1
|
Hou X, Li X, Han Y, Xu H, Xie Y, Zhou T, Xue T, Qian X, Li J, Wang HC, Yan J, Guo X, Liu Y, Liu J. Triple-negative breast cancer survival prediction using artificial intelligence through integrated analysis of tertiary lymphoid structures and tumor budding. Cancer 2024; 130:1499-1512. [PMID: 38422056 DOI: 10.1002/cncr.35261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 01/14/2024] [Accepted: 01/16/2024] [Indexed: 03/02/2024]
Abstract
BACKGROUND Triple-negative breast cancer (TNBC) is a highly heterogeneous and clinically aggressive disease. Accumulating evidence indicates that tertiary lymphoid structures (TLSs) and tumor budding (TB) are significantly correlated with the outcomes of patients who have TNBC, but no integrated TLS-TB profile has been established to predict their survival. The objective of this study was to investigate the relationship between the TLS/TB ratio and clinical outcomes of patients with TNBC using artificial intelligence (AI)-based analysis. METHODS The infiltration levels of TLSs and TB were evaluated using hematoxylin and eosin staining, immunohistochemistry staining, and AI-based analysis. Various cellular subtypes within TLS were determined by multiplex immunofluorescence. Subsequently, the authors established a nomogram model, conducted calibration curve analyses, and performed decision curve analyses using R software. RESULTS In both the training and validation cohorts, the antitumor/protumor model established by the authors demonstrated a positive correlation between the TLS/TB index and the overall survival (OS) and relapse-free survival (RFS) of patients with TNBC. Notably, patients who had a high percentage of CD8-positive T cells, CD45RO-positive T cells, or CD20-positive B cells within the TLSs experienced improved OS and RFS. Furthermore, the authors developed a comprehensive TLS-TB profile nomogram based on the TLS/TB index. This novel model outperformed the classical tumor-lymph node-metastasis staging system in predicting the OS and RFS of patients with TNBC. CONCLUSIONS A novel strategy for predicting the prognosis of patients with TNBC was established through integrated AI-based analysis and a machine-learning workflow. The TLS/TB index was identified as an independent prognostic factor for TNBC. This nomogram-based TLS-TB profile would help improve the accuracy of predicting the prognosis of patients who have TNBC.
Collapse
Affiliation(s)
- Xupeng Hou
- Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
- National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, China
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- People's Republic of China. Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Xueyang Li
- Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
- National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, China
| | - Yunwei Han
- Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
- National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, China
| | - Hua Xu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yongjie Xie
- Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
- National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, China
| | - Tianxing Zhou
- Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
- National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, China
| | - Tongyuan Xue
- Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
- National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, China
| | - Xiaolong Qian
- Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
- National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, China
| | - Jiazhen Li
- Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
- National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, China
| | - Hayson Chenyu Wang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jingrui Yan
- Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
- National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, China
| | - Xiaojing Guo
- Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
- National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, China
| | - Ying Liu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jing Liu
- Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
- National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, China
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- People's Republic of China. Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, China
| |
Collapse
|
2
|
Liang W, Jie H, Xie H, Zhou Y, Li W, Huang L, Liang Z, Liu H, Zheng X, Zeng Z, Kang L. High KRT17 expression in tumour budding indicates immunologically 'hot' tumour budding and predicts good survival in patients with colorectal cancer. Clin Transl Immunology 2024; 13:e1495. [PMID: 38433762 PMCID: PMC10903186 DOI: 10.1002/cti2.1495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 02/07/2024] [Accepted: 02/18/2024] [Indexed: 03/05/2024] Open
Abstract
Objectives Emerging evidence has demonstrated that tumour budding (TB) is negatively associated with T-lymphocyte infiltration in CRC. Despite extensive research, the molecular characteristics of immunologically 'hot' TB remain poorly understood. Methods We quantified the number of TB by haematoxylin-eosin (H&E) sections and the densities of CD3+ and CD8+ T-lymphocytes by immunohistochemistry in a CRC cohort of 351 cases who underwent curative resection. We analysed the differential expression and T-lymphocyte infiltration score of 37 human epithelial keratins in CRC using RNA sequencing from the TCGA dataset. In 278 TB-positive cases, KRT17 expression was evaluated in tumour centre (TC) and TB with a staining score. Patient demographic, clinicopathological features and survival rates were analysed. Results In a CRC cohort of 351 cases, low-grade TB was associated with high CD3+ and CD8+ T-cell densities in the invasive margin (IM) but not in the TC. Of 37 human epithelial keratins, only KRT17 expression in TB had an apparent association with TB-grade and T-lymphocyte infiltration. In 278 TB-positive cases, high KRT17 expression in TB (KRT17TB) was negatively associated with low-grade TB and positively associated with high CD3+ and CD8+ T-cell densities in IM. High KRT17TB predicted early tumour grade, absence of lymph node metastasis and absence of tumour deposits. Additionally, patients with high KRT17TB had good overall survival and disease-free survival. Notably, low KRT17TB can specifically identify those patients with a poor prognosis among colorectal cancer patients with low TB and high T-lymphocyte infiltration. Conclusions KRT17 can be employed as a new indicator for distinguishing different immunological TBs.
