1
|
Sun S, Ma J, Zuo T, Shi J, Sun L, Meng C, Shu W, Yang Z, Yao H, Zhang Z. Inhibition of PCSK9: A Promising Enhancer for Anti-PD-1/PD-L1 Immunotherapy. RESEARCH (WASHINGTON, D.C.) 2024; 7:0488. [PMID: 39324018 PMCID: PMC11423609 DOI: 10.34133/research.0488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/28/2024] [Accepted: 09/09/2024] [Indexed: 09/27/2024]
Abstract
Immune checkpoint therapy, such as programmed cell death protein 1/programmed death-ligand 1 (PD-1/PD-L1) blockade, has achieved remarkable results in treating various tumors. However, most cancer patients show a low response rate to PD-1/PD-L1 blockade, especially those with microsatellite stable/mismatch repair-proficient colorectal cancer subtypes, which indicates an urgent need for new approaches to augment the efficacy of PD-1/PD-L1 blockade. Cholesterol metabolism, which involves generating multifunctional metabolites and essential membrane components, is also instrumental in tumor development. In recent years, inhibiting proprotein convertase subtilisin/kexin type 9 (PCSK9), a serine proteinase that regulates cholesterol metabolism, has been demonstrated to be a method enhancing the antitumor effect of PD-1/PD-L1 blockade to some extent. Mechanistically, PCSK9 inhibition can maintain the recycling of major histocompatibility protein class I, promote low-density lipoprotein receptor-mediated T-cell receptor recycling and signaling, and modulate the tumor microenvironment (TME) by affecting the infiltration and exclusion of immune cells. These mechanisms increase the quantity and enhance the antineoplastic effect of cytotoxic T lymphocyte, the main functional immune cells involved in anti-PD-1/PD-L1 immunotherapy, in the TME. Therefore, combining PCSK9 inhibition therapy with anti-PD-1/PD-L1 immunotherapy may provide a novel option for improving antitumor effects and may constitute a promising research direction. This review concentrates on the relationship between PCSK9 and cholesterol metabolism, systematically discusses how PCSK9 inhibition potentiates PD-1/PD-L1 blockade for cancer treatment, and highlights the research directions in this field.
Collapse
Affiliation(s)
- Shengbo Sun
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, State Key Lab of Digestive Health, National Clinical Research Center for Digestive Diseases, Beijing, China
| | - Jingxin Ma
- Department of Clinical Laboratory, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Tingting Zuo
- College of Biological Sciences and Technology, Yili Normal University, Yining, China
| | - Jinyao Shi
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, State Key Lab of Digestive Health, National Clinical Research Center for Digestive Diseases, Beijing, China
| | - Liting Sun
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, State Key Lab of Digestive Health, National Clinical Research Center for Digestive Diseases, Beijing, China
| | - Cong Meng
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, State Key Lab of Digestive Health, National Clinical Research Center for Digestive Diseases, Beijing, China
| | - Wenlong Shu
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, State Key Lab of Digestive Health, National Clinical Research Center for Digestive Diseases, Beijing, China
| | - Zhengyang Yang
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, State Key Lab of Digestive Health, National Clinical Research Center for Digestive Diseases, Beijing, China
| | - Hongwei Yao
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, State Key Lab of Digestive Health, National Clinical Research Center for Digestive Diseases, Beijing, China
| | - Zhongtao Zhang
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, State Key Lab of Digestive Health, National Clinical Research Center for Digestive Diseases, Beijing, China
| |
Collapse
|
2
|
Yang L, Cui X, Wu F, Chi Z, Xiao L, Wang X, Liang Z, Li X, Yu Q, Lin X, Gao C. The efficacy and safety of neoadjuvant chemoradiotherapy combined with immunotherapy for locally advanced rectal cancer patients: a systematic review. Front Immunol 2024; 15:1392499. [PMID: 38846948 PMCID: PMC11154111 DOI: 10.3389/fimmu.2024.1392499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 04/23/2024] [Indexed: 06/09/2024] Open
Abstract
