc.2024.149829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 03/24/2024] [Indexed: 04/13/2024]
Abstract
The microRNA-200 (miR-200) family is a potent suppressor of epithelial-to-mesenchymal transition (EMT). While its role as a tumor suppressor has been well documented, recent studies suggested that it can promote cancer progression in several stages. In this study, we investigated whether the miR-200 family members play a role in the acquisition of a hybrid epithelial/mesenchymal (E/M) state, which is reported to be associated with cancer malignancy, in mesenchymal MDA-MB-231 cells. Our results demonstrated that the induction of miR-200c-141, a cluster of the miR-200 family member, can induce the expression of epithelial gene and cell-cell junction while mesenchymal markers are retained. Moreover, induction of miR-200c-141 promoted collective migration accompanied by the formation of F-actin cables anchored by adherens junction. These results suggest that the miR-200 family can induce a hybrid E/M state and endows with the ability of collective cell migration in mesenchymal cancer cells.
Collapse
Affiliation(s)
- Tomoaki Nagai
- Department of Biochemistry, Fukushima Medical University, School of Medicine, Fukushima, 960-1295, Japan.
| | - Misa Sato
- Department of Biochemistry, Fukushima Medical University, School of Medicine, Fukushima, 960-1295, Japan
| | - Michiru Nishita
- Department of Biochemistry, Fukushima Medical University, School of Medicine, Fukushima, 960-1295, Japan.
| |
Collapse
|
30
|
Khalil M, Desouky EM, Khaliefa AK, Hozyen WG, Mohamed SS, Hasona NA. Insights into the Crosstalk Between miR-200a/lncRNA H-19 and IL-6/SIRT-1 Axis in Breast Cancer. J Interferon Cytokine Res 2024; 44:191-197. [PMID: 38466957 DOI: 10.1089/jir.2023.0216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2024] Open
Abstract
Breast cancer (BC) is a highly prevalent malignancy that poses a significant threat to women's well-being. Novel biomarker identification helps to improve clinical outcomes and provide tailored treatments. Our research aims to explore the diagnostic potential of miR-200a/lncRNA H-19 and interleukin-6 (IL-6)/SIRT-1 axis crosstalk and evaluate the impact of metastasis on gene expression, which provides valuable insights into the diagnosis and treatment of BC. In this case-control study, we collected blood samples from 54 nonmetastatic breast cancer (NMBC) patients, 46 metastatic breast cancer (MBC) patients, and 50 healthy individuals. We used real time-polymerase chain reaction to measure the expression levels of lncRNA H-19 and miR-200a, whereas enzyme linked immunosorbent assay was used to determine the IL-6 levels. In addition, we evaluated SIRT-1 expression level using a Western blot assay. The levels of lncRNA H-19, miR-200a, and IL-6 were higher in BC patients, whereas SIRT-1 levels were lower. Patients with MBC had higher levels of lncRNA H-19, miR-200a, and IL-6 than those with NMBC. In addition, the expression of lncRNA H-19 and miR-200a showed a negative correlation with SIRT-1 expression, whereas the levels of lncRNA H-19 and miR-200a showed a positive correlation with IL-6 expression level. The diagnostic potential of lncRNA H-19 and miR-200a in BC is undeniable. Moreover, the robust association of IL-6/SIRT-1 with lncRNA H-19/miR-200a expression presents a promising opportunity for clinical outcomes and tailored treatments.
Collapse
Affiliation(s)
- Mera Khalil
- Department of Biochemistry, Faculty of Science, Beni-Suef University, Beni Suef, Egypt
| | - Ekram M Desouky
- Department of Biochemistry, Faculty of Science, Beni-Suef University, Beni Suef, Egypt
| | - Amal K Khaliefa
- Department of Biochemistry, Faculty of Science, Beni-Suef University, Beni Suef, Egypt
| | - Walaa G Hozyen
- Department of Biochemistry, Faculty of Science, Beni-Suef University, Beni Suef, Egypt
| | - Saeed S Mohamed
- Department of Oncology, Faculty of Medicine, Beni-Suef University, Beni Suef, Egypt
| | - Nabil A Hasona
- Department of Biochemistry, Faculty of Science, Beni-Suef University, Beni Suef, Egypt
- Department of Biochemistry, Faculty of Science, Beni Suef National University, Beni Suef, Egypt
| |
Collapse
|
31
|
Lee YJ, Kim WR, Park EG, Lee DH, Kim JM, Shin HJ, Jeong HS, Roh HY, Kim HS. Exploring the Key Signaling Pathways and ncRNAs in Colorectal Cancer. Int J Mol Sci 2024; 25:4548. [PMID: 38674135 PMCID: PMC11050203 DOI: 10.3390/ijms25084548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/19/2024] [Accepted: 04/19/2024] [Indexed: 04/28/2024] Open
Abstract
Colorectal cancer (CRC) is the third most prevalent cancer to be diagnosed, and it has a substantial mortality rate. Despite numerous studies being conducted on CRC, it remains a significant health concern. The disease-free survival rates notably decrease as CRC progresses, emphasizing the urgency for effective diagnostic and therapeutic approaches. CRC development is caused by environmental factors, which mostly lead to the disruption of signaling pathways. Among these pathways, the Wingless/Integrated (Wnt) signaling pathway, Phosphatidylinositol 3-kinase/protein kinase B/mammalian target of rapamycin (PI3K/AKT/mTOR) signaling pathway, Mitogen-Activated Protein Kinase (MAPK) signaling pathway, Transforming Growth Factor-β (TGF-β) signaling pathway, and p53 signaling pathway are considered to be important. These signaling pathways are also regulated by non-coding RNAs (ncRNAs), including microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs). They have emerged as crucial regulators of gene expression in CRC by changing their expression levels. The altered expression patterns of these ncRNAs have been implicated in CRC progression and development, suggesting their potential as diagnostic and therapeutic targets. This review provides an overview of the five key signaling pathways and regulation of ncRNAs involved in CRC pathogenesis that are studied to identify promising avenues for diagnosis and treatment strategies.
Collapse
Affiliation(s)
- Yun Ju Lee
- Department of Integrated Biological Sciences, Pusan National University, Busan 46241, Republic of Korea; (Y.J.L.); (W.R.K.); (E.G.P.); (D.H.L.); (J.-m.K.); (H.J.S.); (H.-s.J.)
- Institute of Systems Biology, Pusan National University, Busan 46241, Republic of Korea;
| | - Woo Ryung Kim
- Department of Integrated Biological Sciences, Pusan National University, Busan 46241, Republic of Korea; (Y.J.L.); (W.R.K.); (E.G.P.); (D.H.L.); (J.-m.K.); (H.J.S.); (H.-s.J.)
- Institute of Systems Biology, Pusan National University, Busan 46241, Republic of Korea;
| | - Eun Gyung Park
- Department of Integrated Biological Sciences, Pusan National University, Busan 46241, Republic of Korea; (Y.J.L.); (W.R.K.); (E.G.P.); (D.H.L.); (J.-m.K.); (H.J.S.); (H.-s.J.)
- Institute of Systems Biology, Pusan National University, Busan 46241, Republic of Korea;
| | - Du Hyeong Lee
- Department of Integrated Biological Sciences, Pusan National University, Busan 46241, Republic of Korea; (Y.J.L.); (W.R.K.); (E.G.P.); (D.H.L.); (J.-m.K.); (H.J.S.); (H.-s.J.)
