1
|
Rocca R, Ascrizzi S, Citriniti EL, Scionti F, Juli G, Di Martino MT, Caracciolo D, Artese A, Tagliaferri P, Tassone P, Grillone K, Alcaro S. TERRA G-quadruplex stabilization behind the anti-multiple myeloma activity: Novel insights about resveratrol pleiotropic effects. Arch Pharm (Weinheim) 2024; 357:e2400269. [PMID: 39365272 DOI: 10.1002/ardp.202400269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/03/2024] [Accepted: 06/04/2024] [Indexed: 10/05/2024]
Abstract
Resveratrol (RSV) is a nutraceutical compound belonging to the nonflavonoid polyphenol family, whose antioxidants, anti-inflammatory, and antitumoral properties have been widely investigated. The ability of RSV to provide beneficial effects for neurological, cardiovascular, and cancer disorders rekindled the interest to explore the molecular mechanisms behind its pleiotropic effects, which are due to the modulation of coding and noncoding genes involved in many key biological pathways. With a computational approach, including docking studies and thermodynamics calculations followed by 200-ns-long molecular dynamics and a clustering analysis, we hypothesized the stabilizing binding between RSV and G4 structures of telomeric repeat-containing RNA (TERRA), which is a tumor-suppressive long noncoding RNAs (lncRNA) involved in the regulation of telomere maintenance. In vitro studies performed on cellular models of multiple myeloma (MM) strengthened our hypothesis by highlighting that the antiproliferative and apoptotic effect induced by the treatment with RSV is associated with an increase of TERRA transcript and with upregulation of telomeric heterochromatin markers, such as H3K27Me3 and H4K20Me3, and of the hallmark of apoptosis, cleaved-poly(ADP-ribose) polymerase-1. Our results propose innovative insights underlying the multifaceted role of RSV in MM, by pointing out the role of this natural compound in an lncRNA-mediated regulation to counteract cellular immortality.
Collapse
Affiliation(s)
- Roberta Rocca
- Net4Science srl, University Magna Græcia, Catanzaro, Italy
- Associazione CRISEA-Centro di Ricerca e Servizi Avanzati per l'Innovazione Rurale, Località Condoleo di Belcastro, Catanzaro, Italy
- Department of Health Sciences, University Magna Græcia, Catanzaro, Italy
| | - Serena Ascrizzi
- Department of Experimental and Clinical Medicine, University Magna Græcia, Catanzaro, Italy
| | | | - Francesca Scionti
- Department of Medical and Surgery Sciences, University Magna Græcia of Catanzaro, Catanzaro, Italy
| | - Giada Juli
- Department of Experimental and Clinical Medicine, University Magna Græcia, Catanzaro, Italy
| | | | - Daniele Caracciolo
- Department of Experimental and Clinical Medicine, University Magna Græcia, Catanzaro, Italy
| | - Anna Artese
- Net4Science srl, University Magna Græcia, Catanzaro, Italy
- Department of Health Sciences, University Magna Græcia, Catanzaro, Italy
| | | | - Pierfrancesco Tassone
- Department of Experimental and Clinical Medicine, University Magna Græcia, Catanzaro, Italy
| | - Katia Grillone
- Department of Experimental and Clinical Medicine, University Magna Græcia, Catanzaro, Italy
| | - Stefano Alcaro
- Net4Science srl, University Magna Græcia, Catanzaro, Italy
- Associazione CRISEA-Centro di Ricerca e Servizi Avanzati per l'Innovazione Rurale, Località Condoleo di Belcastro, Catanzaro, Italy
- Department of Health Sciences, University Magna Græcia, Catanzaro, Italy
| |
Collapse
|
2
|
Elbahoty MH, Papineni B, Samant RS. Multiple myeloma: clinical characteristics, current therapies and emerging innovative treatments targeting ribosome biogenesis dynamics. Clin Exp Metastasis 2024:10.1007/s10585-024-10305-2. [PMID: 39162964 DOI: 10.1007/s10585-024-10305-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 08/01/2024] [Indexed: 08/21/2024]
Abstract
Multiple myeloma (MM) is a clinical disorder characterized by aberrant plasma cell growth in the bone marrow microenvironment. Globally, the prevalence of MM has been steadily increasing at an alarming rate. In the United States, more than 30,000 cases will be diagnosed in 2024 and it accounts for about 2% of cancer diagnoses and more than 2% of cancer deaths, more than double the worldwide figure. Both symptomatic and active MM are distinguished by uncontrolled plasma cell growth, which results in severe renal impairment, anemia, hypercalcemia, and bone loss. Multiple drugs have been approved by the FDA and are now widely used in clinical practice for MM. Although triplet and quadruplet induction regimens, autologous stem cell transplantation (ASCT), and maintenance treatment are used, MM continues to be an incurable illness characterized by relapses that may occur at various phases of its progression. MM patients with frailty, extramedullary disease, plasma cell leukemia, central nervous system recurrence, functional high risk, and the elderly are among those with the greatest current unmet needs. The high cost of care is an additional challenge. MM cells are highly protein secretary cells and thus are dependent on the activation of certain translation pathways. MM also has a high chance of altering ribosomal protein-encoding genes like MYC mutation. In this article we discuss the importance of ribosome biogenesis in promoting MM and RNA polymerase I inhibition as an upcoming treatment with potential promise for MM patients.