Collapse
Affiliation(s)
- Wenfeng Liang
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdongChina
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdongChina
- Biomedical Innovation Center, The Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdongChina
| | - Haiqing Jie
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdongChina
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdongChina
- Biomedical Innovation Center, The Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdongChina
| | - Hao Xie
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdongChina
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdongChina
- Biomedical Innovation Center, The Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdongChina
| | - Yebohao Zhou
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdongChina
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdongChina
- Biomedical Innovation Center, The Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdongChina
| | - Wenxin Li
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdongChina
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdongChina
- Biomedical Innovation Center, The Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdongChina
| | - Liang Huang
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdongChina
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdongChina
- Biomedical Innovation Center, The Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdongChina
| | - Zhenxing Liang
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdongChina
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdongChina
- Biomedical Innovation Center, The Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdongChina
| | - Huashan Liu
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdongChina
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdongChina
- Biomedical Innovation Center, The Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdongChina
| | - Xiaobin Zheng
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdongChina
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdongChina
- Biomedical Innovation Center, The Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdongChina
| | - Ziwei Zeng
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdongChina
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdongChina
- Biomedical Innovation Center, The Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdongChina
| | - Liang Kang
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdongChina
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdongChina
- Biomedical Innovation Center, The Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdongChina
| |
Collapse
|
3
|
Su H, Chen Y, Lin F, Li W, Gu X, Zeng W, Liu D, Li M, Zhong S, Chen Q, Chen Q. Establishment of a lysosome-related prognostic signature in breast cancer to predict immune infiltration and therapy response. Front Oncol 2023; 13:1325452. [PMID: 38162504 PMCID: PMC10757638 DOI: 10.3389/fonc.2023.1325452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 12/04/2023] [Indexed: 01/03/2024] Open
Abstract
Background Lysosomes are instrumental in intracellular degradation and recycling, with their functional alterations holding significance in tumor growth. Nevertheless, the precise role of lysosome-related genes (LRGs) in breast cancer (BC) remains elucidated. This study aimed to establish a prognostic model for BC based on LRGs. Methods Employing The Cancer Genome Atlas (TCGA) BC cohort as a training dataset, this study identified differentially expressed lysosome-related genes (DLRGs) through intersecting LRGs with differential expression genes (DEGs) between tumor and normal samples. A prognostic model of BC was subsequently developed using Cox regression analysis and validated within two Gene Expression Omnibus (GEO) external validation sets. Further analyses explored functional pathways, the immune microenvironment, immunotherapeutic responses, and sensitivity to chemotherapeutic drugs in different risk groups. Additionally, the mRNA and protein expression levels of genes within the risk model were examined by utilizing the Gene Expression Profiling Interactive Analysis (GEPIA) and Human Protein Atlas (HPA) databases. Clinical tissue specimens obtained from patients were gathered to validate the expression of the model genes via Real-Time Polymerase Chain Reaction (RT-PCR). Results We developed a risk model of BC based on five specific genes (ATP6AP1, SLC7A5, EPDR1, SDC1, and PIGR). The model was validated for overall survival (OS) in two GEO validation sets (p=0.00034 for GSE20685 and p=0.0095 for GSE58812). In addition, the nomogram incorporating clinical factors showed better predictive performance. Compared to the low-risk group, the high-risk group had a higher level of certain immune cell infiltration, including regulatory T cells (Tregs) and type 2 T helper cells (Th2). The high-risk patients appeared to respond less well to general immunotherapy and chemotherapeutic drugs, according to the Tumor Immune Dysfunction and Exclusion (TIDE), Immunophenotype Score (IPS), and drug sensitivity scores. The RT-PCR results validated the expression trends of some prognostic-related genes in agreement with the previous differential expression analysis. Conclusion Our innovative lysosome-associated signature can predict the prognosis for BC patients, offering insights for guiding subsequent immunotherapeutic and chemotherapeutic interventions. Furthermore, it has the potential to provide a scientific foundation for identifying prospective therapeutic targets.