- Institute of Systems Biology, Pusan National University, Busan 46241, Republic of Korea;
| | - Jung-min Kim
- Department of Integrated Biological Sciences, Pusan National University, Busan 46241, Republic of Korea; (Y.J.L.); (W.R.K.); (E.G.P.); (D.H.L.); (J.-m.K.); (H.J.S.); (H.-s.J.)
- Institute of Systems Biology, Pusan National University, Busan 46241, Republic of Korea;
| | - Hae Jin Shin
- Department of Integrated Biological Sciences, Pusan National University, Busan 46241, Republic of Korea; (Y.J.L.); (W.R.K.); (E.G.P.); (D.H.L.); (J.-m.K.); (H.J.S.); (H.-s.J.)
- Institute of Systems Biology, Pusan National University, Busan 46241, Republic of Korea;
| | - Hyeon-su Jeong
- Department of Integrated Biological Sciences, Pusan National University, Busan 46241, Republic of Korea; (Y.J.L.); (W.R.K.); (E.G.P.); (D.H.L.); (J.-m.K.); (H.J.S.); (H.-s.J.)
- Institute of Systems Biology, Pusan National University, Busan 46241, Republic of Korea;
| | - Hyun-Young Roh
- Institute of Systems Biology, Pusan National University, Busan 46241, Republic of Korea;
- Department of Biological Sciences, College of Natural Sciences, Pusan National University, Busan 46241, Republic of Korea
| | - Heui-Soo Kim
- Institute of Systems Biology, Pusan National University, Busan 46241, Republic of Korea;
- Department of Biological Sciences, College of Natural Sciences, Pusan National University, Busan 46241, Republic of Korea
| |
Collapse
|
32
|
Wang KH, Chen YY, Wang CH, Hsu KF, Chau LK, Wang SC, Chen YL. Ultrasensitive amplification-free detection of circulating miRNA via droplet-based processing of SERS tag-miRNA-magnetic nanoparticle sandwich nanocomplexes on a paper-based electrowetting-on-dielectric platform. Analyst 2024; 149:1981-1987. [PMID: 38226658 DOI: 10.1039/d3an01429k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2024]
Abstract
MicroRNAs (miRNAs) have emerged as a promising class of biomarkers for early detection of various cancers, including ovarian cancer. However, quantifying miRNAs in human blood samples is challenging owing to the issues of sensitivity and specificity. In this study, hsa-miR-200a-3p of the miR-200a sub-family, which is a biomarker of ovarian cancer, was used as the analyte to demonstrate the analytical capability of an integrated biosensing platform using an extremely sensitive surface-enhanced Raman scattering (SERS) nanotag-nanoaggregate-embedded beads (NAEBs), magnetic nanoparticles (MNPs), a pair of highly specific locked nucleic acid (LNA) probes, and a semi-automated paper-based electrowetting-on-dielectric (pEWOD) device to provide labor-less and thorough sample cleanup and recovery. A sandwich approach where NAEBs are modified by one LNA-1 probe and MNPs are modified by another LNA-2 probe was applied. Then, the target analyte miRNA-200a-3p was introduced to form a sandwich nanocomplex through hybridization with the pair of LNA probes. The pEWOD device was used to achieve short cleanup time and good recovery of the nanocomplex, bringing the total analysis time to less than 30 min. The detection limit of this approach can reach 0.26 fM through SERS detection. The versatility of this method without the need for RNA extraction from clinical samples is expected to have good potential in detecting other miRNAs.
Collapse
Affiliation(s)
- Kai-Hao Wang
- Department of Chemistry and Biochemistry and Center for Nano Bio-Detection, National Chung Cheng University, Chia-Yi 62102, Taiwan.
| | - Yuan-Yu Chen
- Department of Chemistry and Biochemistry and Center for Nano Bio-Detection, National Chung Cheng University, Chia-Yi 62102, Taiwan.
| | - Chih-Hsien Wang
- Department of Chemistry and Biochemistry and Center for Nano Bio-Detection, National Chung Cheng University, Chia-Yi 62102, Taiwan.
| | - Keng-Fu Hsu
- Department of Obstetrics and Gynecology, National Cheng Kung University Hospital, Tainan 70101, Taiwan
| | - Lai-Kwan Chau
- Department of Chemistry and Biochemistry and Center for Nano Bio-Detection, National Chung Cheng University, Chia-Yi 62102, Taiwan.
| | - Shau-Chun Wang
- Department of Chemistry and Biochemistry and Center for Nano Bio-Detection, National Chung Cheng University, Chia-Yi 62102, Taiwan.
| | - Yuh-Ling Chen
- Institute of Oral Medicine, National Cheng Kung University, Tainan 70101, Taiwan.
| |
Collapse
|
33
|
Dos Santos Valsecchi VA, Betoni FR, Ward LS, Cunha LL. Clinical and molecular impact of concurrent thyroid autoimmune disease and thyroid cancer: From the bench to bedside. Rev Endocr Metab Disord 2024; 25:5-17. [PMID: 37889392 DOI: 10.1007/s11154-023-09846-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/10/2023] [Indexed: 10/28/2023]
Abstract
The recent incorporation of immune checkpoint inhibitors targeting the PD-1 (programmed cell death receptor 1) and CTLA-4 (cytotoxic T lymphocyte antigen 4) pathways into the therapeutic armamentarium of cancer has increased the need to understand the correlation between the immune system, autoimmunity, and malignant neoplasms. Both autoimmune thyroid diseases and thyroid cancer are common clinical conditions. The molecular pathology of autoimmune thyroid diseases is characterized by the important impact of the PD-1/PD-L1 axis, an important inhibitory pathway involved in the regulation of T-cell responses. Insufficient inhibitory pathways may prone the thyroid tissue to a self-destructive immune response that leads to hypothyroidism. On the other hand, the PD-1/PD-L1 axis and other co-inhibitory pathways are the cornerstones of the immune escape mechanisms in thyroid cancer, which is a mechanism through which the immune response fails to recognize and eradicate thyroid tumor cells. This common mechanism raises the idea that thyroid autoimmunity and thyroid cancer may be opposite sides of the same coin, meaning that both conditions share similar molecular signatures. When associated with thyroid autoimmunity, thyroid cancer may have a less aggressive presentation, even though the molecular explanation of this clinical consequence is unclear. More studies are warranted to elucidate the molecular link between thyroid autoimmune disease and thyroid cancer. The prognostic impact that thyroid autoimmune disease, especially chronic lymphocytic thyroiditis, may exert on thyroid cancer raises important insights that can help physicians to better individualize the management of patients with thyroid cancer.
Collapse
Affiliation(s)
- Victor Alexandre Dos Santos Valsecchi
- Laboratory of Molecular and Translational Endocrinology, Division of Endocrinology, Federal University of São Paulo, São Paulo, Brazil
- Division of Emergency Medicine and Evidence-Based Medicine, Federal University of São Paulo, São Paulo, Brazil
| | - Felipe Rodrigues Betoni
- Laboratory of Molecular and Translational Endocrinology, Division of Endocrinology, Federal University of São Paulo, São Paulo, Brazil
- Division of Emergency Medicine and Evidence-Based Medicine, Federal University of São Paulo, São Paulo, Brazil
| | - Laura Sterian Ward
- Laboratory of Cancer Molecular Genetics, School of Medical Sciences, State University of Campinas (Unicamp), Campinas, Brazil
| | - Lucas Leite Cunha
- Laboratory of Molecular and Translational Endocrinology, Division of Endocrinology, Federal University of São Paulo, São Paulo, Brazil.