Collapse
Affiliation(s)
- Mohamed H Elbahoty
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
- Hematology Unit, Department of Internal Medicine, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Bhavyasree Papineni
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Rajeev S Samant
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA.
- Birmingham VA Medical Center, Birmingham, AL, USA.
- O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA.
- , WTI 320E, 1824 6th Ave South, Birmingham, AL, 35294, USA.
| |
Collapse
|
3
|
Gunes EG, Gunes M, Yu J, Janakiram M. Targeting cancer stem cells in multiple myeloma. Trends Cancer 2024; 10:733-748. [PMID: 38971642 DOI: 10.1016/j.trecan.2024.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 05/31/2024] [Accepted: 06/06/2024] [Indexed: 07/08/2024]
Abstract
Multiple myeloma (MM) is a hematological malignancy of bone marrow (BM) plasma cells with excessive clonal expansion and is associated with the overproduction of light-chain or monoclonal immunoglobulins (Igs). MM remains incurable, with high rates of relapses and refractory disease after first-line treatment. Cancer stem cells (CSCs) have been implicated in drug resistance in MM; however, the evidence for CSCs in MM is not adequate, partly due to a lack of uniformity in the definitions of multiple myeloma stem cells (MMSCs). We review advances in understanding MMSCs and their role in drug resistance to MM therapies. We also discuss novel therapeutic strategies to overcome MMSC-mediated relapses and drug resistance.
Collapse
Affiliation(s)
- Emine Gulsen Gunes
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA 91010, USA; Judy and Bernard Briskin Center for Multiple Myeloma Research, City of Hope, Los Angeles, CA 91010, USA; Toni Stephenson Lymphoma Center, City of Hope, Los Angeles, CA 91010, USA.
| | - Metin Gunes
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA 91010, USA
| | - Jianhua Yu
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA 91010, USA; Department of Immuno-Oncology, Beckman Research Institute, Los Angeles, CA 91010, USA; Hematologic Malignancies Research Institute, City of Hope National Medical Center, Los Angeles, CA 91010, USA; Comprehensive Cancer Center, City of Hope, Los Angeles, CA 91010, USA
| | - Murali Janakiram
- Department of Hematology, Division of Myeloma, City of Hope National Medical Center, Los Angeles, CA 91010, USA
| |
Collapse
|
4
|
Huang H, Chen Y, Li Y, Zheng X, Shu L, Tian L, Lin H, Liang Y. Cytidine triphosphate synthase 1-mediated metabolic reprogramming promotes proliferation and drug resistance in multiple myeloma. Heliyon 2024; 10:e33001. [PMID: 39050461 PMCID: PMC11268195 DOI: 10.1016/j.heliyon.2024.e33001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 05/22/2024] [Indexed: 07/27/2024] Open
Abstract
Upregulation of metabolism-related gene cytidine triphosphate synthase 1 (CTPS1) is associated with poor prognosis in multiple myeloma (MM). However, its role in MM remains unclear. In this study, bioinformatics analysis revealed significant differences in CTPS1 expression levels among various plasma cell malignancies. The patients with high CTPS1 expression had poor overall survival, progression-free survival, and event-free survival. CTPS1 was significantly correlated with sex, albumin, β2 microglobulin, lactate dehydrogenase, and advanced disease. In vitro experiments demonstrated that CTPS1-overexpressing (CTPS1-OE) cells proliferated faster than CTPS1-short hairpin RNA (CTPS1-sh) cells. NRG-SGM3 mice showed significantly accelerated tumor growth in the CTPS1-OE group. CTPS1-OE decreased sensitivity to bortezomib, whereas CTPS1-sh increased sensitivity to bortezomib in MM cell lines. Mechanistically, CTPS1 was primarily involved in metabolism processes. Additionally, CTPS1 was closely related to several co-expressed genes such as MYC and the bone marrow immune microenvironment. In conclusion, CTPS1 is a significant prognostic biomarker for patients with MM, suggesting a potential therapeutic target.