Background Several studies have explored the effectiveness of PD-1/PD-L1 inhibitors combined with neoadjuvant chemoradiotherapy (nCRT) in the treatment of locally advanced rectal cancer(LARC), particularly in microsatellite stable(MSS) or mismatch repair proficient(pMMR) LARC patients. We undertook a single-arm systematic review to comprehensively evaluate the advantages and potential risks associated with the use of PD-1/PD-L1 inhibitors in conjunction with nCRT for patients diagnosed with locally advanced rectal cancer. Methods The PubMed, Embase, Cochrane Library, ClinicalTrials.gov, ASCO and ESMO were searched for related studies. The main outcomes were pathologic complete response (pCR), major pathological response (MPR), anal preservation, and adverse effects (AEs). Results Fourteen articles including 533 locally advanced rectal cancer (LARC) patients were analyzed. The pooled pCR, MPR, and anal preservation rates were 36%, 66% and 86%. Grade ≥3 adverse events occurred in 20%. Subgroup analysis showed that; dMMR/MSI-H had a pooled pCR (100%) and MPR (100%), pMMR/MSS had a pooled pCR (38%) and MPR (60%); the short-course radiotherapy and long-course radiotherapy had pooled pCR rates of 51% and 30%, respectively. The rates of pCR for the concurrent and sequential immuno-chemoradiotherapy subgroups at 30% and 40%, mirroring pCR rates for the PD-L1 and PD-1 inhibitor subgroups were 32% and 40%, respectively. Conclusion In cases of locally advanced rectal cancer, PD-1/PD-L1 inhibitors combined with neoadjuvant chemoradiotherapy have shown promising response rates and acceptable toxicity profiles. PD-1/PD-L1 inhibitors combined with neoadjuvant chemoradiotherapy hence has a positive outcome even in MSS LARC patients. Systematic Review Registration https://www.crd.york.ac.uk/prospero/#myprospero, identifier CRD42023465380.
Collapse
Affiliation(s)
- Lei Yang
- Department of Radiation Oncology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xiujing Cui
- Department of Radiation Oncology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Fengpeng Wu
- Department of Radiation Oncology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Zifeng Chi
- Department of Radiation Oncology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Linlin Xiao
- Department of Radiation Oncology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xuan Wang
- Department of Radiation Oncology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Zezheng Liang
- Department of Radiation Oncology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xiaoning Li
- Department of Radiation Oncology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Qiyao Yu
- Department of Research, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, China
| | - Xueqin Lin
- Department of Radiation Oncology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Chao Gao
- Department of Radiation Oncology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
3
|
Zhong WT, Lv Y, Wang QY, An R, Chen G, Du JF. Chemoradiotherapy plus tislelizumab for mismatch repair proficient rectal cancer with supraclavicular lymph node metastasis: A case report. World J Gastrointest Oncol 2024; 16:2219-2224. [PMID: 38764824 PMCID: PMC11099463 DOI: 10.4251/wjgo.v16.i5.2219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 02/08/2024] [Accepted: 03/14/2024] [Indexed: 05/09/2024] Open
Abstract
BACKGROUND According to the latest report, colorectal cancer is still one of the most prevalent cancers, with the third highest incidence and mortality worldwide. Treatment of advanced rectal cancer with distant metastases is usually unsatisfactory, especially for mismatch repair proficient (pMMR) rectal cancer, which leads to poor prognosis and recurrence. CASE SUMMARY We report a case of a pMMR rectal adenocarcinoma with metastases of multiple lymph nodes, including the left supraclavicular lymph node, before treatment in a 70-year-old man. He received full courses of chemoradiotherapy (CRT) followed by 4 cycles of programmed death 1 inhibitor Tislelizumab, and a pathologic complete response (pCR) was achieved, and the lesion of the left supraclavicular lymph node also disappeared. CONCLUSION pMMR advanced rectal cancer with preserved intact distant metastatic lymph nodes may benefit from full-course CRT combined with immunotherapy.
