1
|
Jiang S, Li C, Liu D, Zeng F, Wei W, He T, Yang W. Role, mechanisms and effects of Radix Bupleuri in anti‑breast cancer (Review). Oncol Lett 2025; 29:166. [PMID: 39963320 PMCID: PMC11831725 DOI: 10.3892/ol.2025.14912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 12/30/2024] [Indexed: 02/20/2025] Open
Abstract
The prevalence of breast cancer among women has led to a growing need for innovative anti-breast cancer medications and an in-depth investigation into their molecular mechanisms of action, both of which are essential tactics in clinical intervention. In the clinical practice of Traditional Chinese Medicine, Radix Bupleuri and its active components have shown promise as potential anti-breast cancer agents due to their ability to target multiple pathways, exhibit synergistic effects and reduce toxicity. These compounds are considered to enhance the prognosis of patients with cancer, prolong survival and combat chemotherapy resistance. The present review aimed to delve into the anti-breast cancer properties of Radix Bupleuri and its active ingredients, highlighting their mechanisms, such as inhibition of cell proliferation, promotion of apoptosis, metastasis prevention, microenvironment improvement and synergy with certain chemotherapeutic agents. These findings may provide a scientific rationale for combining Radix Bupleuri and its active components with traditional chemotherapy agents for the management of breast cancer.
Collapse
Affiliation(s)
- Shiting Jiang
- Institute for Cancer Medicine, School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Chengxia Li
- Institute for Cancer Medicine, School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Dan Liu
- Institute for Cancer Medicine, School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Fancai Zeng
- Laboratory of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Wenli Wei
- Institute for Cancer Medicine, School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Tao He
- Institute for Cancer Medicine, School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Wenli Yang
- Institute for Cancer Medicine, School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| |
Collapse
|
2
|
Liu H, Zheng R, Zhuang Z, Xue L, Chen M, Wu Y, Zeng Y. Diagnostic Efficacy and Clinical Significance of Lymphocyte Subsets, Granzyme B and Perforin in the Peripheral Blood of Patients with Invasive Breast Cancer Following Neoadjuvant Chemotherapy. Cancer Manag Res 2025; 17:589-602. [PMID: 40124841 PMCID: PMC11928756 DOI: 10.2147/cmar.s502155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 03/03/2025] [Indexed: 03/25/2025] Open
Abstract
Purpose Breast cancer, a predominant contributor to cancer-related mortality worldwide, is increasingly managed through the application of neoadjuvant chemotherapy (NAC). Analyzing the dynamic changes in peripheral blood lymphocyte subsets, granzyme B and perforin are crucial for investigating their roles in tumorigenesis, development and treatment; this study aimed to use these analyses to diagnose malignant breast tumor, assess the anti-tumor immunity and predict chemotherapy efficacy in breast cancer patients. Patients and Methods To address this objective, a total of 582 peripheral blood samples were collected from healthy controls (n=47), benign breast disease patients (n=401) and breast cancer patients (n=134). Lymphocyte subsets, along with granzyme B and perforin expression, were assessed using flow cytometry. Changes before and after NAC were also monitored. Results Breast cancer patients exhibited reduced proportions and absolute counts of CD3+ and CD8+ T cells, increased NK cell percentage and CD4+/CD8+ ratio, and higher levels of granzyme B and perforin in CD3+, CD8+ T cells and NK cells. Post-NAC, the percentages of CD3+, CD4+, CD8+ T cells and NK cells increased, along with a higher CD4+/CD8+ ratio, while B cell percentages decreased compared to pre-NAC. Furthermore, the effective group showed higher percentages of CD3+, CD8+ T cells and lower percentages of B cells than the ineffective group post-NAC. Incidentally, Granzyme B and perforin expression in CD3+ and CD8+ T cells was elevated following postoperative chemotherapy. Conclusion These findings indicated that peripheral blood lymphocyte subsets, along with granzyme B and perforin levels, could serve as potential biomarkers for differentiating benign from malignant breast tumors, assessing anti-tumor immunity and predicting chemotherapy efficacy.