Collapse
Affiliation(s)
- Hanying Huang
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, 510060, PR China
- Department of Hematologic Oncology, Sun Yat-sen University Cancer Center, Guangzhou, 510060, PR China
| | - Yanzhou Chen
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, 510060, PR China
| | - Yang Li
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, 510060, PR China
- Department of Hematologic Oncology, Sun Yat-sen University Cancer Center, Guangzhou, 510060, PR China
| | - Xinnan Zheng
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, 510060, PR China
| | - Lingling Shu
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, 510060, PR China
- Department of Hematologic Oncology, Sun Yat-sen University Cancer Center, Guangzhou, 510060, PR China
| | - Lin Tian
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, 510060, PR China
| | - Huanxin Lin
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, 510060, PR China
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, Guangzhou, 510060, PR China
| | - Yang Liang
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, 510060, PR China
- Department of Hematologic Oncology, Sun Yat-sen University Cancer Center, Guangzhou, 510060, PR China
| |
Collapse
|
5
|
Bhowmick K, von Suskil M, Al-Odat OS, Elbezanti WO, Jonnalagadda SC, Budak-Alpdogan T, Pandey MK. Pathways to therapy resistance: The sheltering effect of the bone marrow microenvironment to multiple myeloma cells. Heliyon 2024; 10:e33091. [PMID: 39021902 PMCID: PMC11252793 DOI: 10.1016/j.heliyon.2024.e33091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 05/30/2024] [Accepted: 06/13/2024] [Indexed: 07/20/2024] Open
Abstract
Multiple Myeloma (MM) is a malignant expansion of plasma cells in the bone marrow (BM), resulting in a disease characterized by symptoms of end organ damage from light chain secretion, crowding of the BM, and bone lesions. Although the past two decades have been characterized by numerous novel therapies emerging, the disease remains incurable due to intrinsic or acquired drug resistance. A major player in MM's drug resistance arises from its intimate relationship with the BM microenvironment (BMME). Through stress-inducing conditions, soluble messengers, and physical adhesion to BM elements, the BMME activates numerous pathways in the myeloma cell. This not only propagates myeloma progression through survival and growth signals, but also specific mechanisms to circumvent therapeutic actions. In this review, we provide an overview of the BMME, the role of individual components in MM survival, and various therapy-specific resistance mechanisms reported in the literature.
Collapse
Affiliation(s)
- Kuntal Bhowmick
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ, USA
| | - Max von Suskil
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ, USA
| | - Omar S. Al-Odat
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ, USA
| | - Weam Othman Elbezanti
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ, USA
- Department of Hematology, MD Anderson Cancer Center at Cooper, Cooper University Health Care, Camden, NJ, USA
| | - Subash C. Jonnalagadda
- Department of Chemistry and Biochemistry, College of Science and Mathematics, Rowan University, Glassboro, NJ, USA
| | - Tulin Budak-Alpdogan
- Department of Hematology, MD Anderson Cancer Center at Cooper, Cooper University Health Care, Camden, NJ, USA
| | - Manoj K. Pandey
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ, USA
| |
Collapse
|
6
|
Schütt J, Brinkert K, Plis A, Schenk T, Brioli A. Unraveling the complexity of drug resistance mechanisms to SINE, T cell-engaging therapies and CELMoDs in multiple myeloma: a comprehensive review. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2024; 7:26. [PMID: 39050883 PMCID: PMC11267153 DOI: 10.20517/cdr.2024.39] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/30/2024] [Accepted: 06/20/2024] [Indexed: 07/27/2024]
Abstract
Despite significant advances in the understanding of multiple myeloma (MM) biology and the development of novel treatment strategies in the last two decades, MM is still an incurable disease. Novel drugs with alternative mechanisms of action, such as selective inhibitors of nuclear export (SINE), modulators of the ubiquitin pathway [cereblon E3 ligase modulatory drugs (CELMoDs)], and T cell redirecting (TCR) therapy, have led to significant improvement in patient outcomes. However, resistance still emerges, posing a major problem for the treatment of myeloma patients. This review summarizes current data on treatment with SINE, TCR therapy, and CELMoDs and explores their mechanism of resistance. Understanding these resistance mechanisms is critical for developing strategies to overcome treatment failure and improve therapeutic outcomes.