- Division of Emergency Medicine and Evidence-Based Medicine, Federal University of São Paulo, São Paulo, Brazil.
| |
Collapse
|
34
|
Bhalla M, Mittal R, Kumar M, Bhatia R, Kushwah AS. Metabolomics: A Tool to Envisage Biomarkers in Clinical Interpretation of Cancer. Curr Drug Res Rev 2024; 16:333-348. [PMID: 37702236 DOI: 10.2174/2589977516666230912120412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/22/2023] [Accepted: 07/20/2023] [Indexed: 09/14/2023]
Abstract
BACKGROUND Cancer is amongst the most dreadful ailments of modern times, and its impact continuously worsens global health systems. Early diagnosis and suitable therapeutic agents are the prime keys to managing this disease. Metabolomics deals with the complete profiling of cells and physiological phenomena in their organelles, thus helping in keen knowledge of the pathological status of the disease. It has been proven to be one of the best strategies in the early screening of cancer. OBJECTIVE This review has covered the recent updates on the promising role of metabolomics in the identification of significant biochemical markers in cancer-prone individuals that could lead to the identification of cancer in the early stages. METHODS The literature was collected through various databases, like Scopus, PubMed, and Google Scholar, with stress laid on the last ten years' publications. CONCLUSION It was assessed in this review that early recognition of cancerous growth could be achieved via complete metabolic profiling in association with transcriptomics and proteomics. The outcomes are rooted in various clinical studies that anticipated various biomarkers like tryptophan, phenylalanine, lactates, and different metabolic pathways associated with the Warburg effect. This metabolite imaging has been a fundamental step for the target acquisition, evaluation of predictive cancer biomarkers for early detection, and outlooks into cancer therapy along with critical evaluation. Significant efforts should be made to make this technique most reliable and easy.
Collapse
Affiliation(s)
- Medha Bhalla
- Department of Pharmacology, Amar Shaheed Baba Ajit Singh Jujhar Singh Memorial College of Pharmacy, Ropar, 140111, India
| | - Roopal Mittal
- Department of Pharmacology, IKG Punjab Technical University, Jalandhar, 144601, India
- Department of Pharmacology, R.K.S.D. College of Pharmacy, Kaithal, 136027, India
| | - Manish Kumar
- Department of Pharmacology, Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India
| | - Rohit Bhatia
- Department of Pharmaceutical Chemistry, Indo Soviet Friendship College of Pharmacy, Moga, 142001, India
| | - Ajay Singh Kushwah
- Department of Pharmacology, Amar Shaheed Baba Ajit Singh Jujhar Singh Memorial College of Pharmacy, Ropar, 140111, India
| |
Collapse
|
35
|
Szubert M, Nowak-Glück A, Domańska-Senderowska D, Szymańska B, Sowa P, Rycerz A, Wilczyński JR. miRNA Expression Profiles in Ovarian Endometriosis and Two Types of Ovarian Cancer-Endometriosis-Associated Ovarian Cancer and High-Grade Ovarian Cancer. Int J Mol Sci 2023; 24:17470. [PMID: 38139300 PMCID: PMC10743418 DOI: 10.3390/ijms242417470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/06/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023] Open
Abstract
Endometriosis-associated ovarian cancer (EOC) consisting of endometrioid cancer and clear-cell ovarian cancer could be promoted by many factors. miRNAs, which are small, non-coding molecules of RNA, are among them. The aim of this study was to detect miRNAs connected with the malignant transformation of endometriosis. FFPE (formalin-fixed, paraffin-embedded) samples of 135 patients operated on for endometriosis and different types of ovarian cancer (EOC and HGSOC-high-grade serous ovarian cancer) were studied. Healthy ovarian tissue was used as a control group. From the expression panel of 754 miRNAs, 7 were chosen for further tests according to their ROC (receiver operating characteristic) curves: miR-1-3p, miR-125b-1-3p, miR-31-3p, miR-200b-3p, miR-502-5p, miR-503-5p and miR-548d-5p. Furthermore, other potentially important clinical data were analysed, which included age, BMI, Ca-125 concentration, miscarriages and deliveries and concomitant diseases such as hypertension, type 2 diabetes and smoking. Among the miRNAs, miR200b-3p had the lowest expression in neoplastic tissues. miR31-3p had the highest expression in women without any lesions in the ovaries. miR-502-5p and miR-548-5p did not differ between the studied groups. The examined miRNA panel generally distinguished significantly normal ovarian tissue and endometriosis, normal ovarian tissue and cancer, and endometriosis and cancer. The malignant transformation of endometriosis is dependent on different factors. miRNA changes are among them. The studied miRNA panel described well the differences between endometriosis and EOC but had no potential to differentiate types of ovarian cancer according to their origin. Therefore, examination of a broader miRNA panel is needed and might prove itself advantageous in clinical practice.
Collapse
Affiliation(s)
- Maria Szubert
- Department of Surgical and Oncologic Gynaecology, 1st Department of Gynaecology and Obstetrics, M. Pirogow’s Teaching Hospital, Medical University of Lodz, Wilenska 37 St., 94-029 Lodz, Poland; (A.N.-G.); (A.R.); (J.R.W.)
- Club 35. Polish Society of Gynaecologists and Obstetricians, ul. Cybernetyki 7F/87, 02-677 Warsaw, Poland
| | - Anna Nowak-Glück
- Department of Surgical and Oncologic Gynaecology, 1st Department of Gynaecology and Obstetrics, M. Pirogow’s Teaching Hospital, Medical University of Lodz, Wilenska 37 St., 94-029 Lodz, Poland; (A.N.-G.); (A.R.); (J.R.W.)
| | | | - Bożena Szymańska
- Research Laboratory CoreLab, Medical University of Lodz, Mazowiecka 6/8 St., 92-215 Lodz, Poland;
| | - Piotr Sowa
- Department of Pathology, M. Pirogow’s Teaching Hospital, Wilenska 37 St., 94-029 Lodz, Poland;
| | - Aleksander Rycerz
- Department of Surgical and Oncologic Gynaecology, 1st Department of Gynaecology and Obstetrics, M. Pirogow’s Teaching Hospital, Medical University of Lodz, Wilenska 37 St., 94-029 Lodz, Poland; (A.N.-G.); (A.R.); (J.R.W.)
- Department of Biostatistics and Translational Medicine, Medical University of Lodz, Mazowiecka 15 St., 92-215 Lodz, Poland
| | - Jacek R. Wilczyński
- Department of Surgical and Oncologic Gynaecology, 1st Department of Gynaecology and Obstetrics, M. Pirogow’s Teaching Hospital, Medical University of Lodz, Wilenska 37 St., 94-029 Lodz, Poland; (A.N.-G.); (A.R.); (J.R.W.)
| |
Collapse
|
36
|
Tariq M, Richard V, Kerin MJ. MicroRNAs as Molecular Biomarkers for the Characterization of Basal-like Breast Tumor Subtype. Biomedicines 2023; 11:3007. [PMID: 38002007 PMCID: PMC10669494 DOI: 10.3390/biomedicines11113007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/03/2023] [Accepted: 11/07/2023] [Indexed: 11/26/2023] Open
Abstract
Breast cancer is a heterogeneous disease highlighted by the presence of multiple tumor variants and the basal-like breast cancer (BLBC) is considered to be the most aggressive variant with limited therapeutics and a poor prognosis. Though the absence of detectable protein and hormonal receptors as biomarkers hinders early detection, the integration of genomic and transcriptomic profiling led to the identification of additional variants in BLBC. The high-throughput analysis of tissue-specific micro-ribonucleic acids (microRNAs/miRNAs) that are deemed to have a significant role in the development of breast cancer also displayed distinct expression profiles in each subtype of breast cancer and thus emerged to be a robust approach for the precise characterization of the BLBC subtypes. The classification schematic of breast cancer is still a fluid entity that continues to evolve alongside technological advancement, and the transcriptomic profiling of tissue-specific microRNAs is projected to aid in the substratification and diagnosis of the BLBC tumor subtype. In this review, we summarize the current knowledge on breast tumor classification, aim to collect comprehensive evidence based on the microRNA expression profiles, and explore their potential as prospective biomarkers of BLBC.