Collapse
Affiliation(s)
- Han Liu
- Precision Clinical Laboratory, Zhanjiang Central Hospital, Guangdong Medical University, Zhanjiang, Guangdong, People’s Republic of China
| | - Ruinian Zheng
- Phase I Clinical Trial Center, the Tenth Affiliated Hospital of Southern Medical University (Dongguan People’s Hospital), Dongguan, Guangdong, People’s Republic of China
| | - Zhaowei Zhuang
- Precision Clinical Laboratory, Zhanjiang Central Hospital, Guangdong Medical University, Zhanjiang, Guangdong, People’s Republic of China
| | - Liwen Xue
- Precision Clinical Laboratory, Zhanjiang Central Hospital, Guangdong Medical University, Zhanjiang, Guangdong, People’s Republic of China
| | - Minggui Chen
- Precision Clinical Laboratory, Zhanjiang Central Hospital, Guangdong Medical University, Zhanjiang, Guangdong, People’s Republic of China
| | - Yuluo Wu
- Department of Oncology, Zhanjiang Central Hospital, Guangdong Medical University, Zhanjiang, Guangdong, People’s Republic of China
| | - Yan Zeng
- Precision Clinical Laboratory, Zhanjiang Central Hospital, Guangdong Medical University, Zhanjiang, Guangdong, People’s Republic of China
| |
Collapse
|
3
|
Edvall C, Kale N, Tani S, Ambhore S, Hossain R, Ozoude C, Van Horsen K, Mohammad J, Tuvin DM, Kalathingal S, Loganathan J, Choi Y, Sathish V, Brown J, Mallik S. Hypoxia-Responsive Polymersomes for Stemness Reduction in Patient-Derived Solid Tumor Spheroids. ACS APPLIED BIO MATERIALS 2025. [PMID: 40056142 DOI: 10.1021/acsabm.4c01735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2025]
Abstract
Aggressive solid tumors are associated with rapid growth, early hypoxia, a lack of targeted therapies, and a poor prognosis. The hypoxic niches within the rapidly growing solid tumors give rise to a stem-cell-like phenotype with higher metastasis and drug resistance. To overcome the drug resistance of these regions, we used hypoxia-responsive polymersomes with an encapsulated anticancer drug (doxorubicin, Dox) and a stemness modulator (all-trans retinoic acid, ATRA). Reductase enzymes overexpressed in hypoxia reduce the azobenzene linker of the polymers, disrupt the bilayer structure of the polymersomes, and release the encapsulated drugs. We used triple-negative breast cancer (TNBC) as a representative of aggressive and hypoxic solid tumors. We observed that ATRA synergistically enhanced the efficacy of Dox in killing cancer cells. A synergistic combination of the two drug-encapsulated polymersomes reduced the volumes of patient-derived TNBC spheroids by 90%. In contrast, Dox alone decreased the spheroid volumes by 70% and encapsulated ATRA by 19%. Mechanistic studies revealed that ATRA inhibited efflux pumps, leading to a higher concentration of doxorubicin within TNBC cells. In addition, the combination of encapsulated Dox and ATRA significantly decreased stemness expression of the TNBC cells in hypoxia compared to that of Dox alone.
