1
|
Zhang J, Shen W, He H. Exploring the action mechanism of Oxalis corniculata L. decoction in treating osteoarthritis utilizing liquid chromatography-mass spectrometry technology combined with network pharmacology. Medicine (Baltimore) 2024; 103:e39515. [PMID: 39213214 PMCID: PMC11365612 DOI: 10.1097/md.0000000000039515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 08/08/2024] [Accepted: 08/09/2024] [Indexed: 09/04/2024] Open
Abstract
This study aimed to identify the chemical constituents of Oxalis corniculata L. decoction. Furthermore, the mechanism of action of O corniculata L. decoction in treating osteoarthritis (OA) was investigated utilizing network pharmacology. The chemical composition of the O corniculata L. decoction was analyzed by employing UHPLC-Q-Exactive-MS/MS. Subsequently, a "compound-target-pathway" network was established through network pharmacology, offering a novel approach to identify the molecular mechanism underlying the treatment of OA with O corniculata L. decoction. Ultimately, the molecular docking technique was employed to validate the binding ability of the active ingredients with therapeutic targets. A total of 539 compounds were identified in O corniculata L. decoction. Topological analysis of the protein-protein interaction network indicated that compounds, including guanosine, naringenin-7-O-beta-D-glucuronide, noroxyhydrastinine, and chrysophanol 8-O-glucoside, have therapeutic potential for OA. In addition, GAPDH, TNF, TP53, epidermal growth factor receptor, and ESR1 may be key targets for the treatment of OA, primarily involving lipid and atherosclerosis, cellular senescence, IL-17 signaling pathway, and epidermal growth factor receptor tyrosine kinase inhibitor resistance signaling pathways. This method preliminarily identified the chemical composition of O corniculata L. decoction and predicted the active ingredients, potential targets, and signaling pathways of O corniculata L. decoction in treating OA. The findings of this research revealed the potential function of O corniculata L. decoction in anti-inflammation, alongside its ability to promote osteoblast proliferation and differentiation, providing new ideas for the processing of O corniculata L. herbs and related drug development.
Collapse
Affiliation(s)
- Jian Zhang
- Guizhou Institute of Subtropical Crops, Guizhou Academy of Agricultural Sciences, Guiyang, China
- Key Laboratory of Crop Gene Resources and Germplasm Innovation in Karst, Plateau Mountains, Guiyang, China
| | - Wanyan Shen
- Research and Development Department, Guizhou Weikang Zifan Pharmaceutical Co., Ltd., Guiyang, China
| | - Hehe He
- Research and Development Department, Guizhou Weikang Zifan Pharmaceutical Co., Ltd., Guiyang, China
| |
Collapse
|
2
|
Chen Z, Wang C, Cai Y, Xu A, Han C, Tong Y, Cheng S, Liu M. Revealing the Mechanism of Esculin in Treating Renal Cell Carcinoma Based on Network Pharmacology and Experimental Validation. Biomolecules 2024; 14:1043. [PMID: 39199428 PMCID: PMC11352311 DOI: 10.3390/biom14081043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/20/2024] [Accepted: 08/21/2024] [Indexed: 09/01/2024] Open
Abstract
PURPOSE This study aims to explore the potential mechanisms of esculin in the treatment of renal cell carcinoma (RCC). METHODS We employed network pharmacology to predict the potential mechanisms and targets of esculin in RCC. Molecular docking techniques were then employed to validate the predicted targets. Additionally, a series of in vitro experiments were conducted to verify the anticancer effects of esculin on RCC cells, including the CCK-8 assay, EdU assay, wound healing assay, apoptosis assay, and Western blot. RESULTS Network pharmacology and molecular docking results identified GAPDH, TNF, GSK3B, CCND1, MCL1, IL2, and CDK2 as core targets. GO and KEGG analyses suggested that esculin may influence apoptotic processes and target the PI3K/Akt pathway in RCC. Furthermore, the CCK-8 assay demonstrated that esculin inhibited RCC cell viability. Microscopic observations revealed that following esculin treatment, there was an increase in cell crumpling, a reduction in cell density, and an accumulation of floating dead cells. Additionally, with increasing esculin concentrations, the proportion of EdU-positive cells decreased, the wound closure ratio decreased, the proportion of PI-positive cells increased, the expression levels of BAX and cleaved-caspase-3 proteins increased, and the expression level of Bcl2 protein decreased. These findings suggested that esculin inhibits the proliferation and migration of RCC cells while promoting apoptosis. Moreover, esculin was found to target GAPDH and inhibit the PI3K/Akt pathway. CONCLUSIONS This study is the first to elucidate the therapeutic effects of esculin on RCC cells. The results provide evidence supporting the clinical application of esculin and introduce a promising new candidate for RCC treatment.