Collapse
Affiliation(s)
| | - Vinitha Richard
- Discipline of Surgery, Lambe Institute for Translational Research, H91 TK33 Galway, Ireland;
| | - Michael J. Kerin
- Discipline of Surgery, Lambe Institute for Translational Research, H91 TK33 Galway, Ireland;
| |
Collapse
|
37
|
Travis G, McGowan EM, Simpson AM, Marsh DJ, Nassif NT. PTEN, PTENP1, microRNAs, and ceRNA Networks: Precision Targeting in Cancer Therapeutics. Cancers (Basel) 2023; 15:4954. [PMID: 37894321 PMCID: PMC10605164 DOI: 10.3390/cancers15204954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/06/2023] [Accepted: 10/09/2023] [Indexed: 10/29/2023] Open
Abstract
The phosphatase and tensin homolog deleted on chromosome 10 (PTEN) is a well characterised tumour suppressor, playing a critical role in the maintenance of fundamental cellular processes including cell proliferation, migration, metabolism, and survival. Subtle decreases in cellular levels of PTEN result in the development and progression of cancer, hence there is tight regulation of the expression, activity, and cellular half-life of PTEN at the transcriptional, post-transcriptional, and post-translational levels. PTENP1, the processed pseudogene of PTEN, is an important transcriptional and post-transcriptional regulator of PTEN. PTENP1 expression produces sense and antisense transcripts modulating PTEN expression, in conjunction with miRNAs. Due to the high sequence similarity between PTEN and the PTENP1 sense transcript, the transcripts possess common miRNA binding sites with the potential for PTENP1 to compete for the binding, or 'sponging', of miRNAs that would otherwise target the PTEN transcript. PTENP1 therefore acts as a competitive endogenous RNA (ceRNA), competing with PTEN for the binding of specific miRNAs to alter the abundance of PTEN. Transcription from the antisense strand produces two functionally independent isoforms (PTENP1-AS-α and PTENP1-AS-β), which can regulate PTEN transcription. In this review, we provide an overview of the post-transcriptional regulation of PTEN through interaction with its pseudogene, the cellular miRNA milieu and operation of the ceRNA network. Furthermore, its importance in maintaining cellular integrity and how disruption of this PTEN-miRNA-PTENP1 axis may lead to cancer but also provide novel therapeutic opportunities, is discussed. Precision targeting of PTENP1-miRNA mediated regulation of PTEN may present as a viable alternative therapy.
Collapse
Affiliation(s)
- Glena Travis
- Cancer Biology, Faculty of Science, School of Life Sciences, University of Technology Sydney, Ultimo, NSW 2007, Australia; (G.T.); (E.M.M.)
| | - Eileen M. McGowan
- Cancer Biology, Faculty of Science, School of Life Sciences, University of Technology Sydney, Ultimo, NSW 2007, Australia; (G.T.); (E.M.M.)
- Central Laboratory, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou 510080, China
| | - Ann M. Simpson
- Gene Therapy and Translational Molecular Analysis Laboratory, Faculty of Science, School of Life Sciences, University of Technology Sydney, Ultimo, NSW 2007, Australia;
| | - Deborah J. Marsh
- Translational Oncology Group, Faculty of Science, School of Life Sciences, University of Technology Sydney, Ultimo, NSW 2007, Australia;
| | - Najah T. Nassif
- Cancer Biology, Faculty of Science, School of Life Sciences, University of Technology Sydney, Ultimo, NSW 2007, Australia; (G.T.); (E.M.M.)
| |
Collapse
|
38
|
Krupp K, Segar JM, Fernández-Martínez JL, Madhivanan P. MicroRNAs: Emerging as Highly Promising Biomarkers for Early Breast Cancer Screening. JOURNAL OF CLINICAL AND LABORATORY MEDICINE 2023; 6:273. [PMID: 37937319 PMCID: PMC10629926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
Affiliation(s)
- Karl Krupp
- Public Health Practice, Policy, & Translational Research Department, Mel and Enid Zuckerman College of Public Health, University of Arizona, 550 E. Van Buren Street, UA Phoenix - Plaza Building 1, Phoenix AZ 850063, USA
| | - Jennifer M Segar
- University of Arizona Cancer Center - UAHS, University of Arizona College of Medicine, Tucson, 1501 N. Campbell Avenue, PO Box 245017, Tucson, AZ 85724, USA
| | | | - Purnima Madhivanan
- Department of Health Promotion Sciences, Mel and Enid Zuckerman College of Public Health, University of Arizona, Tucson, 1295 N Martin Avenue, PO Box 245209, Tucson, AZ 85724-5209
| |
Collapse
|
39
|
Osorio-Pérez SM, Estrada-Meza C, Ruiz-Manriquez LM, Arvizu-Espinosa MG, Srivastava A, Sharma A, Paul S. Thymoquinone Potentially Modulates the Expression of Key Onco- and Tumor Suppressor miRNAs in Prostate and Colon Cancer Cell Lines: Insights from PC3 and HCT-15 Cells. Genes (Basel) 2023; 14:1730. [PMID: 37761870 PMCID: PMC10531155 DOI: 10.3390/genes14091730] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/26/2023] [Accepted: 08/28/2023] [Indexed: 09/29/2023] Open
Abstract
Prostate cancer (PC) and colon cancer significantly contribute to global cancer-related morbidity and mortality. Thymoquinone (TQ), a naturally occurring phytochemical found in black cumin, has shown potential as an anticancer compound. This study aimed to investigate the effects of TQ on the expression profile of key tumor suppressor and onco-suppressor miRNAs in PC3 prostate cancer cells and HCT-15 colon cancer cells. Cell viability assays revealed that TQ inhibited the growth of both cell lines in a dose-dependent manner, with IC50 values of approximately 82.59 μM for HCT-15 and 55.83 μM for PC3 cells. Following TQ treatment at the IC50 concentrations, miRNA expression analysis demonstrated that TQ significantly downregulated miR-21-5p expression in HCT-15 cells and upregulated miR-34a-5p, miR-221-5p, miR-17-5p, and miR-21-5p expression in PC3 cells. However, no significant changes were observed in the expression levels of miR-34a-5p and miR-200a-5p in HCT-15 cells. The current findings suggest that TQ might exert its antiproliferative effects by modulating specific tumor suppressor and onco-suppressor miRNAs in prostate and colon cancer cells. Further investigations are warranted to elucidate the precise underlying mechanisms and to explore the therapeutic potential of TQ in cancer treatment. To the best of our knowledge, this is the first report regarding the effect of TQ on the miRNA expression profile in colon and prostate cancer cell lines.