Collapse
Affiliation(s)
- Connor Edvall
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, North Dakota 58105, United States
| | - Narendra Kale
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, North Dakota 58105, United States
| | - Sakurako Tani
- Department of Physics, North Dakota State University, Fargo, North Dakota 58105, United States
| | - Shubhashri Ambhore
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, North Dakota 58105, United States
| | - Rayat Hossain
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, North Dakota 58105, United States
| | - Chukwuebuka Ozoude
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, North Dakota 58105, United States
| | - Karl Van Horsen
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, North Dakota 58105, United States
| | - Jiyan Mohammad
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, North Dakota 58105, United States
| | - Daniel M Tuvin
- Sanford Broadway Clinic,801 Broadway N, Fargo, North Dakota 58102, United States
| | - Santo Kalathingal
- Agathos Biologics,4837 Amber Valley Pkwy Suite 12, Fargo, North Dakota 58104, United States
| | - Jagadish Loganathan
- Agathos Biologics,4837 Amber Valley Pkwy Suite 12, Fargo, North Dakota 58104, United States
| | - Yongki Choi
- Department of Physics, North Dakota State University, Fargo, North Dakota 58105, United States
| | - Venkatachalem Sathish
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, North Dakota 58105, United States
| | - James Brown
- Agathos Biologics,4837 Amber Valley Pkwy Suite 12, Fargo, North Dakota 58104, United States
| | - Sanku Mallik
- Department of Pharmaceutical Sciences, South Dakota State University, Brookings, South Dakota 57007, United States
| |
Collapse
|
4
|
Sumer OE, Schelzig K, Jung J, Li X, Moros J, Schwarzmüller L, Sen E, Karolus S, Wörner A, de Melo Costa VR, Nataraj NB, Vlachavas EI, Gerhäuser C, Müller-Decker K, Helm D, Yarden Y, Michels BE, Körner C. Selective arm-usage of pre-miR-1307 dysregulates angiogenesis and affects breast cancer aggressiveness. BMC Biol 2025; 23:25. [PMID: 39849498 PMCID: PMC11756181 DOI: 10.1186/s12915-025-02133-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 01/15/2025] [Indexed: 01/25/2025] Open
Abstract
BACKGROUND Breast cancer is the leading cause of cancer-related mortality in women. Deregulation of miRNAs is frequently observed in breast cancer and affects tumor biology. A pre-miRNA, such as pre-miR-1307, gives rise to several mature miRNA molecules with distinct functions. However, the impact of global deregulation of pre-miR-1307 and its individual mature miRNAs in breast cancer has not been investigated in breast cancer, yet. RESULTS Here, we found significant upregulation of three mature miRNA species derived from pre-miR-1307 in human breast cancer tissue. Surprisingly, the overexpression of pre-miR-1307 in breast cancer cell lines resulted in reduced xenograft growth and impaired angiogenesis. Mechanistically, overexpression of miR-1307-5p altered the secretome of breast cancer cells and reduced endothelial cell sprouting. Consistently, expression of miR-1307-5p was inversely correlated with endothelial cell fractions in human breast tumors pointing at an anti-angiogenic role of miR-1307-5p. Importantly, the arm usage of miR-1307 and other miRNAs was highly correlated, which suggests an undefined common regulatory mechanism. CONCLUSIONS In summary, miR-1307-5p reduces angiogenesis in breast cancer, thereby antagonizing the oncogenic effects of miR-1307-3p. Our results emphasize the importance of future research on the regulation of miRNA arm selection in cancer. The underlying mechanisms might inspire new therapeutic strategies aimed at shifting the balance towards tumor-suppressive miRNA species.
Collapse
Affiliation(s)
- Oyku Ece Sumer
- Division of Molecular Genome Analysis, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 580, Heidelberg, 69120, Germany
- Faculty of Biosciences, University of Heidelberg, Im Neuenheimer Feld 234, Heidelberg, 69120, Germany
| | - Korbinian Schelzig
- Division of Molecular Genome Analysis, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 580, Heidelberg, 69120, Germany
- Faculty of Biosciences, University of Heidelberg, Im Neuenheimer Feld 234, Heidelberg, 69120, Germany
| | - Janine Jung
- Division of Molecular Genome Analysis, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 580, Heidelberg, 69120, Germany
- Faculty of Biosciences, University of Heidelberg, Im Neuenheimer Feld 234, Heidelberg, 69120, Germany
| | - Xiaoya Li
- Division of Molecular Genome Analysis, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 580, Heidelberg, 69120, Germany
- Medical Faculty Heidelberg, University of Heidelberg, Im Neuenheimer Feld 672, Heidelberg, 69120, Germany
| | - Janina Moros
- Division of Molecular Genome Analysis, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 580, Heidelberg, 69120, Germany
- MCBI program, Department of Biology, Faculty of Science, University of Tübingen, Tübingen, 72074, Germany
| | - Luisa Schwarzmüller
- Division of Molecular Genome Analysis, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 580, Heidelberg, 69120, Germany
- Faculty of Biosciences, University of Heidelberg, Im Neuenheimer Feld 234, Heidelberg, 69120, Germany
| | - Ezgi Sen
- Division of Molecular Genome Analysis, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 580, Heidelberg, 69120, Germany
- Faculty of Biosciences, University of Heidelberg, Im Neuenheimer Feld 234, Heidelberg, 69120, Germany
| | - Sabine Karolus
- Division of Molecular Genome Analysis, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 580, Heidelberg, 69120, Germany
| | - Angelika Wörner
- Division of Molecular Genome Analysis, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 580, Heidelberg, 69120, Germany
| | - Verônica Rodrigues de Melo Costa
- Division of Molecular Genome Analysis, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 580, Heidelberg, 69120, Germany
| | | | - Efstathios-Iason Vlachavas
- Division of Molecular Genome Analysis, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 580, Heidelberg, 69120, Germany
| | - Clarissa Gerhäuser
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg, 69120, Germany
| | - Karin Müller-Decker
- Tumor Models Core Facility, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg, 69120, Germany
| | - Dominic Helm
- Proteomics Core Facility, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg, 69120, Germany
| | - Yosef Yarden
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Birgitta Elisabeth Michels
- Division of Molecular Genome Analysis, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 580, Heidelberg, 69120, Germany
| | - Cindy Körner
- Division of Molecular Genome Analysis, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 580, Heidelberg, 69120, Germany.