Collapse
Affiliation(s)
- Jacqueline Schütt
- Clinic for Hematology, Hemostasis, Oncology and Stem cell transplantation, Hannover Medical School, Hannover 30625, Germany
- Authors contributed equally
| | - Kerstin Brinkert
- Clinic for Hematology, Hemostasis, Oncology and Stem cell transplantation, Hannover Medical School, Hannover 30625, Germany
- Authors contributed equally
| | - Andrzej Plis
- Clinic for Internal Medicine C, Hematology and Oncology, Greifswald University Medicine, Greifswald 17489, Germany
| | - Tino Schenk
- Clinic of Internal Medicine 2, Department of Hematology and Medical Oncology, Jena University Hospital, Jena 07741, Germany
- Institute of Molecular Cell Biology, CMB, Jena University Hospital, Jena 07741, Germany
| | - Annamaria Brioli
- Clinic for Hematology, Hemostasis, Oncology and Stem cell transplantation, Hannover Medical School, Hannover 30625, Germany
- Clinic for Internal Medicine C, Hematology and Oncology, Greifswald University Medicine, Greifswald 17489, Germany
| |
Collapse
|
7
|
Fairfield H, Karam M, Schimelman A, Qiang YW, Reagan MR. Adipocytes and metabolism: Contributions to multiple myeloma. J Bone Oncol 2024; 46:100609. [PMID: 38872708 PMCID: PMC11169464 DOI: 10.1016/j.jbo.2024.100609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 05/03/2024] [Accepted: 05/15/2024] [Indexed: 06/15/2024] Open
Abstract
Obesity contributes to many cancers, including breast cancer and multiple myeloma, two cancers that often colonize the bone marrow (BM). Obesity often causes metabolic disease, but at the cellular level, there is uncertainty regarding how these shifts affect cellular phenotypes. Evidence is building that different types of fuel affect tumor cell metabolism, mitochondrial function, and signaling pathways differently, but tumor cells are also flexible and adapt to less-than ideal metabolic conditions, suggesting that single-pronged attacks on tumor metabolism may not be efficacious enough to be effective clinically. In this review, we describe the newest research at the pre-clinical level on how tumor metabolic pathways and energy sources affect cancer cells, with a special focus on multiple myeloma (MM). We also describe the known forward-feedback loops between bone marrow adipocytes (BMAds) and local tumor cells that support tumor growth. We describe how metabolic targets and transcription factors related to fatty acid (FA) oxidation, FA biosynthesis, glycolysis, oxidative phosphorylation (OXPHOS), and other pathways hold great promise as new vulnerabilities in myeloma cells. Specifically, we describe the importance of the acetyl-CoA synthetase (ACSS) and the acyl-CoA synthetase long chain (ACSL) families, which are both involved in FA metabolism. We also describe new data on the importance of lactate metabolism and lactate transporters in supporting the growth of tumor cells in a hypoxic BM microenvironment. We highlight new data showing the dependency of myeloma cells on the mitochondrial pyruvate carrier (MPC), which transports pyruvate to the mitochondria to fuel the tricarboxylic acid (TCA) cycle and electron transport chain (ETC), boosting OXPHOS. Inhibiting the MPC affects myeloma cell mitochondrial metabolism and growth, and synergizes with proteosome inhibitors in killing myeloma cells. We also describe how metabolic signaling pathways intersect established survival and proliferation pathways; for example, the fatty acid binding proteins (FABPs) affect MYC signaling and support growth, survival, and metabolism of myeloma cells. Our goal is to review the current the field so that novel, metabolic-focused therapeutic interventions and treatments can be imagined, developed and tested to decrease the burden of MM and related cancers.
Collapse
Affiliation(s)
- Heather Fairfield
- Center for Molecular Medicine, MaineHealth Institute for Research, Scarborough, ME, USA
- Graduate School of Biomedical Science and Engineering, University of Maine, Orono, ME, USA
- Tufts University School of Medicine, Boston MA, USA
| | - Michelle Karam
- Center for Molecular Medicine, MaineHealth Institute for Research, Scarborough, ME, USA
- Tufts University School of Medicine, Boston MA, USA
| | - Allyson Schimelman
- Center for Molecular Medicine, MaineHealth Institute for Research, Scarborough, ME, USA
- Tufts University School of Medicine, Boston MA, USA
- Roux Institute, Northeastern University, Portland, ME, USA
| | - Ya-Wei Qiang
- Center for Molecular Medicine, MaineHealth Institute for Research, Scarborough, ME, USA
- Graduate School of Biomedical Science and Engineering, University of Maine, Orono, ME, USA
- Tufts University School of Medicine, Boston MA, USA
| | - Michaela R. Reagan
- Center for Molecular Medicine, MaineHealth Institute for Research, Scarborough, ME, USA
- Graduate School of Biomedical Science and Engineering, University of Maine, Orono, ME, USA
- Tufts University School of Medicine, Boston MA, USA
- Roux Institute, Northeastern University, Portland, ME, USA
| |
Collapse
|
8
|
Kuric M, Beck S, Schneider D, Rindt W, Evers M, Meißner-Weigl J, Zeck S, Krug M, Herrmann M, Hartmann TN, Leich E, Rudert M, Docheva D, Seckinger A, Hose D, Jundt F, Ebert R. Modeling Myeloma Dissemination In Vitro with hMSC-interacting Subpopulations of INA-6 Cells and Their Aggregation/Detachment Dynamics. CANCER RESEARCH COMMUNICATIONS 2024; 4:1150-1164. [PMID: 38598843 PMCID: PMC11057410 DOI: 10.1158/2767-9764.crc-23-0411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 02/08/2024] [Accepted: 04/08/2024] [Indexed: 04/12/2024]
Abstract