Collapse
Affiliation(s)
- Zixuan Chen
- Department of Urology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China; (Z.C.)
| | - Cunzhou Wang
- Department of Traditional Chinese Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China
| | - Yuesong Cai
- College of Medicine, Yanbian University, Yanji 133002, China
| | - An Xu
- Department of Urology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China; (Z.C.)
| | - Chengtao Han
- Department of Urology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China; (Z.C.)
| | - Yanjun Tong
- Department of Anesthesiology and Surgery, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China
| | - Sheng Cheng
- Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China
| | - Min Liu
- Department of Urology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China; (Z.C.)
| |
Collapse
|
3
|
Jin W, Zhang Y, Zhao Z, Gao M. Developing targeted therapies for neuroblastoma by dissecting the effects of metabolic reprogramming on tumor microenvironments and progression. Theranostics 2024; 14:3439-3469. [PMID: 38948053 PMCID: PMC11209723 DOI: 10.7150/thno.93962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 05/18/2024] [Indexed: 07/02/2024] Open
Abstract
Rationale: Synergic reprogramming of metabolic dominates neuroblastoma (NB) progression. It is of great clinical implications to develop an individualized risk prognostication approach with stratification-guided therapeutic options for NB based on elucidating molecular mechanisms of metabolic reprogramming. Methods: With a machine learning-based multi-step program, the synergic mechanisms of metabolic reprogramming-driven malignant progression of NB were elucidated at single-cell and metabolite flux dimensions. Subsequently, a promising metabolic reprogramming-associated prognostic signature (MPS) and individualized therapeutic approaches based on MPS-stratification were developed and further validated independently using pre-clinical models. Results: MPS-identified MPS-I NB showed significantly higher activity of metabolic reprogramming than MPS-II counterparts. MPS demonstrated improved accuracy compared to current clinical characteristics [AUC: 0.915 vs. 0.657 (MYCN), 0.713 (INSS-stage), and 0.808 (INRG-stratification)] in predicting prognosis. AZD7762 and etoposide were identified as potent therapeutics against MPS-I and II NB, respectively. Subsequent biological tests revealed AZD7762 substantially inhibited growth, migration, and invasion of MPS-I NB cells, more effectively than that of MPS-II cells. Conversely, etoposide had better therapeutic effects on MPS-II NB cells. More encouragingly, AZD7762 and etoposide significantly inhibited in-vivo subcutaneous tumorigenesis, proliferation, and pulmonary metastasis in MPS-I and MPS-II samples, respectively; thereby prolonging survival of tumor-bearing mice. Mechanistically, AZD7762 and etoposide-induced apoptosis of the MPS-I and MPS-II cells, respectively, through mitochondria-dependent pathways; and MPS-I NB resisted etoposide-induced apoptosis by addiction of glutamate metabolism and acetyl coenzyme A. MPS-I NB progression was fueled by multiple metabolic reprogramming-driven factors including multidrug resistance, immunosuppressive and tumor-promoting inflammatory microenvironments. Immunologically, MPS-I NB suppressed immune cells via MIF and THBS signaling pathways. Metabolically, the malignant proliferation of MPS-I NB cells was remarkably supported by reprogrammed glutamate metabolism, tricarboxylic acid cycle, urea cycle, etc. Furthermore, MPS-I NB cells manifested a distinct tumor-promoting developmental lineage and self-communication patterns, as evidenced by enhanced oncogenic signaling pathways activated with development and self-communications. Conclusions: This study provides deep insights into the molecular mechanisms underlying metabolic reprogramming-mediated malignant progression of NB. It also sheds light on developing targeted medications guided by the novel precise risk prognostication approaches, which could contribute to a significantly improved therapeutic strategy for NB.