| |
Collapse
|
5
|
Wang M, Zheng Y, Hao Q, Mao G, Dai Z, Zhai Z, Lin S, Liang B, Kang H, Ma X. Hypoxic BMSC-derived exosomal miR-210-3p promotes progression of triple-negative breast cancer cells via NFIX-Wnt/β-catenin signaling axis. J Transl Med 2025; 23:39. [PMID: 39789572 PMCID: PMC11720919 DOI: 10.1186/s12967-024-05947-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 12/06/2024] [Indexed: 01/12/2025] Open
Abstract
BACKGROUND Bone marrow mesenchymal stem cells (BMSCs) are a crucial component of the tumor microenvironment (TME), with hypoxic conditions promoting their migration to tumors. Exosomes play a vital role in cell-to-cell communication within the TME. Hypoxic TME have a great impact on the release, uptake and biofunctions of exosomes. This study aims to elucidate the communication between BMSC-derived exosomal miRNA and triple-negative breast cancer (TNBC) in a hypoxic environment. METHODS Exosomes were isolated via ultracentrifugation and identified using scanning electron microscopy (SEM), nanoparticle tracking analysis (NTA) and western blot. A range of bioinformatics approaches were used to screen exosomal miRNAs and the target mRNAs of miRNAs and predict the possible signaling pathways. Expression levels of genes and proteins were assessed by quantitative real-time PCR and western blot. Cell proliferation, apoptosis, migration and invasion were analyzed using CCK-8 assay, EDU assay, transwell migration, wound healing assay and invasion assay, respectively. Dual luciferase reporter gene assay was conducted to confirm the binding between miRNAs and the target mRNAs. The impact of hypoxic BMSC-derived exosomal miRNA on TNBC progression in vivo was evaluated using tumor xenograft nude mouse models. Furthermore, the impact of patients' serum exosomal miRNA on TNBC was implemented. RESULTS Exosomes derived from hypoxic BMSCs promotes the proliferation, migration, invasion and epithelial-mesenchymal transition of TNBC and suppresses the apoptosis of TNBC. The expression of miR-210-3p in BMSC-derived exosomes is markedly elevated in hypoxic conditions. Exosome-mediated transfer of miR-210-3p from hypoxic BMSCs to TNBC targets NFIX and activates Wnt/β-Catenin signaling in TNBC. Deletion of miR-210-3p in hypoxic BMSC-derived exosomes attenuates TNBC in vivo. Additionally, human exosomal miR-210-3p from the serum of TNBC patients promotes TNBC progression. Moreover, we notably observed a marked downregulation of NFIX expression levels in cancerous tissues compared to paracancerous tissues. CONCLUSIONS Hypoxic BMSC-derived exosomal miR-210-3p promotes TNBC progression via NFIX-Wnt/β-catenin signaling axis.