Collapse
Affiliation(s)
- Wen-Tao Zhong
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou 510515, Guangdong Province, China
| | - Yuan Lv
- Department of General Surgery, The 7th Medical Center of PLA General Hospital, Beijing 100700, China
| | - Qian-Yu Wang
- Department of General Surgery, The 7th Medical Center of PLA General Hospital, Beijing 100700, China
| | - Ran An
- Department of Pathology, The 7th Medical Center of PLA General Hospital, Beijing 100700, China
| | - Gang Chen
- Department of General Surgery, The 7th Medical Center of PLA General Hospital, Beijing 100700, China
| | - Jun-Feng Du
- Department of General Surgery, The 7th Medical Center of PLA General Hospital, Beijing 100700, China
| |
Collapse
|
4
|
Yang Z, Gao J, Zheng J, Han J, Li A, Liu G, Sun Y, Zhang J, Chen G, Xu R, Zhang X, Liu Y, Bai Z, Deng W, He W, Yao H, Zhang Z. Efficacy and safety of PD-1 blockade plus long-course chemoradiotherapy in locally advanced rectal cancer (NECTAR): a multi-center phase 2 study. Signal Transduct Target Ther 2024; 9:56. [PMID: 38462629 PMCID: PMC10925604 DOI: 10.1038/s41392-024-01762-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 01/23/2024] [Accepted: 01/29/2024] [Indexed: 03/12/2024] Open
Abstract
Adding PD-1 blockade in the neoadjuvant regimens for locally advanced rectal cancer (LARC) patients with microsatellite stable (MSS) / mismatch repair-proficient (pMMR) tumors is an attractive, but debatable strategy. This phase 2, multicenter, prospective, single-arm study enrolled patients from 6 centers from June 2021 to November 2022. Locally advanced rectal cancer (LARC, cT3-4aN0M0 and cT1-4aN1-2M0) patients aged ≥18 years with the distance from distal border of tumor to anal verge ≤10 cm (identified by Magnetic Resonance Imaging) were qualified for inclusion. The patients received long-course radiotherapy (50 Gy/25 fractions, 2 Gy/fraction, 5 days/week) and three 21-day cycles capecitabine (850-1000 mg/m2, bid, po, day1-14) and three 21-day cycles tislelizumab (200 mg, iv.gtt, day8) as neoadjuvant. Total mesorectal excision (TME) was 6-12 weeks after the end of radiotherapy to achieve radical resection. A total of 50 patients were enrolled in this study. The pathological complete response rate was 40.0% [20/50, 95% confidence interval (CI): 27.61-53.82%], while 15 (30.0%, 95% CI: 19.1-43.75%), 9 (18.0%, 95% CI: 9.77-30.8%), 2 (4.0%, 95% CI: 1.10-13.46%) patients respectively achieved grade 1, 2, and 3 tumor regression. Treatment-related adverse events (TRAEs) occurred in 28 (56.0%) LARC patients, including 26(52.0%) with grade I-II and 2 (4.0%) with grade III (1 with grade 3 immune-related colitis and 1 with grade 3 rash). PD-1 blockade plus long-course chemoradiotherapy (CRT) showed promising therapeutic effects according to pathological complete response rate and is well-tolerated in LARC patients. A larger randomized controlled study is desired to further validate the above findings.
Collapse
Affiliation(s)
- Zhengyang Yang
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, State Key Lab of Digestive Health, National Clinical Research Center for Digestive Diseases, Beijing, China
| | - Jiale Gao
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, State Key Lab of Digestive Health, National Clinical Research Center for Digestive Diseases, Beijing, China
| | - Jianyong Zheng
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Air Force Medical University, Xi'an, China
| | - Jiagang Han
- Department of General Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Ang Li
- Department of General Surgery, Beijing Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Gang Liu
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Yi Sun
- Department of Anorectal, Tianjin People's Hospital, Tianjin, China
| | - Jie Zhang
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Guangyong Chen
- Department of Pathology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Rui Xu
- Department of Pathology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Xiao Zhang
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, State Key Lab of Digestive Health, National Clinical Research Center for Digestive Diseases, Beijing, China
| | - Yishan Liu
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, State Key Lab of Digestive Health, National Clinical Research Center for Digestive Diseases, Beijing, China
| | - Zhigang Bai
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, State Key Lab of Digestive Health, National Clinical Research Center for Digestive Diseases, Beijing, China
| | - Wei Deng
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, State Key Lab of Digestive Health, National Clinical Research Center for Digestive Diseases, Beijing, China
| | - Wei He
- Department of Thoracic Surgery / Institute of Thoracic Oncology, West China Hospital, Sichuan University, Chengdu, China.
| | - Hongwei Yao
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, State Key Lab of Digestive Health, National Clinical Research Center for Digestive Diseases, Beijing, China.
| | - Zhongtao Zhang
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, State Key Lab of Digestive Health, National Clinical Research Center for Digestive Diseases, Beijing, China.