Collapse
Affiliation(s)
- Hairong Su
- Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ying Chen
- Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Fengye Lin
- Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wanhua Li
- Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiangyu Gu
- Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Weijie Zeng
- Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Breast, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Dan Liu
- Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Breast, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Man Li
- Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shaowen Zhong
- Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Breast, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Qianjun Chen
- Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Breast, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Qubo Chen
- Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
4
|
Chiesa-Estomba CM, Thompson L, Agaimy A, Zidar N, Simpson RHW, Franchi A, Rodrigo JP, Mäkitie AA, Almangush A, Leivo I, Ferlito A. Predictive value of tumor budding in head and neck squamous cell carcinoma: an update. Virchows Arch 2023; 483:441-449. [PMID: 37642731 DOI: 10.1007/s00428-023-03630-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/16/2023] [Accepted: 08/21/2023] [Indexed: 08/31/2023]
Abstract
Head and neck squamous cell carcinoma forms an anatomically and functionally complex group of malignancies. The significant local aggressiveness and frequent regional relapses motivate ongoing research to identify more reliable and sensitive prognostic and predictive biomarkers. One emerging area of cancer biology is the evaluation of tumor budding at the advancing invasive front of various types of epithelial cancers. Recent studies suggest that tumor budding is a relatively common phenomenon in cancer progression and that it may have important prognostic implications for patients due to its potential to provide valuable insights into the biology and clinical behavior of head and neck cancer. In this review, we aim to provide information about tumor budding in head and neck squamous cell carcinoma. Thus, we hope to shed light on the complex biology of these malignancies, as well as aiding diagnostic, classification, and better characterization and thereby, looking for new avenues for improving patient outcomes.
Collapse
Affiliation(s)
- Carlos M Chiesa-Estomba
- Department of Otorhinolaryngology, Osakidetza, Donostia University Hospital, Biodonostia Research Institute, 20014, San Sebastian, Spain.
- Otorhinolaryngology Department, Faculty of Medicine, Deusto University, Bilbao, Spain.
| | - Lester Thompson
- Head and Neck Pathology Consultations, Woodland Hills, CA, 91364, USA
| | - Abbas Agaimy
- Institut Für Pathologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Nina Zidar
- Institute of Pathology, Faculty of Medicine, University of Ljubljana, 1000, Ljubljana, Slovenia
| | | | - Alessandro Franchi
- Department of Translational Research and of New Technologies in Medicine and Surgery, University of Pisa, 56126, Pisa, Italy
| | - Juan P Rodrigo
- Department of Otolaryngology, Hospital Universitario Central de Asturias, University of Oviedo, ISPA, IUOPA, CIBERONC, Oviedo, Spain
| | - Antti A Mäkitie
- Department of Otorhinolaryngology-Head and Neck Surgery, Research Program in Systems Oncology, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - Alhadi Almangush
- Research Program in Systems Oncology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Pathology, University of Helsinki, Helsinki, Finland
| | - Ilmo Leivo
- Institute of Biomedicine, Pathology, University of Turku, Turku, Finland
| | - Alfio Ferlito
- Coordinator of the International Head and Neck, Scientific Group, Padua, Italy
| |
Collapse
|
5
|
Sanya DRA, Onésime D. Roles of non-coding RNAs in the metabolism and pathogenesis of bladder cancer. Hum Cell 2023:10.1007/s13577-023-00915-5. [PMID: 37209205 DOI: 10.1007/s13577-023-00915-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 05/07/2023] [Indexed: 05/22/2023]
Abstract
Bladder cancer (BC) is featured as the second most common malignancy of the urinary tract worldwide with few treatments leading to high incidence and mortality. It stayed a virtually intractable disease, and efforts to identify innovative and effective therapies are urgently needed. At present, more and more evidence shows the importance of non-coding RNA (ncRNA) for disease-related study, diagnosis, and treatment of diverse types of malignancies. Recent evidence suggests that dysregulated functions of ncRNAs are closely associated with the pathogenesis of numerous cancers including BC. The detailed mechanisms underlying the dysregulated role of ncRNAs in cancer progression are still not fully understood. This review mainly summarizes recent findings on regulatory mechanisms of the ncRNAs, long non-coding RNAs, microRNAs, and circular RNAs, in cancer progression or suppression and focuses on the predictive values of ncRNAs-related signatures in BC clinical outcomes. A deeper understanding of the ncRNA interactive network could be compelling framework for developing biomarker-guided clinical trials.