Multiple myeloma involves early dissemination of malignant plasma cells across the bone marrow; however, the initial steps of dissemination remain unclear. Human bone marrow-derived mesenchymal stromal cells (hMSC) stimulate myeloma cell expansion (e.g., IL6) and simultaneously retain myeloma cells via chemokines (e.g., CXCL12) and adhesion factors. Hence, we hypothesized that the imbalance between cell division and retention drives dissemination. We present an in vitro model using primary hMSCs cocultured with INA-6 myeloma cells. Time-lapse microscopy revealed proliferation and attachment/detachment dynamics. Separation techniques (V-well adhesion assay and well plate sandwich centrifugation) were established to isolate MSC-interacting myeloma subpopulations that were characterized by RNA sequencing, cell viability, and apoptosis. Results were correlated with gene expression data (n = 837) and survival of patients with myeloma (n = 536). On dispersed hMSCs, INA-6 saturate hMSC surface before proliferating into large homotypic aggregates, from which single cells detached completely. On confluent hMSCs, aggregates were replaced by strong heterotypic hMSC-INA-6 interactions, which modulated apoptosis time dependently. Only INA-6 daughter cells (nMA-INA6) detached from hMSCs by cell division but sustained adherence to hMSC-adhering mother cells (MA-INA6). Isolated nMA-INA6 indicated hMSC autonomy through superior viability after IL6 withdrawal and upregulation of proliferation-related genes. MA-INA6 upregulated adhesion and retention factors (CXCL12), that, intriguingly, were highly expressed in myeloma samples from patients with longer overall and progression-free survival, but their expression decreased in relapsed myeloma samples. Altogether, in vitro dissemination of INA-6 is driven by detaching daughter cells after a cycle of hMSC-(re)attachment and proliferation, involving adhesion factors that represent a bone marrow-retentive phenotype with potential clinical relevance. SIGNIFICANCE Novel methods describe in vitro dissemination of myeloma cells as detachment of daughter cells after cell division. Myeloma adhesion genes were identified that counteract in vitro detachment with potential clinical relevance.
Collapse
Affiliation(s)
- Martin Kuric
- Department of Musculoskeletal Tissue Regeneration, University of Würzburg, Würzburg, Germany
| | - Susanne Beck
- University Hospital Heidelberg, Institute of Pathology, Heidelberg, Germany
| | - Doris Schneider
- Department of Musculoskeletal Tissue Regeneration, University of Würzburg, Würzburg, Germany
| | - Wyonna Rindt
- Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany
| | - Marietheres Evers
- University of Würzburg, Institute of Pathology, Comprehensive Cancer Center Mainfranken, Würzburg, Germany
| | - Jutta Meißner-Weigl
- Department of Musculoskeletal Tissue Regeneration, University of Würzburg, Würzburg, Germany
| | - Sabine Zeck
- Department of Musculoskeletal Tissue Regeneration, University of Würzburg, Würzburg, Germany
| | - Melanie Krug
- Department of Musculoskeletal Tissue Regeneration, University of Würzburg, Würzburg, Germany
| | - Marietta Herrmann
- University Hospital Würzburg, IZKF Research Group Tissue Regeneration in Musculoskeletal Diseases, Würzburg, Germany
| | - Tanja Nicole Hartmann
- Department of Internal Medicine I, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany
| | - Ellen Leich
- University of Würzburg, Institute of Pathology, Comprehensive Cancer Center Mainfranken, Würzburg, Germany
| | - Maximilian Rudert
- Orthopedic Department, Clinic König-Ludwig-Haus, University of Würzburg, Würzburg, Germany
| | - Denitsa Docheva
- Department of Musculoskeletal Tissue Regeneration, University of Würzburg, Würzburg, Germany
| | - Anja Seckinger
- Department of Hematology and Immunology, Vrije Universiteit Brussel, Jette, Belgium
| | - Dirk Hose
- Department of Hematology and Immunology, Vrije Universiteit Brussel, Jette, Belgium
| | - Franziska Jundt
- Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany
| | - Regina Ebert
- Department of Musculoskeletal Tissue Regeneration, University of Würzburg, Würzburg, Germany
| |
Collapse
|
9
|
Del Dosso A, Tadevosyan E, Berenson JR. Preclinical and clinical evaluation of the Janus Kinase inhibitor ruxolitinib in multiple myeloma. Oncotarget 2024; 15:65-75. [PMID: 38319731 PMCID: PMC10852065 DOI: 10.18632/oncotarget.28547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 12/18/2023] [Indexed: 02/08/2024] Open
Abstract
Multiple myeloma (MM) is the most common primary malignancy of the bone marrow. No established curative treatment is currently available for patients diagnosed with MM. In recent years, new and more effective drugs have become available for the treatment of this B-cell malignancy. These new drugs have often been evaluated together and in combination with older agents. However, even these novel combinations eventually become ineffective; and, thus, novel therapeutic approaches are necessary to help overcome resistance to these treatments. Recently, the Janus Kinase (JAK) family of tyrosine kinases, specifically JAK1 and JAK2, has been shown to have a role in the pathogenesis of MM. Preclinical studies have demonstrated a role for JAK signaling in direct and indirect growth of MM and downregulation of anti-tumor immune responses in these patients. Also, inhibition of JAK proteins enhances the anti-MM effects of other drugs used to treat MM. These findings have been confirmed in clinical studies which have further demonstrated the safety and efficacy of JAK inhibition as a means to overcome resistance to currently available anti-MM therapies. Additional studies will provide further support for this promising new therapeutic approach for treating patients with MM.