Collapse
Affiliation(s)
- Meng Wang
- The Comprehensive Breast Care Center, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Yi Zheng
- The Comprehensive Breast Care Center, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
- Department of Oncology of Xijing Hospital, Air Force Medical University, Xi'an, 710032, China
| | - Qian Hao
- The Comprehensive Breast Care Center, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Guochao Mao
- The Comprehensive Breast Care Center, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Zhijun Dai
- Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Zhen Zhai
- The Comprehensive Breast Care Center, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Shuai Lin
- The Comprehensive Breast Care Center, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Baobao Liang
- The Comprehensive Breast Care Center, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Huafeng Kang
- The Comprehensive Breast Care Center, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China.
| | - Xiaobin Ma
- The Comprehensive Breast Care Center, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China.
| |
Collapse
|
6
|
Che J, Chen B, Wang X, Liu B, Xu C, Wang H, Sun J, Feng Q, Zhao X, Song Z. Correlation analysis of DLG5 and PD-L1 expression in triple-negative breast cancer. BMC Cancer 2025; 25:35. [PMID: 39780116 PMCID: PMC11708009 DOI: 10.1186/s12885-025-13428-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 01/02/2025] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND Triple-negative breast cancer (TNBC) is among the most aggressive forms of breast cancer, characterized by a dismal prognosis. In the absence of drug-targetable receptors, chemotherapy remains the sole systemic treatment alternative. Recent advancements in immunotherapy, particularly immune checkpoint inhibitors (ICIs) that target programmed death 1/programmed death ligand 1 (PD-1/PD-L1) and cytotoxic T lymphocyte associated antigen 4 (CTLA-4), have provided renewed optimism for the treatment of patients with TNBC. Prior research has indicated that the expression level of the cell polarity protein discs large homolog 5 (DLG5) correlates with the malignant progression and prognosis of breast cancer; nevertheless, its influence on PD-L1 expression and its function in immunotherapy for TNBC require further investigation. METHODS The hypoxia cell model was established by simulating the cell hypoxic microenvironment in the human SUM159 and MDA-MB-231 cell lines using cobalt II chloride (CoCl2). A combination of PD-L1 inhibitors and DLG5 RNA interference techniques was used, along with various methods including cell counting kit-8 (CCK-8), colony formation, wound healing, transwell migration, reverse transcription-quantitative real-time PCR (RT-qPCR), immunofluorescence, immunohistochemical staining (IHC), expression analysis from datasets and western blotting. These methods were employed to evaluate changes in cell proliferation, migration, and the expression levels of PD-L1 and DLG5. Additionally, the correlation between the expression of PD-L1 and DLG5 in clinical samples was analyzed. RESULTS (1) In vitro experiments, a cellular hypoxia model was effectively established utilizing 150 µM CoCl₂. Under these conditions, cell clone formation, invasiveness, and migration rate were all significantly inhibited. (2) The expression levels of DLG5 and PD-L1 were significantly increased in both MDA-MB-231 and SUM159 cells following treatment with 150 µM CoCl₂. (3) Silencing DLG5 resulted in a considerable upregulation of PD-L1 expression in MDA-MB-231 and SUM159 cells under normoxic circumstances, but it was markedly downregulated under hypoxic settings. Inhibition of PD-L1 expression resulted in a considerable increase in DLG5 expression under normoxic conditions, but it decreased under hypoxic conditions. Correlation research demonstrated an inverse association between the expression of DLG5 and PD-L1 in TNBC tissues. CONCLUSION This study provides new theoretical evidence and potential therapeutic targets for the immunotherapy strategies of TNBC, holding significant clinical application value.
Collapse
Affiliation(s)
- Jingmin Che
- Shaanxi Provincial Key Laboratory of Infection and Immune Diseases, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China
- Shaanxi Engineering Research Center of Cell Immunology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China
| | - Bo Chen
- Department of Surgical Oncology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China
- Graduate Work Department, Xi'an Medical University, Xi'an, Shaanxi, China
| | - Xusheng Wang
- Department of Surgical Oncology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China
- Graduate Work Department, Xi'an Medical University, Xi'an, Shaanxi, China
| | - Baoe Liu
- Department of Emergency Surgery, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China
| | - Cuixiang Xu
- Shaanxi Provincial Key Laboratory of Infection and Immune Diseases, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China
- Shaanxi Engineering Research Center of Cell Immunology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China
| | - Huxia Wang
- Department of Breast Disease Center, Shaanxi Provincial Tumor Hospital, Xi'an, Shaanxi, China
| | - Jingying Sun
- Shaanxi Provincial Key Laboratory of Infection and Immune Diseases, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China
- Shaanxi Engineering Research Center of Cell Immunology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China
| | - Qing Feng
- Shaanxi Provincial Key Laboratory of Infection and Immune Diseases, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China
- Shaanxi Engineering Research Center of Cell Immunology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China
| | - Xiangrong Zhao
- Shaanxi Provincial Key Laboratory of Infection and Immune Diseases, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China
- Shaanxi Engineering Research Center of Cell Immunology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China
| | - Zhangjun Song
- Shaanxi Engineering Research Center of Cell Immunology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China.