Collapse
Affiliation(s)
- Wenyi Jin
- Department of Orthopedics, Wenzhou Third Clinical Institute Affiliated to Wenzhou Medical University, The Third Affiliated Hospital of Shanghai University, Wenzhou People's Hospital, Wenzhou, China, 325041
- Department of Orthopedics, Renmin Hospital of Wuhan University, No. 99 Zhangzhidong Road, Wuchang District, Wuhan, China, 430060
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, China, 999077
| | - Yubiao Zhang
- Department of Orthopedics, Renmin Hospital of Wuhan University, No. 99 Zhangzhidong Road, Wuchang District, Wuhan, China, 430060
| | - Zhijie Zhao
- Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, School of Medicine, Shanghai Jiao Tong University, 639 Zhi Zao Ju Road, Shanghai, China, 200011
| | - Mingyong Gao
- Department of Orthopedics, Wenzhou Third Clinical Institute Affiliated to Wenzhou Medical University, The Third Affiliated Hospital of Shanghai University, Wenzhou People's Hospital, Wenzhou, China, 325041
| |
Collapse
|
4
|
Li XL, Cai XY, Ning X, Liang YY, Hong Y, Li QM, Hu D, Zheng YZ, Cai Y, Xu T, Zhao LL. Role of sleep in asthenospermia induced by di (2-ethyl-hexyl) phthalate. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:13965-13980. [PMID: 38265591 DOI: 10.1007/s11356-024-32030-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 01/12/2024] [Indexed: 01/25/2024]
Abstract
Di (2-ethyl-hexyl) phthalate (DEHP) mainly enters the human body through the digestive tract, respiratory tract, and skin. At the same time, it has reproductive and developmental toxicity, neurotoxicity, and so on, which can cause the decrease of sperm motility. Asthenospermia is also known as low sperm motility, and the semen quality of men in some areas of China is declining year by year. Interestingly, previous studies have shown that sleep disorders can also lead to asthenospermia. However, the relationship between sleep, DEHP, and asthenospermia is still unclear. Analysis of the National Health and Nutrition Examination Survey (NHANES) population database showed that DEHP was associated with sleep disorders, and subsequent experiments in mice and Drosophila indicated that DEHP exposure had certain effects on sleep and asthenospermia. Furthermore, we analyzed the Comparative Toxicogenomics Database (CTD) to find out the common signaling pathway among the three: hypoxia-inducible factor 1(HIF-1). Then Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) was used to screen out the proteins that DEHP affected the HIF-1 pathway: glyceraldehyde-3-phosphate dehydrogenase (GAPDH), serine/threonine-protein kinase (AKT1), epidermal growth factor receptor (EGFR), and finally Western blot analysis was used to detect the expression levels of the three proteins. Compared with the control group, DEHP decreased the protein expression levels of GAPDH and AKT1 in the HIF-1 pathway, and caused sleep disorders and decreased sperm motility. This study provides preliminary evidence for exploring the mechanism among DEHP, sleep disorders, and asthenospermia.