Collapse
Affiliation(s)
- Ashley Del Dosso
- ONCOtherapeutics, West Hollywood, CA 90069, USA
- These authors contributed equally to this work
| | - Elizabeth Tadevosyan
- Berenson Cancer Center, West Hollywood, CA 90069, USA
- These authors contributed equally to this work
| | - James R. Berenson
- ONCOtherapeutics, West Hollywood, CA 90069, USA
- Berenson Cancer Center, West Hollywood, CA 90069, USA
- Institute for Myeloma and Bone Cancer Research, West Hollywood, CA 90069, USA
| |
Collapse
|
10
|
Ochiai M, Fierstein S, XsSali F, DeVito N, Purkey LR, May R, Correa-Medina A, Kelley M, Page TD, DeCicco-Skinner K. Unlocking Drug Resistance in Multiple Myeloma: Adipocytes as Modulators of Treatment Response. Cancers (Basel) 2023; 15:4347. [PMID: 37686623 PMCID: PMC10486466 DOI: 10.3390/cancers15174347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/13/2023] [Accepted: 08/24/2023] [Indexed: 09/10/2023] Open
Abstract
Multiple myeloma (MM) is an incurable hematological malignancy characterized by the clonal proliferation of malignant plasma cells. Despite the development of a diverse array of targeted drug therapies over the last decade, patients often relapse and develop refractory disease due to multidrug resistance. Obesity is a growing public health threat and a risk factor for multiple myeloma, although the mechanisms by which obesity contributes to MM growth and progression have not been fully elucidated. In the present study, we evaluated whether crosstalk between adipocytes and MM cells promoted drug resistance and whether this was amplified by obesity. Human adipose-derived stem cells (ASCs) from nineteen normal (BMI = 20-25 kg/m2), overweight (25-30 kg/m2), or obese (30-35 kg/m2) patients undergoing elective liposuction were utilized. Cells were differentiated into adipocytes, co-cultured with RPMI 8226 or U266B1 multiple myeloma cell lines, and treated with standard MM therapies, including bortezomib or a triple combination of bortezomib, dexamethasone, and lenalidomide. We found that adipocytes from overweight and obese individuals increased cell adhesion-mediated drug resistance (CAM-DR) survival signals in MM cells, and P-glycoprotein (P-gp) and multidrug resistance-associated protein (MRP) drug transporter expression. Further, co-culture enhanced in vitro angiogenesis, MMP-2 activity, and protected MM cells from drug-induced decreases in viability. In summary, we provide an underlying mechanism by which obesity can impair the drug response to MM and allow for recurrence and/or disease progression.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Kathleen DeCicco-Skinner
- Department of Biology, American University, 4400 Massachusetts Ave, NW, Washington, DC 20016, USA
| |
Collapse
|
11
|
Solimando AG, Krebs M, Desantis V, Marziliano D, Caradonna IC, Morizio A, Argentiero A, Shahini E, Bittrich M. Breaking through Multiple Myeloma: A Paradigm for a Comprehensive Tumor Ecosystem Targeting. Biomedicines 2023; 11:2087. [PMID: 37509726 PMCID: PMC10377041 DOI: 10.3390/biomedicines11072087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 06/29/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
Multiple myeloma (MM) is a cancerous condition characterized by the proliferation of plasma cells within the hematopoietic marrow, resulting in multiple osteolytic lesions. MM patients typically experience bone pain, kidney damage, fatigue due to anemia, and infections. Historically, MM was an incurable disease with a life expectancy of around three years after diagnosis. However, over the past two decades, the development of novel therapeutics has significantly improved patient outcomes, including response to treatment, remission duration, quality of life, and overall survival. These advancements include thalidomide and its derivatives, lenalidomide and pomalidomide, which exhibit diverse mechanisms of action against the plasma cell clone. Additionally, proteasome inhibitors such as bortezomib, ixazomib, and carfilzomib disrupt protein degradation, proving specifically toxic to cancerous plasma cells. Recent advancements also involve monoclonal antibodies targeting surface antigens, such as elotuzumab (anti-CS1) and daratumumab (anti-CD38), bispecific t-cell engagers such as teclistamab (anti-BCMA/CD3) and Chimeric antigen receptor T (CAR-T)-based strategies, with a growing focus on drugs that exhibit increasingly targeted action against neoplastic plasma cells and relevant effects on the tumor microenvironment.