Collapse
Affiliation(s)
- Sofía Madeline Osorio-Pérez
- School of Engineering and Sciences, Tecnologico de Monterrey, Campus Queretaro, Av. Epigmenio Gonzalez, No. 500 Fracc. San Pablo, Queretaro 76130, Mexico
| | - Carolina Estrada-Meza
- School of Engineering and Sciences, Tecnologico de Monterrey, Campus Queretaro, Av. Epigmenio Gonzalez, No. 500 Fracc. San Pablo, Queretaro 76130, Mexico
| | - Luis M. Ruiz-Manriquez
- School of Engineering and Sciences, Tecnologico de Monterrey, Campus Queretaro, Av. Epigmenio Gonzalez, No. 500 Fracc. San Pablo, Queretaro 76130, Mexico
- School of Medicine and Health Science, Tecnologico de Monterrey, Monterrey 64700, Mexico
| | - María Goretti Arvizu-Espinosa
- School of Engineering and Sciences, Tecnologico de Monterrey, Campus Queretaro, Av. Epigmenio Gonzalez, No. 500 Fracc. San Pablo, Queretaro 76130, Mexico
| | - Aashish Srivastava
- Department of Clinical Science, University of Bergen, 5021 Bergen, Norway
| | - Ashutosh Sharma
- School of Engineering and Sciences, Tecnologico de Monterrey, Campus Queretaro, Av. Epigmenio Gonzalez, No. 500 Fracc. San Pablo, Queretaro 76130, Mexico
| | - Sujay Paul
- School of Engineering and Sciences, Tecnologico de Monterrey, Campus Queretaro, Av. Epigmenio Gonzalez, No. 500 Fracc. San Pablo, Queretaro 76130, Mexico
| |
Collapse
|
40
|
Lee KJ, Singh N, Bizuneh M, Kim NH, Kim HS, Kim Y, Lee JJ, Kim JH, Kim J, Jeong SY, Cho HY, Park ST. miR-429 Suppresses Endometrial Cancer Progression and Drug Resistance via DDX53. J Pers Med 2023; 13:1302. [PMID: 37763070 PMCID: PMC10532590 DOI: 10.3390/jpm13091302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/22/2023] [Accepted: 08/24/2023] [Indexed: 09/29/2023] Open
Abstract
(1) Background: To examine miR-429-meditated DEAD (Asp-Glu-Ala-Asp) box polypeptide 53 (DDX53) function in endometrial cancer (EC). (2) Methods: DDX53 and miR-429 levels were measured using quantitative real-time polymerase chain reaction and western blotting assays, cell invasion and migration using Transwell invasion and wound healing assays, and cell proliferation using colony-forming/proliferation assays. A murine xenograft model was also generated to examine miR-429 and DDX53 functions in vivo. (3) Results: DDX53 overexpression (OE) promoted key cancer phenotypes (proliferation, migration, and invasion) in EC, while in vivo, DDX53 OE hindered tumor growth in the murine xenograft model. Moreover, miR-429 was identified as a novel miRNA-targeting DDX53, which suppressed EC proliferation and invasion. (4) Conclusions: DDX53 and miR-429 regulatory mechanisms could provide novel molecular therapies for EC.
Collapse
Affiliation(s)
- Kyung-Jun Lee
- Institute of New Frontier Research Team, Hallym University, Chuncheon 24252, Republic of Korea; (K.-J.L.); (N.S.); (N.-H.K.); (H.S.K.); (Y.K.); (J.-J.L.); (S.Y.J.)
| | - Nitya Singh
- Institute of New Frontier Research Team, Hallym University, Chuncheon 24252, Republic of Korea; (K.-J.L.); (N.S.); (N.-H.K.); (H.S.K.); (Y.K.); (J.-J.L.); (S.Y.J.)
| | - Michael Bizuneh
- Institute of New Frontier Research Team, Hallym University, Chuncheon 24252, Republic of Korea; (K.-J.L.); (N.S.); (N.-H.K.); (H.S.K.); (Y.K.); (J.-J.L.); (S.Y.J.)
| | - Nam-Hyeok Kim
- Institute of New Frontier Research Team, Hallym University, Chuncheon 24252, Republic of Korea; (K.-J.L.); (N.S.); (N.-H.K.); (H.S.K.); (Y.K.); (J.-J.L.); (S.Y.J.)
| | - Hyeong Su Kim
- Institute of New Frontier Research Team, Hallym University, Chuncheon 24252, Republic of Korea; (K.-J.L.); (N.S.); (N.-H.K.); (H.S.K.); (Y.K.); (J.-J.L.); (S.Y.J.)
- Division of Hemato-Oncology, Department of Internal Medicine, Kangnam Sacred-Heart Hospital, Hallym University Medical Center, Hallym University College of Medicine, Seoul 07441, Republic of Korea;
| | - Youngmi Kim
- Institute of New Frontier Research Team, Hallym University, Chuncheon 24252, Republic of Korea; (K.-J.L.); (N.S.); (N.-H.K.); (H.S.K.); (Y.K.); (J.-J.L.); (S.Y.J.)
| | - Jae-Jun Lee
- Institute of New Frontier Research Team, Hallym University, Chuncheon 24252, Republic of Korea; (K.-J.L.); (N.S.); (N.-H.K.); (H.S.K.); (Y.K.); (J.-J.L.); (S.Y.J.)
- Departments of Anesthesiology and Pain Medicine, Chuncheon Sacred-Heart Hospital, Hallym University Medical Center, Hallym University College of Medicine, Chuncheon 24253, Republic of Korea
| | - Jung Han Kim
- Division of Hemato-Oncology, Department of Internal Medicine, Kangnam Sacred-Heart Hospital, Hallym University Medical Center, Hallym University College of Medicine, Seoul 07441, Republic of Korea;
| | - Jiye Kim
- Department of Obstetrics and Gynecology, Kangnam Sacred-Heart Hospital, Hallym University Medical Center, Hallym University College of Medicine, Seoul 07441, Republic of Korea;
| | - Soo Young Jeong
- Institute of New Frontier Research Team, Hallym University, Chuncheon 24252, Republic of Korea; (K.-J.L.); (N.S.); (N.-H.K.); (H.S.K.); (Y.K.); (J.-J.L.); (S.Y.J.)
- Department of Obstetrics and Gynecology, Kangnam Sacred-Heart Hospital, Hallym University Medical Center, Hallym University College of Medicine, Seoul 07441, Republic of Korea;
| | - Hye-Yon Cho
- Institute of New Frontier Research Team, Hallym University, Chuncheon 24252, Republic of Korea; (K.-J.L.); (N.S.); (N.-H.K.); (H.S.K.); (Y.K.); (J.-J.L.); (S.Y.J.)
- Department of Obstetrics and Gynecology, Dongtan Sacred-Heart Hospital, Hallym University Medical Center, Hallym University College of Medicine, Kyeonggido 18450, Republic of Korea
| | - Sung Taek Park
- Institute of New Frontier Research Team, Hallym University, Chuncheon 24252, Republic of Korea; (K.-J.L.); (N.S.); (N.-H.K.); (H.S.K.); (Y.K.); (J.-J.L.); (S.Y.J.)