| |
Collapse
|
5
|
Chen JT, Zhou YW, Han TR, Wei JL, Qiu M. Perioperative immune checkpoint inhibition for colorectal cancer: recent advances and future directions. Front Immunol 2023; 14:1269341. [PMID: 38022667 PMCID: PMC10679411 DOI: 10.3389/fimmu.2023.1269341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 10/25/2023] [Indexed: 12/01/2023] Open
Abstract
For colorectal cancer (CRC), surgical resection remains essential for achieving good prognoses. Unfortunately, numerous patients with locally advanced CRC and metastatic CRC failed to meet surgical indications or achieve pathological complete response after surgery. Perioperative therapy has been proven to effectively lower tumor staging and reduce recurrence and metastasis. Immune checkpoint inhibitors (ICIs) have shown unprecedented prolongation of survival time and satisfactory safety in patients with high microsatellite instability/deficient mismatch repair (MSI-H/dMMR), while the therapeutic effect obtained by patients with mismatch repair-proficient or microsatellite stable (pMMR/MSS) was considered minimal. However, recent studies found that certain CRC patients with dMMR/MSI-H presented intrinsic or acquired immune resistance, and pMMR/MSS CRC patients can also achieve better efficacy. Therefore, more predictors are required for screening patients with potential clinical benefits. Since the discovery of synergistic effects between immunotherapy, chemotherapy, and radiotherapy, different immunotherapy-based therapies have been applied to the perioperative therapy of CRC in an increasing number of research. This review comprehensively summarized the past and current progress of different combinations of immunotherapy in perioperative clinical trials for CRC, focusing on the efficacy and safety, and points out the direction for future development.
Collapse
Affiliation(s)
- Jiao-Ting Chen
- Department of Colorectal Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yu-Wen Zhou
- Department of Colorectal Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Ting-Rui Han
- West China School of Medicine, Sichuan University, Chengdu, China
| | - Jun-Lun Wei
- West China School of Medicine, Sichuan University, Chengdu, China
| | - Meng Qiu
- Department of Colorectal Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
6
|
Melissourgou-Syka L, Gillespie MA, O'Cathail SM, Sansom OJ, Steele CW, Roxburgh CSD. A Review of Scheduling Strategies for Radiotherapy and Immune Checkpoint Inhibition in Locally Advanced Rectal Cancer. JOURNAL OF IMMUNOTHERAPY AND PRECISION ONCOLOGY 2023; 6:187-197. [PMID: 38143952 PMCID: PMC10734391 DOI: 10.36401/jipo-23-10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 07/07/2023] [Accepted: 07/15/2023] [Indexed: 12/26/2023]
Abstract
Colorectal cancer (CRC) is the third most common malignancy across the globe and, despite advances in treatment strategies, survival rates remain low. Rectal cancer (RC) accounts for most of these cases, and traditional management strategies for advanced disease include total neoadjuvant therapy (TNT) with chemoradiotherapy followed by curative surgery. Unfortunately, approximately 10-15% of patients have no response to treatment or have recurrence at a short interval following radiotherapy. The introduction of immunotherapy in the form of immune checkpoint blockade (ICB) in metastatic colorectal cancer has improved clinical outcomes, yet most patients with RC present with microsatellite stable disease, which lacks the immune-rich microenvironment where ICB is most effective. There is evidence that combining radiotherapy with ICB can unlock the mechanisms that drive resistance in patients; however, the sequencing of these therapies is still debated. This review offers a comprehensive overview of clinical trials and preclinical models that use radiotherapy-immunotherapy combinations in RC in an attempt to extrapolate the ideal sequencing of the two treatment modalities. The results highlight the dearth of evidence to answer the question of whether ICB should be given before, during, or after radiotherapy, yet it is suggested that improving the relevance of our preclinical models will provide a platform with higher translational value and will lead to appropriate clinical trial designs.