Collapse
Affiliation(s)
- Antonio G Solimando
- Unit of Internal Medicine and Clinical Oncology "G. Baccelli", Department of Precision and Regenerative Medicine and Ionian Area, University of Bari Aldo Moro Medical School, 70124 Bari, Italy
| | - Markus Krebs
- Comprehensive Cancer Center Mainfranken, University Hospital Würzburg, 97080 Würzburg, Germany
- Department of Urology and Pediatric Urology, University Hospital Würzburg, 97080 Würzburg, Germany
| | - Vanessa Desantis
- Department of Precision and Regenerative Medicine and Ionian Area, Pharmacology Section, University of Bari Aldo Moro Medical School, 70124 Bari, Italy
| | - Donatello Marziliano
- Unit of Internal Medicine and Clinical Oncology "G. Baccelli", Department of Precision and Regenerative Medicine and Ionian Area, University of Bari Aldo Moro Medical School, 70124 Bari, Italy
| | - Ingrid Catalina Caradonna
- Department of Precision and Regenerative Medicine and Ionian Area, Pharmacology Section, University of Bari Aldo Moro Medical School, 70124 Bari, Italy
| | - Arcangelo Morizio
- Orthopedics and Traumatology Unit ASL BA-Ospedale della Murgia "Fabio Perinei", 70022 Altamura, Italy
| | | | - Endrit Shahini
- Gastroenterology Unit, National Institute of Gastroenterology-IRCCS "Saverio de Bellis", 70013 Castellana Grotte, Italy
| | - Max Bittrich
- Department of Internal Medicine II, University Hospital Würzburg, 97080 Würzburg, Germany
| |
Collapse
|
12
|
Uckun FM, Qazi S. Upregulated Expression of ERBB2/HER2 in Multiple Myeloma as a Predictor of Poor Survival Outcomes. Int J Mol Sci 2023; 24:9943. [PMID: 37373090 DOI: 10.3390/ijms24129943] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/02/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
The main goal of the present study was to examine if the RNA-sequencing (RNAseq)-based ERBB2/HER2 expression level in malignant plasma cells from multiple myeloma (MM) patients has clinical significance for treatment outcomes and survival. We examined the relationship between the RNAseq-based ERBB2 messenger ribonucleic acid (mRNA) levels in malignant plasma cells and survival outcomes in 787 MM patients treated on contemporary standard regimens. ERBB2 was expressed at significantly higher levels than ERBB1 as well as ERBB3 across all three stages of the disease. Upregulated expression of ERBB2 mRNA in MM cells was correlated with amplified expression of mRNAs for transcription factors (TF) that recognize the ERBB2 gene promoter sites. Patients with higher levels of ERBB2 mRNA in their malignant plasma cells experienced significantly increased cancer mortality, shorter progression-free survival, and worse overall survival than other patients. The adverse impact of high ERBB2 expression on patient survival outcomes remained significant in multivariate Cox proportional hazards models that accounted for the effects of other prognostic factors. To the best of our knowledge, this is the first demonstration of an adverse prognostic impact of high-level ERBB2 expression in MM patients. Our results encourage further evaluation of the prognostic significance of high-level ERBB2 mRNA expression and the clinical potential of ERBB2-targeting therapeutics as personalized medicines to overcome cancer drug resistance in high-risk as well as relapsed/refractory MM.
Collapse
Affiliation(s)
- Fatih M Uckun
- Immuno-Oncology Program, Ares Pharmaceuticals, St. Paul, MN 55110, USA
| | - Sanjive Qazi
- Immuno-Oncology Program, Ares Pharmaceuticals, St. Paul, MN 55110, USA
| |
Collapse
|
13
|
Bayraktar E, Bayraktar R, Oztatlici H, Lopez-Berestein G, Amero P, Rodriguez-Aguayo C. Targeting miRNAs and Other Non-Coding RNAs as a Therapeutic Approach: An Update. Noncoding RNA 2023; 9:27. [PMID: 37104009 PMCID: PMC10145226 DOI: 10.3390/ncrna9020027] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 03/29/2023] [Accepted: 04/07/2023] [Indexed: 04/28/2023] Open
Abstract
Since the discovery of the first microRNAs (miRNAs, miRs), the understanding of miRNA biology has expanded substantially. miRNAs are involved and described as master regulators of the major hallmarks of cancer, including cell differentiation, proliferation, survival, the cell cycle, invasion, and metastasis. Experimental data indicate that cancer phenotypes can be modified by targeting miRNA expression, and because miRNAs act as tumor suppressors or oncogenes (oncomiRs), they have emerged as attractive tools and, more importantly, as a new class of targets for drug development in cancer therapeutics. With the use of miRNA mimics or molecules targeting miRNAs (i.e., small-molecule inhibitors such as anti-miRS), these therapeutics have shown promise in preclinical settings. Some miRNA-targeted therapeutics have been extended to clinical development, such as the mimic of miRNA-34 for treating cancer. Here, we discuss insights into the role of miRNAs and other non-coding RNAs in tumorigenesis and resistance and summarize some recent successful systemic delivery approaches and recent developments in miRNAs as targets for anticancer drug development. Furthermore, we provide a comprehensive overview of mimics and inhibitors that are in clinical trials and finally a list of clinical trials based on miRNAs.