Collapse
Affiliation(s)
- Daniel Ruben Akiola Sanya
- Micalis Institute, Diversité génomique et fonctionnelle des levures, domaine de Vilvert, Université Paris-Saclay, INRAE, AgroParisTech, 78350, Jouy-en-Josas, France.
| | - Djamila Onésime
- Micalis Institute, Diversité génomique et fonctionnelle des levures, domaine de Vilvert, Université Paris-Saclay, INRAE, AgroParisTech, 78350, Jouy-en-Josas, France
| |
Collapse
|
6
|
Okuyama K, Suzuki K, Yanamoto S. Relationship between Tumor Budding and Partial Epithelial-Mesenchymal Transition in Head and Neck Cancer. Cancers (Basel) 2023; 15:cancers15041111. [PMID: 36831453 PMCID: PMC9953904 DOI: 10.3390/cancers15041111] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/04/2023] [Accepted: 02/07/2023] [Indexed: 02/12/2023] Open
Abstract
Tumor budding (TB), a microscopic finding in the stroma ahead of the invasive fronts of tumors, has been well investigated and reported as a prognostic marker in head and neck squamous cell carcinoma (HNSCC). Epithelial-mesenchymal transition (EMT) is a crucial step in tumor progression and metastasis, and its status cannot be distinguished from TB. The current understanding of partial EMT (p-EMT), the so-called halfway step of EMT, focuses on the tumor microenvironment (TME). Although this evidence has been investigated, the clinicopathological and biological relationship between TB and p-EMT remains debatable. At the invasion front, previous research suggested that cancer-associated fibroblasts (CAFs) are important for tumor progression, metastasis, p-EMT, and TB formation in the TME. Although there is biological evidence of TB drivers, no report has focused on their organized functional relationships. Understanding the mechanism of TB onset and the relationship between p-EMTs may facilitate the development of novel diagnostic and prognostic methods, and targeted therapies for the prevention of metastasis in epithelial cancer. Thus far, major pieces of evidence have been established from colorectal cancer (CRC), due to a large number of patients with the disease. Herein, we review the current understanding of p-EMT and TME dynamics and discuss the relationship between TB development and p-EMT, focusing on CAFs, hypoxia, tumor-associated macrophages, laminin-integrin crosstalk, membrane stiffness, enzymes, and viral infections in cancers, and clarify the gap of evidence between HNSCC and CRC.
Collapse
Affiliation(s)
- Kohei Okuyama
- Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, 1011 North University Ave, Ann Arbor, MI 48109, USA
- University of Michigan Rogel Cancer Center, 1600 Huron Pathway, Ann Arbor, MI 48105, USA
- Department of Oral and Maxillofacial Surgical Oncology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
- Correspondence: or
| | - Keiji Suzuki
- Department of Radiation Medical Sciences, Atomic Bomb Disease Institute, Nagasaki University, 1-12-4, Sakamoto, Nagasaki 852-8523, Japan
| | - Souichi Yanamoto
- Department of Oral Oncology, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3, Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| |
Collapse
|