Collapse
Affiliation(s)
- Lydia Melissourgou-Syka
- School of Cancer Sciences, University of Glasgow, Glasgow, Scotland
- CRUK Beatson Institute, Glasgow, Scotland
| | | | - Sean M. O'Cathail
- School of Cancer Sciences, University of Glasgow, Glasgow, Scotland
- Beatson West of Scotland Cancer Centre, Glasgow, Scotland
| | - Owen J. Sansom
- School of Cancer Sciences, University of Glasgow, Glasgow, Scotland
- CRUK Beatson Institute, Glasgow, Scotland
| | - Colin W. Steele
- School of Cancer Sciences, University of Glasgow, Glasgow, Scotland
- CRUK Beatson Institute, Glasgow, Scotland
- Academic Unit of Surgery, Glasgow Royal Infirmary, Glasgow, Scotland
| | - Campbell S. D. Roxburgh
- School of Cancer Sciences, University of Glasgow, Glasgow, Scotland
- Academic Unit of Surgery, Glasgow Royal Infirmary, Glasgow, Scotland
| |
Collapse
|
7
|
Pang K, Yang Y, Tian D, Zeng N, Cao S, Ling S, Gao J, Zhao P, Wang H, Kong Y, Zhang J, Chen G, Deng W, Bai Z, Jin L, Wu G, Zhu D, Wang Y, Zhou J, Wu B, Lin G, Xiao Y, Gao Z, Ye Y, Wang X, Li A, Han J, Yao H, Yang Y, Zhang Z. Long-course chemoradiation plus concurrent/sequential PD-1 blockade as neoadjuvant treatment for MMR-status-unscreened locally advanced rectal cancer: protocol of a multicentre, phase 2, randomised controlled trial (the POLAR-STAR trial). BMJ Open 2023; 13:e069499. [PMID: 37699634 PMCID: PMC10503326 DOI: 10.1136/bmjopen-2022-069499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 07/26/2023] [Indexed: 09/14/2023] Open
Abstract
INTRODUCTION Recent preclinical studies have discovered unique synergism between radiotherapy and immune checkpoint inhibitors, which has already brought significant survival benefit in lung cancer. In locally advanced rectal cancer (LARC), neoadjuvant radiotherapy plus immune checkpoint inhibitors have also achieved surprisingly high pathological complete response (pCR) rates even in proficient mismatch-repair patients. As existing researches are all phase 2, single-cohort trials, we aim to conduct a randomised, controlled trial to further clarify the efficacy and safety of this novel combination therapy. METHODS AND ANALYSIS Eligible patients with LARC are randomised to three arms (two experiment arms, one control arm). Patients in all arms receive long-course radiotherapy plus concurrent capecitabine as neoadjuvant therapy, as well as radical surgery. Distinguishingly, patients in arm 1 also receive anti-PD-1 (Programmed Death 1) treatment starting at Day 8 of radiation (concurrent plan), and patients in arm 2 receive anti-PD-1 treatment starting 2 weeks after completion of radiation (sequential plan). Tislelizumab (anti-PD-1) is scheduled to be administered at 200 mg each time for three consecutive times, with 3-week intervals. Randomisation is stratified by different participating centres, with a block size of 6. The primary endpoint is pCR rate, and secondary endpoints include neoadjuvant-treatment-related adverse event rate, as well as disease-free and overall survival rates at 2, 3 and 5 years postoperation. Data will be analysed with an intention-to-treat approach. ETHICS AND DISSEMINATION This protocol has been approved by the institutional ethical committee of Beijing Friendship Hospital (the primary centre) with an identifying serial number of 2022-P2-050-01. Before publication to peer-reviewed journals, data of this research will be stored in a specially developed clinical trial database. TRIAL REGISTRATION NUMBER NCT05245474.
Collapse
Affiliation(s)
- Kai Pang
- General Surgery, Capital Medical University Affiliated Beijing Friendship Hospital, Beijing, Beijing, China
| | - Yun Yang
- General Surgery, Capital Medical University Affiliated Beijing Friendship Hospital, Beijing, Beijing, China
| | - Dan Tian
- General Surgery, Capital Medical University Affiliated Beijing Friendship Hospital, Beijing, Beijing, China
| | - Na Zeng
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, Beijing, China
| | - Shun Cao
- General Surgery, Capital Medical University Affiliated Beijing Friendship Hospital, Beijing, Beijing, China
| | - Shen Ling
- General Surgery, Capital Medical University Affiliated Beijing Friendship Hospital, Beijing, Beijing, China
| | - Jiale Gao
- General Surgery, Capital Medical University Affiliated Beijing Friendship Hospital, Beijing, Beijing, China
| | - Pengfei Zhao
- Radiotherapy and Radiation Oncology, Capital Medical University Affiliated Beijing Friendship Hospital, Beijing, Beijing, China
| | - Hao Wang
- Statistics and Methodology, Capital Medical University Affiliated Beijing Friendship Hospital, Beijing, Beijing, China
| | - Yuanyuan Kong
- Statistics and Methodology, Capital Medical University Affiliated Beijing Friendship Hospital, Beijing, Beijing, China
| | - Jie Zhang
- Radiology, Capital Medical University Affiliated Beijing Friendship Hospital, Beijing, Beijing, China