Collapse
Affiliation(s)
- Emine Bayraktar
- Department of Gynecologic Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- UTHealth Houston Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Recep Bayraktar
- UTHealth Houston Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Hulya Oztatlici
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Department of Histology and Embryology, Gaziantep University, Gaziantep 27310, Turkey
| | - Gabriel Lopez-Berestein
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Paola Amero
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Cristian Rodriguez-Aguayo
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Center for RNA Interference and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
14
|
Alipoor SD, Chang H. Exosomal miRNAs in the Tumor Microenvironment of Multiple Myeloma. Cells 2023; 12:cells12071030. [PMID: 37048103 PMCID: PMC10092980 DOI: 10.3390/cells12071030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/21/2023] [Accepted: 03/23/2023] [Indexed: 03/30/2023] Open
Abstract
Multiple myeloma (MM) is a malignancy of plasma cells in the bone marrow and is characterized by the clonal proliferation of B-cells producing defective monoclonal immunoglobulins. Despite the latest developments in treatment, drug resistance remains one of the major challenges in the therapy of MM. The crosstalk between MM cells and other components within the bone marrow microenvironment (BME) is the major determinant of disease phenotypes. Exosomes have emerged as the critical drivers of this crosstalk by allowing the delivery of informational cargo comprising multiple components from miniature peptides to nucleic acids. Such material transfers have now been shown to perpetuate drug-resistance development and disease progression in MM. MicroRNAs(miRNAs) specifically play a crucial role in this communication considering their small size that allows them to be readily packed within the exosomes and widespread potency that impacts the developmental trajectory of the disease inside the tumor microenvironment (TME). In this review, we aim to provide an overview of the current understanding of the role of exosomal miRNAs in the epigenetic modifications inside the TME and its pathogenic influence on the developmental phenotypes and prognosis of MM.
Collapse
Affiliation(s)
- Shamila D. Alipoor
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
- Department of Molecular Medicine, Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran P5X9+7F9, Iran
| | - Hong Chang
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
- Department of Laboratory Hematology, Laboratory Medicine Program, University Health Network, Toronto, ON M5G 2M9, Canada
- Correspondence:
| |
Collapse
|
15
|
Kikuchi H, Amofa E, Mcenery M, Schey SA, Ramasamy K, Farzaneh F, Calle Y. Inhibition of PI3K Class IA Kinases Using GDC-0941 Overcomes Cytoprotection of Multiple Myeloma Cells in the Osteoclastic Bone Marrow Microenvironment Enhancing the Efficacy of Current Clinical Therapeutics. Cancers (Basel) 2023; 15:462. [PMID: 36672411 PMCID: PMC9856454 DOI: 10.3390/cancers15020462] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 01/02/2023] [Accepted: 01/05/2023] [Indexed: 01/12/2023] Open
Abstract
Osteoclasts contribute to bone marrow (BM)-mediated drug resistance in multiple myeloma (MM) by providing cytoprotective cues. Additionally, 80% of patients develop osteolytic lesions, which is a major cause of morbidity in MM. Although targeting osteoclast function is critical to improve MM therapies, pre-clinical studies rarely consider overcoming osteoclast-mediated cytoprotection within the selection criteria of drug candidates. We have performed a drug screening and identified PI3K as a key regulator of a signalling node associated with resistance to dexamethasone lenalidomide, pomalidomide, and bortezomib mediated by osteoclasts and BM fibroblastic stromal cells, which was blocked by the pan-PI3K Class IA inhibitor GDC-0941. Additionally, GDC-0941 repressed the maturation of osteoclasts derived from MM patients and disrupted the organisation of the F-actin cytoskeleton in sealing zones required for bone degradation, correlating with decreased bone resorption by osteoclasts. In vivo, GDC-0941 improved the efficacy of dexamethasone against MM in the syngeneic GFP-5T33/C57-Rawji mouse model. Taken together, our results indicate that GDC-0941 in combination with currently used therapeutic agents could effectively kill MM cells in the presence of the cytoprotective BM microenvironment while inhibiting bone resorption by osteoclasts. These data support investigating GDC-0941 in combination with currently used therapeutic drugs for MM patients with active bone disease.
Collapse
Affiliation(s)
- Hugh Kikuchi
- Department of Haemato-Oncology, King’s College London, London SE5 9NU, UK
| | - Eunice Amofa
- Department of Haemato-Oncology, King’s College London, London SE5 9NU, UK
| | - Maeve Mcenery
- Department of Haemato-Oncology, King’s College London, London SE5 9NU, UK
| | - Steve Arthur Schey
- Department of Haemato-Oncology, King’s College London, London SE5 9NU, UK
- Department of Haematology, Guys Hospital, Guys and St. Thomas’ NHS Foundation Trust, London SE5 9RS, UK
| | - Karthik Ramasamy
- Royal Berkshire Hospital, Oxford University Hospitals, Oxford OX3 7LE, UK
| | - Farzin Farzaneh
- Department of Haemato-Oncology, King’s College London, London SE5 9NU, UK
| | - Yolanda Calle
- School of Life Sciences and Health, University of Roehampton, London SW15 4JD, UK
| |
Collapse
|