- Department of Obstetrics and Gynecology, Kangnam Sacred-Heart Hospital, Hallym University Medical Center, Hallym University College of Medicine, Seoul 07441, Republic of Korea;
| |
Collapse
|
41
|
Dou Q, Wang J, Yang Y, Zhuo W. Roles of exosome-derived non-coding RNA in tumor micro-environment and its clinical application. Zhejiang Da Xue Xue Bao Yi Xue Ban 2023; 52:429-438. [PMID: 37643977 PMCID: PMC10495245 DOI: 10.3724/zdxbyxb-2023-0056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 07/20/2023] [Indexed: 08/12/2023]
Abstract
Tumor-derived exosomes play an important role in the tumor micro-environment. The exosome-derived non-coding RNAs are transmitted in the tumor microenvironment in three ways, communication between tumor cells, normal cells affecting tumor cells, and tumor cells affecting normal cells. Through these three ways, exosomal non-coding RNAs are involved in the regulation of tumor progression, affecting tumor angiogenesis, tumor invasiveness, drug resistance, stemness, tumor metabolic repro-gramming and immune escape, resulting in dual roles in promoting or inhibiting tumor development. Exosomes have a membranous structure and their contents are resistant to degradation by extracellular proteases and remain highly stable in body fluids, thus exosome-derived non-coding RNAs are expected to serve as diagnostic and prognostic indicators for a variety of cancers. In addition, exosomes can be used to deliver non-coding RNAs for targeted therapy, or to knock down or modify tumor-promoting non-coding RNAs for tumor therapy. This article reviews the function and communication mechanism of exosomal non-coding RNAs in the tumor microenvironment, including their pathways of action, effects, potential values for tumor biomarkers and treatment targets. This article also points out the issues that need to be further studied in order to promote the progress of extracellular non-coding RNAs in cancer research and their application in tumor diagnosis and treatment.
Collapse
Affiliation(s)
- Qinyi Dou
- Department of Cell Biology, Zhejiang University School of Medicine, Hangzhou 310058, China.
- The Second Affiliated Hospital, Zhejiang University School of Medicine, Center for Medical Research and Innovation in Digestive System Tumors of the Ministry of Education, Hangzhou 310020, China.
- Zhejiang University Cancer Center, Hangzhou 310058, China.
| | - Jiazheng Wang
- Department of Cell Biology, Zhejiang University School of Medicine, Hangzhou 310058, China.
- The Second Affiliated Hospital, Zhejiang University School of Medicine, Center for Medical Research and Innovation in Digestive System Tumors of the Ministry of Education, Hangzhou 310020, China.
- Zhejiang University Cancer Center, Hangzhou 310058, China.
| | - Yingshuo Yang
- Department of Cell Biology, Zhejiang University School of Medicine, Hangzhou 310058, China.
- The Second Affiliated Hospital, Zhejiang University School of Medicine, Center for Medical Research and Innovation in Digestive System Tumors of the Ministry of Education, Hangzhou 310020, China.
- Zhejiang University Cancer Center, Hangzhou 310058, China.
| | - Wei Zhuo
- Department of Cell Biology, Zhejiang University School of Medicine, Hangzhou 310058, China.
- The Second Affiliated Hospital, Zhejiang University School of Medicine, Center for Medical Research and Innovation in Digestive System Tumors of the Ministry of Education, Hangzhou 310020, China.
- Zhejiang University Cancer Center, Hangzhou 310058, China.
| |
Collapse
|
42
|
Yang K, Ni M, Xu C, Wang L, Han L, Lv S, Wu W, Zheng D. Microfluidic one-step synthesis of a metal-organic framework for osteoarthritis therapeutic microRNAs delivery. Front Bioeng Biotechnol 2023; 11:1239364. [PMID: 37576986 PMCID: PMC10415039 DOI: 10.3389/fbioe.2023.1239364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 07/10/2023] [Indexed: 08/15/2023] Open
Abstract
As a class of short non-coding ribonucleic acids (RNAs), microRNAs (miRNA) regulate gene expression in human cells and are expected to be nucleic acid drugs to regulate and treat a variety of biological processes and diseases. However, the issues with potential materials toxicity, quantity production, poor cellular uptake, and endosomal entrapment limit their further applications in clinical practice. Herein, ZIF-8, a metal-organic framework with noncytotoxic zinc (II) as the metal coordination center, was selected as miRNA delivery vector was used to prepare miR-200c-3p@ZIF-8 in one step by Y-shape microfluidic chip to achieve intracellular release with low toxicity, batch size, and efficient cellular uptake. The obtained miR-200c-3p@ZIF-8 was identified by TEM, particle size analysis, XRD, XPS, and zeta potential. Compared with the traditional hydrothermal method, the encapsulation efficiency of miR-200c-3p@ZIF-8 prepared by the microfluidic method is higher, and the particle size is more uniform and controllable. The experimental results in cellular level verified that the ZIF-8 vectors with low cytotoxicity and high miRNAs loading efficiency could significantly improve cellular uptake and endosomal escape of miRNAs, providing a robust and general strategy for nucleic acid drug delivery. As a model, the prepared miR-200c-3p@ZIF-8 is confirmed to be effective in osteoarthritis treatment.
Collapse
Affiliation(s)
- Kaiyuan Yang
- Department of Orthopedics, The Affiliated Changzhou Second People’s Hospital of Nanjing Medical University, Changzhou, China
| | - Min Ni
- School of Pharmacy, Changzhou University, Changzhou, China
| | - Chao Xu
- Department of Orthopedics, The Affiliated Changzhou Second People’s Hospital of Nanjing Medical University, Changzhou, China
| | - Liangliang Wang
- Department of Orthopedics, The Affiliated Changzhou Second People’s Hospital of Nanjing Medical University, Changzhou, China
| | - Long Han
- Department of Orthopedics, The Affiliated Changzhou Second People’s Hospital of Nanjing Medical University, Changzhou, China
| | - Songwei Lv
- School of Pharmacy, Changzhou University, Changzhou, China
| | - Wenbo Wu
- Department of Chemistry, Institute of Molecular Aggregation Science, Tianjin University, Tianjin, China
| | - Dong Zheng
- Department of Orthopedics, The Affiliated Changzhou Second People’s Hospital of Nanjing Medical University, Changzhou, China
| |
Collapse
|
43
|
Shichiri K, Oshi M, Ziazadeh D, Endo I, Takabe K. High miR-200c expression is associated with suppressed epithelial-mesenchymal transition, TGF-β signaling and better survival despite enhanced cell proliferation in gastric cancer patients. Am J Cancer Res 2023; 13:3027-3040. [PMID: 37560006 PMCID: PMC10408478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 06/20/2023] [Indexed: 08/11/2023] Open
Abstract
MicroRNAs are small non-coding RNAs that epigenetically regulate gene expression. MiR-200c is a known tumor suppressive microRNA found in many types of cancer, and its high expression has been associated with improved prognosis. However, the association between miR-200c expression and its clinical relevance in gastric cancer (GC) patients remains controversial. Here, we hypothesized that gastric cancer patients with high miR-200c gene expression translated to better overall survival. A total of 372 GC patients from the Cancer Genome Atlas (TCGA) were analyzed. The top three quartiles were defined as a high miR-200c expression group. High miR-200c expression was associated with decreased invasion, favorable histological type, and improved overall survival in gastric cancer patients. Unexpectedly, high miR-200c expression GC was also associated with enhanced cell proliferation, shown by MKi67 expression, proliferation score, and enrichment of Hallmark cell proliferation-related gene sets (E2F targets, G2M checkpoints, MYC targets v1 and v2) by gene set enrichment assay (GSEA). High miR-200c GC was also associated with a high mutation rate and homologous recombination deficiency. Despite the association with elevated neoantigens, high miR-200c GC was associated with significantly low infiltration of anti-cancer immune cells, decreased immune response, and with suppressed IL2, TNF-α, and IFN-γ pathways. On the other hand, GC with low miR-200c expression significantly enriched hypoxia, angiogenesis, epithelial-mesenchymal transition (EMT), and TGF-β signaling gene sets, all of which promote cancer progression and metastasis in GSEA. In conclusion, patients with high miR-200c expression GC had better survival despite association with aggressive tumor biology, such as high mutation rates, cell proliferation, and low cancer immunity. Given that low miR-200c GC was associated with hypoxia, angiogenesis, EMT and TGF-β signaling, we cannot help but speculate that the difference in survival by miR-200c expression may be at least partly due to the association between low miR-200c expression and aggressive biology.