| | - Guangyong Chen
- Clinical Pathology, Capital Medical University Affiliated Beijing Friendship Hospital, Beijing, Beijing, China
| | - Wei Deng
- General Surgery, Capital Medical University Affiliated Beijing Friendship Hospital, Beijing, Beijing, China
| | - Zhigang Bai
- General Surgery, Capital Medical University Affiliated Beijing Friendship Hospital, Beijing, Beijing, China
| | - Lan Jin
- General Surgery, Capital Medical University Affiliated Beijing Friendship Hospital, Beijing, Beijing, China
| | - Guoju Wu
- Gastrointestinal Surgery, Beijing Hospital, Beijing, Beijing, China
| | - Danyang Zhu
- General Surgery, Peking Union Medical College Hospital, Beijing, Beijing, China
| | - Yue Wang
- General Surgery, Peking Union Medical College Hospital, Beijing, Beijing, China
| | - Jiaolin Zhou
- General Surgery, Peking Union Medical College Hospital, Beijing, Beijing, China
| | - Bin Wu
- General Surgery, Peking Union Medical College Hospital, Beijing, Beijing, China
| | - Guole Lin
- General Surgery, Peking Union Medical College Hospital, Beijing, Beijing, China
| | - Yi Xiao
- General Surgery, Peking Union Medical College Hospital, Beijing, Beijing, China
| | - Zhidong Gao
- Gastrointestinal Surgery, Peking University People's Hospital, Beijing, Beijing, China
| | - Yingjiang Ye
- Gastrointestinal Surgery, Peking University People's Hospital, Beijing, Beijing, China
| | - Xin Wang
- General Surgery, Peking University First Hospital, Beijing, Beijing, China
| | - Ang Li
- General Surgery, Xuanwu Hospital Capital Medical University, Beijing, Beijing, China
| | - Jiagang Han
- General Surgery, Beijing Chao-Yang Hospital Capital Medical University, Beijing, Beijing, China
| | - Hongwei Yao
- General Surgery, Capital Medical University Affiliated Beijing Friendship Hospital, Beijing, Beijing, China
| | - Yingchi Yang
- General Surgery, Capital Medical University Affiliated Beijing Friendship Hospital, Beijing, Beijing, China
| | - Zhongtao Zhang
- General Surgery, Capital Medical University Affiliated Beijing Friendship Hospital, Beijing, Beijing, China
| |
Collapse
|
8
|
Couwenberg AM, Varvoglis DN, Grieb BC, Marijnen CA, Ciombor KK, Guillem JG. New Opportunities for Minimizing Toxicity in Rectal Cancer Management. Am Soc Clin Oncol Educ Book 2023; 43:e389558. [PMID: 37307515 PMCID: PMC10450577 DOI: 10.1200/edbk_389558] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Advances in multimodal management of locally advanced rectal cancer (LARC), consisting of preoperative chemotherapy and/or radiotherapy followed by surgery with or without adjuvant chemotherapy, have improved local disease control and patient survival but are associated with significant risk for acute and long-term morbidity. Recently published trials, evaluating treatment dose intensification via the addition of preoperative induction or consolidation chemotherapy (total neoadjuvant therapy [TNT]), have demonstrated improved tumor response rates while maintaining acceptable toxicity. In addition, TNT has led to an increased number of patients achieving a clinical complete response and thus eligible to pursue a nonoperative, organ-preserving, watch and wait approach, thereby avoiding toxicities associated with surgery, such as bowel dysfunction and stoma-related complications. Ongoing trials using immune checkpoint inhibitors in patients with mismatch repair-deficient tumors suggest that this subgroup of patients with LARC could potentially be treated with immunotherapy alone, sparing them the toxicity associated with preoperative treatment and surgery. However, the majority of rectal cancers are mismatch repair-proficient and less responsive to immune checkpoint inhibitors and require multimodal management. The synergy noted in preclinical studies between immunotherapy and radiotherapy on immunogenic tumor cell death has led to the design of ongoing clinical trials that explore the benefit of combining radiotherapy, chemotherapy, and immunotherapy (mainly of immune checkpoint inhibitors) and aim to increase the number of patients eligible for organ preservation.
Collapse
Affiliation(s)
- Alice M. Couwenberg
- Department of Radiation Oncology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | | | - Brian C. Grieb
- Vanderbilt University Medical Center/Vanderbilt-Ingram Cancer Center, Nashville, TN
| | - Corrie A.M. Marijnen
- Department of Radiation Oncology, Netherlands Cancer Institute, Amsterdam, The Netherlands
- Department of Radiation Oncology, Leiden University Medical Center, Leiden, The Netherlands
| | - Kristen K. Ciombor
- Vanderbilt University Medical Center/Vanderbilt-Ingram Cancer Center, Nashville, TN
| | - Jose G. Guillem
- Department of Surgery, Lineberger Comprehensive Cancer Center, University of North Carolina-Chapel Hill, Chapel Hill, NC
| |
Collapse
|