Collapse
Affiliation(s)
- Xiao-Lu Li
- Department of Toxicology, School of Public Health, Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, MOE Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, China
- School of Biology, Food and Environment, Hefei University, Hefei, 230601, China
| | - Xiao-Yue Cai
- Department of Toxicology, School of Public Health, Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, MOE Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, China
- School of Biology, Food and Environment, Hefei University, Hefei, 230601, China
| | - Xia Ning
- Department of Toxicology, School of Public Health, Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, MOE Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, China
- School of Biology, Food and Environment, Hefei University, Hefei, 230601, China
| | - Yue-Yue Liang
- Department of Toxicology, School of Public Health, Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, MOE Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, China
- School of Biology, Food and Environment, Hefei University, Hefei, 230601, China
| | - Yun Hong
- Department of Toxicology, School of Public Health, Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, MOE Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, China
- School of Biology, Food and Environment, Hefei University, Hefei, 230601, China
| | - Qi-Meng Li
- Department of Toxicology, School of Public Health, Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, MOE Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, China
- School of Biology, Food and Environment, Hefei University, Hefei, 230601, China
| | - Die Hu
- Department of Toxicology, School of Public Health, Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, MOE Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, China
- School of Biology, Food and Environment, Hefei University, Hefei, 230601, China
| | - Yuan-Zhuo Zheng
- Department of Toxicology, School of Public Health, Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, MOE Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, China
- School of Biology, Food and Environment, Hefei University, Hefei, 230601, China
| | - Yang Cai
- Department of Toxicology, School of Public Health, Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, MOE Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, China
- School of Biology, Food and Environment, Hefei University, Hefei, 230601, China
| | - Tao Xu
- Department of Toxicology, School of Public Health, Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, MOE Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, China
- School of Biology, Food and Environment, Hefei University, Hefei, 230601, China
| | - Ling-Li Zhao
- Department of Toxicology, School of Public Health, Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, MOE Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, China.
| |
Collapse
|
5
|
Braidotti S, Curci D, Zampieri D, Covino C, Zanon D, Maximova N, Sala R. Iron Bioavailability in the Extracellular Environment Is More Relevant Than the Intracellular One in Viability and Gene Expression: A Lesson from Oligodendroglioma Cells. Biomedicines 2023; 11:2940. [PMID: 38001941 PMCID: PMC10668974 DOI: 10.3390/biomedicines11112940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/24/2023] [Accepted: 10/29/2023] [Indexed: 11/26/2023] Open
Abstract
Oligodendroglioma (OG) is a brain tumor that contributes to <1% of brain tumor diagnoses in the pediatric population. Unfortunately, pediatric OG remains without definitive molecular characteristics to aid in diagnosis, and little is known about the tumor microenvironment. Tumor cells' metabolism and proliferation rate are generally higher than those of healthy cells, so their iron demand is also significantly higher. This consideration underlines the great importance of iron for tumor development and progression. In this context, this study aims to evaluate the effect of iron in a cellular in vitro model of human oligodendroglioma brain tumor. Cell morphology, the effect of siderotic medium on cell growth, iron uptake, and the expression of iron-metabolism-related genes were evaluated via optic microscopy, ICP-MS, confocal microscopy, and real-time PCR, respectively. This study underlines the great importance of iron for tumor development and progression and also the possibility of reducing the available iron concentration to determine an antiproliferative effect on OG. Therefore, every attempt can be promising to defeat OG for which there are currently no long-term curative therapies.