Collapse
Affiliation(s)
- Keiko Shichiri
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer CenterBuffalo, NY 14263, USA
- U.S. Naval Hospital OkinawaOkinawa, FPO, AP 96362, Japan
| | - Masanori Oshi
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer CenterBuffalo, NY 14263, USA
- Department of Gastroenterological Surgery, Yokohama City University Graduate School of MedicineYokohama, Kanagawa 236-0004, Japan
| | - Danya Ziazadeh
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer CenterBuffalo, NY 14263, USA
- Department of Surgery, University at Buffalo Jacobs School of Medicine and Biomedical Sciences, The State University of New YorkBuffalo, NY 14203, USA
| | - Itaru Endo
- Department of Gastroenterological Surgery, Yokohama City University Graduate School of MedicineYokohama, Kanagawa 236-0004, Japan
| | - Kazuaki Takabe
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer CenterBuffalo, NY 14263, USA
- Department of Gastroenterological Surgery, Yokohama City University Graduate School of MedicineYokohama, Kanagawa 236-0004, Japan
- Department of Surgery, University at Buffalo Jacobs School of Medicine and Biomedical Sciences, The State University of New YorkBuffalo, NY 14203, USA
- Department of Surgery, Niigata University Graduate School of Medical and Dental SciencesNiigata 950-0883, Japan
- Department of Breast Surgery and Oncology, Tokyo Medical UniversityTokyo 160-8402, Japan
- Department of Breast Surgery, Fukushima Medical UniversityFukushima 960-8074, Japan
| |
Collapse
|
44
|
Enguita JM, Díaz I, García D, Cubiella T, Chiara MD, Valdés N. Visual analytics identifies key miRNAs for differentiating peripancreatic paraganglioma and pancreatic neuroendocrine tumors. Front Endocrinol (Lausanne) 2023; 14:1162725. [PMID: 37383401 PMCID: PMC10299733 DOI: 10.3389/fendo.2023.1162725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 05/18/2023] [Indexed: 06/30/2023] Open
Abstract
Introduction Paragangliomas (PGL), a type of neuroendocrine tumor, pose a significant diagnostic challenge due to their potential for unpredictable locations and asymptomatic presentation. Misdiagnosis of peripancreatic PGLs, particularly as pancreatic neuroendocrine tumors (PANNETs), is a pressing issue as it can negatively impact both pre- and post-treatment decision-making. The aim of our study was to identify microRNA markers for the reliable differential diagnosis of peripancreatic PGLs and PANNETs, addressing a crucial unmet need in the field and advancing the standard of care for these patients. Methods Morphing projections tool was used to analyze miRNA data from PGL and PANNET tumors present in the TCGA database. The findings were validated using two additional databases: GSE29742 and GSE73367. Results Our research uncovered substantial differences in the miRNA expression profiles of PGL and PANNET, leading to the identification of 6 key miRNAs (miR-10b-3p, miR-10b-5p, and the miRNA families miR-200c/141 and miR-194/192) that can effectively differentiate between the two types of tumors. Discussion These miRNA levels hold potential as biomarkers for improved diagnosis, offering a solution to the diagnostic challenge posed by these tumors and potentially improving the standard of care for patients.
Collapse
Affiliation(s)
- Jose María Enguita
- Department of Electrical Engineering, University of Oviedo, Gijón, Spain
| | - Ignacio Díaz
- Department of Electrical Engineering, University of Oviedo, Gijón, Spain
| | - Diego García
- Department of Electrical Engineering, University of Oviedo, Gijón, Spain
| | - Tamara Cubiella
- Department of Cancer, Health Research Institute of the Principality of Asturias, Oviedo, Spain
- Respiratory Tract Tumors, CIBERONC (Network of Biomedical Research in Cancer), Madrid, Spain
- Institute of Oncology of the Principality of Asturias, University of Oviedo, Oviedo, Spain
| | - María-Dolores Chiara
- Department of Cancer, Health Research Institute of the Principality of Asturias, Oviedo, Spain
- Respiratory Tract Tumors, CIBERONC (Network of Biomedical Research in Cancer), Madrid, Spain
- Institute of Oncology of the Principality of Asturias, University of Oviedo, Oviedo, Spain
| | - Nuria Valdés
- Department of Cancer, Health Research Institute of the Principality of Asturias, Oviedo, Spain
- Department of Internal Medicine, Section of Endocrinology and Nutrition, Cabueñes University Hospital, Gijón, Spain
| |
Collapse
|
45
|
Vannini I, Rossi T, Melloni M, Valgiusti M, Urbini M, Passardi A, Bartolini G, Gallio C, Azzali I, Bandini S, Ancarani V, Montanaro L, Frassineti GL, Fabbri F, Rapposelli IG. Analysis of EVs from patients with advanced pancreatic cancer identifies antigens and miRNAs with predictive value. Mol Ther Methods Clin Dev 2023; 29:473-482. [PMID: 37273899 PMCID: PMC10238807 DOI: 10.1016/j.omtm.2023.05.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 05/09/2023] [Indexed: 06/06/2023]
Abstract
The identification of predictive factors for treatment of pancreatic cancer (PC) is an unmet clinical need. In the present work, we analyzed blood-derived extracellular vesicles (EVs) from patients with advanced PC in order to find a molecular signature predictive of response to therapy. We analyzed samples from 21 patients with advanced PC, all receiving first-line treatment with gemcitabine + nab-paclitaxel. Isolated EVs have been analyzed, and the results of laboratory have been matched with clinical data in order to investigate possible predictive factors. EV concentration and size were similar between responder and non-responder patients. Analysis of 37 EV surface epitopes showed a decreased expression of SSEA4 and CD81 in responder patients. We detected more than 450 expressed miRNAs in EVs. A comparative survey between responder and non-responder patients showed that at least 44 miRNAs were differently expressed. Some of these miRNAs have already been observed in relation to the survival and gemcitabine sensitivity of tumor cells. In conclusion, we showed the ability of our approach to identify EV-derived biomarkers with predictive value for therapy response in PC. Our findings are worthy of further investigation, including the analysis of samples from patients treated with different schedules and in different settings.
Collapse
Affiliation(s)
- Ivan Vannini
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Tania Rossi
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Mattia Melloni
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| | - Martina Valgiusti
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Milena Urbini
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Alessandro Passardi
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Giulia Bartolini
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Chiara Gallio
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Irene Azzali
- Unit of Biostatistics and Clinical Trials, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Sara Bandini
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Valentina Ancarani
- Immunotherapy-Cell Therapy and Biobank Unit, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Lorenzo Montanaro
- Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum - University of Bologna, Bologna, Italy
- Departmental Program in Laboratory Medicine, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Giovanni Luca Frassineti
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Francesco Fabbri
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Ilario Giovanni Rapposelli
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| |
Collapse
|
46
|
Bartoszewska S, Sławski J, Collawn JF, Bartoszewski R. HIF-1-Induced hsa-miR-429: Understanding Its Direct Targets as the Key to Developing Cancer Diagnostics and Therapies. Cancers (Basel) 2023; 15:cancers15112903. [PMID: 37296866 DOI: 10.3390/cancers15112903] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 05/21/2023] [Accepted: 05/24/2023] [Indexed: 06/12/2023] Open
Abstract
MicroRNAs (miRNAs) play a critical role in the regulation of mRNA stability and translation. In spite of our present knowledge on the mechanisms of mRNA regulation by miRNAs, the utilization and translation of these ncRNAs into clinical applications have been problematic. Using hsa-miR-429 as an example, we discuss the limitations encountered in the development of efficient miRNA-related therapies and diagnostic approaches. The miR-200 family members, which include hsa-miR-429, have been shown to be dysregulated in different types of cancer. Although these miR-200 family members have been shown to function in suppressing epithelial-to-mesenchymal transition, tumor metastasis, and chemoresistance, the experimental results have often been contradictory. These complications involve not only the complex networks involving these noncoding RNAs, but also the problem of identifying false positives. To overcome these limitations, a more comprehensive research strategy is needed to increase our understanding of the mechanisms underlying their biological role in mRNA regulation. Here, we provide a literature analysis of the verified hsa-miR-429 targets in various human research models. A meta-analysis of this work is presented to provide better insights into the role of hsa-miR-429 in cancer diagnosis and any potential therapeutic approach.
Collapse
Affiliation(s)
- Sylwia Bartoszewska
- Department of Inorganic Chemistry, Medical University of Gdansk, 80-416 Gdansk, Poland
| | - Jakub Sławski
- Department of Biophysics, Faculty of Biotechnology, University of Wroclaw, 50-383 Wroclaw, Poland
| | - James F Collawn
- Department of Cell, Developmental and Integrative Biology, University of Alabama, Birmingham, AL 35294, USA
| | - Rafal Bartoszewski
- Department of Biophysics, Faculty of Biotechnology, University of Wroclaw, 50-383 Wroclaw, Poland
| |
Collapse
|
47
|
Frisk NLS, Sørensen AE, Pedersen OBV, Dalgaard LT. Circulating microRNAs for Early Diagnosis of Ovarian Cancer: A Systematic Review and Meta-Analysis. Biomolecules 2023; 13:871. [PMID: 37238740 PMCID: PMC10216356 DOI: 10.3390/biom13050871] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/10/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
In this study, we conducted a systematic review and meta-analysis to summarize and evaluate the global research potential of different circulating miRNAs as an early diagnostic biomarker for OC. A systematic literature search for relevant studies was conducted in June 2020 and followed up in November 2021. The search was conducted in English databases (PubMed, ScienceDirect). The primary search resulted in a total of 1887 articles, which were screened according to the prior established inclusion and exclusion criteria. We identified 44 relevant studies, of which 22 were eligible for the quantitative meta-analysis. Statistical analysis was performed using the Meta-package in Rstudio. Standardized mean differences (SMD) of relative levels between control subjects and OC patients were used to evaluate the differential expression. All studies were quality evaluated using a Newcastle-Ottawa Scale. Based on the meta-analysis, nine miRNAs were identified as dysregulated in OC patients compared to controls. Nine were upregulated in OC patients compared to controls (miR-21, -125, -141, -145, -205, -328, -200a, -200b, -200c). Furthermore, miR-26, -93, -106 and -200a were analyzed, but did not present an overall significant difference between OC patients and controls. These observations should be considered when performing future studies of circulating miRNAs in relation to OC: sufficient size of clinical cohorts, development of consensus guidelines for circulating miRNA measurements, and coverage of previously reported miRNAs.
Collapse
Affiliation(s)
- Nanna Lond Skov Frisk
- Department of Science and Environment, Roskilde University, Universitetsvej 1, 4000 Roskilde, Denmark
- Department of Clinical Immunology, Zealand University Hospital, Køge, Ringstedgade 77B, 4700 Næstved, Denmark
| | - Anja Elaine Sørensen
- Department of Science and Environment, Roskilde University, Universitetsvej 1, 4000 Roskilde, Denmark
| | - Ole Birger Vesterager Pedersen
- Department of Clinical Immunology, Zealand University Hospital, Køge, Ringstedgade 77B, 4700 Næstved, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Science, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen N, Denmark
| | - Louise Torp Dalgaard
- Department of Science and Environment, Roskilde University, Universitetsvej 1, 4000 Roskilde, Denmark
| |
Collapse
|
48
|
Pekarek L, Torres-Carranza D, Fraile-Martinez O, García-Montero C, Pekarek T, Saez MA, Rueda-Correa F, Pimentel-Martinez C, Guijarro LG, Diaz-Pedrero R, Alvarez-Mon M, Ortega MA. An Overview of the Role of MicroRNAs on Carcinogenesis: A Focus on Cell Cycle, Angiogenesis and Metastasis. Int J Mol Sci 2023; 24:ijms24087268. [PMID: 37108432 PMCID: PMC10139430 DOI: 10.3390/ijms24087268] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/04/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023] Open
Abstract
In recent years, the importance of epigenetic markers in the carcinogenesis of different malignant neoplasms has been demonstrated, also demonstrating their utility for understanding metastatic spread and tumor progression in cancer patients. Among the different biomarkers, microRNAs represent a set of non-coding RNAs that regulate gene expression, having been involved in a wide variety of neoplasia acting in different oncogenic pathways. Both the overexpression and downregulation of microRNAs represent a complex interaction with various genes whose ultimate consequence is increased cell proliferation, tumor invasion and interaction with various driver markers. It should be noted that in current clinical practice, even though the combination of different microRNAs has been shown to be useful by different authors at diagnostic and prognostic levels, there are no diagnostic kits that can be used for the initial approach or to assess recurrences of oncological diseases. Previous works have cited microRNAs as having a critical role in several carcinogenic mechanisms, ranging from cell cycle alterations to angiogenesis and mechanisms of distant metastatic dissemination. Indeed, the overexpression or downregulation of specific microRNAs seem to be tightly involved in the modulation of various components related to these processes. For instance, cyclins and cyclin-dependent kinases, transcription factors, signaling molecules and angiogenic/antiangiogenic products, among others, have been recognized as specific targets of microRNAs in different types of cancer. Therefore, the purpose of this article is to describe the main implications of different microRNAs in cell cycle alterations, metastasis and angiogenesis, trying to summarize their involvement in carcinogenesis.
Collapse
Affiliation(s)
- Leonel Pekarek
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
- Oncology Service, Guadalajara University Hospital, 19002 Guadalajara, Spain
| | - Diego Torres-Carranza
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
| | - Oscar Fraile-Martinez
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Cielo García-Montero
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Tatiana Pekarek
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
| | - Miguel A Saez
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
- Pathological Anatomy Service, Central University Hospital of Defence-UAH Madrid, 28801 Alcala de Henares, Spain
| | - Francisco Rueda-Correa
- Pathological Anatomy Service, Central University Hospital of Defence-UAH Madrid, 28801 Alcala de Henares, Spain
| | - Carolina Pimentel-Martinez
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
| | - Luis G Guijarro
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
- Unit of Biochemistry and Molecular Biology, Department of System Biology (CIBEREHD), University of Alcalá, 28801 Alcala de Henares, Spain
| | - Raul Diaz-Pedrero
- Department of Surgery, Medical and Social Sciences, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Department of General and Digestive Surgery, General and Digestive Surgery, Príncipe de Asturias Teaching Hospital, 28805 Alcala de Henares, Spain
| | - Melchor Alvarez-Mon
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
- Immune System Diseases-Rheumatology, Oncology Service an Internal Medicine (CIBEREHD), University Hospital Príncipe de Asturias, 28806 Alcala de Henares, Spain
| | - Miguel A Ortega
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
- Cancer Registry and Pathology Department, Principe de Asturias University Hospital, 28806 Alcala de Henares, Spain
| |
Collapse
|