Collapse
Affiliation(s)
- Stefania Braidotti
- Department of Pediatrics, Institute for Maternal and Child Health-IRCCS Burlo Garofolo, 34137 Trieste, Italy;
| | - Debora Curci
- Advanced Translational Diagnostic Laboratory, Institute for Maternal and Child Health-IRCCS Burlo Garofolo, 34137 Trieste, Italy;
| | - Daniele Zampieri
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, 34127 Trieste, Italy;
| | - Cesare Covino
- Advanced Light and Electron Microscopy Imaging Centre (ALEMBIC), IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy;
| | - Davide Zanon
- Pharmacy and Clinical Pharmacology Department, Institute for Maternal and Child Health-IRCCS Burlo Garofolo, 34137 Trieste, Italy;
| | - Natalia Maximova
- Department of Pediatrics, Institute for Maternal and Child Health-IRCCS Burlo Garofolo, 34137 Trieste, Italy;
| | - Roberto Sala
- Department of Medicine and Surgery, University of Parma, 43121 Parma, Italy;
| |
Collapse
|
6
|
Li Y, Shen X. Cadmium Exposure Affects Serum Metabolites and Proteins in the Male Guizhou Black Goat. Animals (Basel) 2023; 13:2705. [PMID: 37684969 PMCID: PMC10487163 DOI: 10.3390/ani13172705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/14/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023] Open
Abstract
Food safety and environmental pollution are the hotspots of general concern globally. Notably, long-term accumulation of trace toxic heavy metals, such as cadmium (Cd), in animals may endanger human health via the food chain. The mechanism of Cd toxicity in the goat, a popular farmed animal, has not been extensively investigated to date. Therefore, in this study, ten male goats (Nubian black goat × native black goat) were exposed to Cd via drinking water containing CdCl2 (20 mg Cd·kg-1·BW) for 30 days (five male goats per group). In this study, we used an integrated approach combining proteomics and metabolomics to profile proteins and metabolites in the serum of Cd-exposed goats. It was found that Cd exposure impacted the levels of 30 serum metabolites and 108 proteins. The combined proteomic and metabolomic analysis revealed that Cd exposure affected arginine and proline metabolism, beta-alanine metabolism, and glutathione metabolism. Further, antioxidant capacity in the serum of goats exposed to Cd was reduced. We identified CKM and spermidine as potential protein and metabolic markers, respectively, of early Cd toxicity in the goat. This study details approaches for the early diagnosis and prevention of Cd-poisoned goats.
Collapse
Affiliation(s)
- Yuanfeng Li
- College of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China;
| | - Xiaoyun Shen
- College of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China;
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi 832000, China
| |
Collapse
|
7
|
Niu M, Yuan J, Yan M, Yang G, Yan Z, Yang X. Discovery of CLEC2B as a diagnostic biomarker and screening of celastrol as a candidate drug for psoriatic arthritis through bioinformatics analysis. J Orthop Surg Res 2023; 18:390. [PMID: 37246213 DOI: 10.1186/s13018-023-03843-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 05/08/2023] [Indexed: 05/30/2023] Open
Abstract
BACKGROUND Psoriatic arthritis (PSA) is a chronic, immune-mediated inflammatory joint disease that is liked to mortality due to cardiovascular disease. Diagnostic markers and effective therapeutic options for PSA remain limited due to the lack of understanding of the pathogenesis. We aimed to identify potential diagnostic markers and screen the therapeutic compounds for PSA based on bioinformatics analysis. METHODS Differentially expressed genes (DEGs) of PSA were identified from the GSE61281 dataset. WGCNA was used to identify PSA-related modules and prognostic biomarkers. Clinical samples were collected to validate the expression of the diagnostic gene. These DEGs were subjected to the CMap database for the identification of therapeutic candidates for PSA. Potential pathways and targets for drug candidates to treat PSA were predicted using Network Pharmacology. Molecular docking techniques were used to validate key targets. RESULTS CLEC2B was identified as a diagnostic marker for PSA patients (AUC > 0.8) and was significantly upregulated in blood samples. In addition, celastrol was identified as a candidate drug for PSA. Subsequently, the network pharmacology approach identified four core targets (IL6, TNF, GAPDH, and AKT1) of celastrol and revealed that celastrol could treat PSA by modulating inflammatory-related pathways. Finally, molecular docking demonstrated stable binding of celastrol to four core targets in the treatment of PSA. Animal experiments indicated celastrol alleviated inflammatory response in the mannan-induced PSA. CONCLUSION CLEC2B was a diagnostic marker for PSA patients. Celastrol was identified as a potential therapeutic drug for PSA via regulating immunity and inflammation.
Collapse
Affiliation(s)
- Min Niu
- Department of Rheumatology Immunology and Endocrinology, Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Jingman Yuan
- Department of Rheumatology Immunology and Endocrinology, Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Meixi Yan
- Department of Rheumatology Immunology and Endocrinology, Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Ge Yang
- Department of Rheumatology Immunology and Endocrinology, Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Ziyi Yan
- Department of Rheumatology Immunology and Endocrinology, Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Xichao Yang
- Department of Rheumatology Immunology and Endocrinology, Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China.
| |
Collapse
|