- Department of Surgical Oncology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China.
| |
Collapse
|
7
|
Saponaro C, Damato M, Stanca E, Aboulouard S, Zito FA, De Summa S, Traversa D, Schirosi L, Bravaccini S, Pirini F, Fonzi E, Tebaldi M, Puccetti M, Gaballo A, Pantalone L, Ronci M, Magnani L, Sergi D, Tinelli A, Tacconi S, Siculella L, Giudetti AM, Fournier I, Salzet M, Trerotola M, Vergara D. Unraveling the protein kinase C/NDRG1 signaling network in breast cancer. Cell Biosci 2024; 14:156. [PMID: 39736699 DOI: 10.1186/s13578-024-01336-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 12/09/2024] [Indexed: 01/01/2025] Open
Abstract
N-myc downstream-regulated gene 1 (NDRG1) is a member of the NDRG family of intracellular proteins and plays a central role in a wide range of biological processes including stress response, differentiation, and metabolism. The overexpression of NDRG1 is an indicator of poor prognosis in various types of cancer. Here, we found that NDRG1 is an independent prognostic marker of poor outcome in breast cancer (BC). Analysis of the TCGA dataset showed a significant positive correlation between NDRG1 and PRKCA expression, suggesting a mechanistic role of protein kinase C (PKC) in the regulation of NDRG1. We then assessed the hypothesis that PKC might modulate the activity of NDRG1, and observed that different acute stress conditions converging on PKC activation lead to enhanced NDRG1 expression. This mechanism was found to be specific for NDRG1 as the expression of other NDRG members was not affected. Moreover, CRISPR-based inhibition of NDRG1 expression was obtained in a BC cell line, and showed that this protein is a key driver of BC cell invasion through the Rho-associated coiled-coil containing protein kinase 1 (ROCK1)/phosphorylated cofilin pathway that regulates stress fiber assembly, and the modulation of extracellular matrix reorganization related genes. Together, our findings highlight the potential of NDRG1 as a new BC biomarker and uncover a novel mechanism of regulation of NDRG1 expression that might lead to innovative therapeutic strategies.
Collapse
Affiliation(s)
- C Saponaro
- Pathology Department, IRCCS Istituto Tumori "Giovanni Paolo II", 70124, Bari, Italy
| | - M Damato
- Department of Experimental Medicine, University of Salento, Lecce, Italy
| | - E Stanca
- Department of Experimental Medicine, University of Salento, Lecce, Italy
| | - S Aboulouard
- Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse (PRISM), Lille University, Inserm, CHU Lille, U1192, Lille, France
| | - F A Zito
- Pathology Department, IRCCS Istituto Tumori "Giovanni Paolo II", 70124, Bari, Italy
| | - S De Summa
- Molecular Diagnostics and Pharmacogenetics Unit, IRCCS Istituto Tumori "Giovanni Paolo II", 70124, Bari, Italy
| | - D Traversa
- Molecular Diagnostics and Pharmacogenetics Unit, IRCCS Istituto Tumori "Giovanni Paolo II", 70124, Bari, Italy
| | - L Schirosi
- Pathology Department, IRCCS Istituto Tumori "Giovanni Paolo II", 70124, Bari, Italy
| | - S Bravaccini
- Department of Medicine and Surgery, University of Enna "Kore", 94100, Enna, Italy
| | - F Pirini
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - E Fonzi
- Unit of Biostatistics and Clinical Trials, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - M Tebaldi
- Unit of Biostatistics and Clinical Trials, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - M Puccetti
- Azienda Unità Sanitaria Locale di Imola, Imola, Italy
| | - A Gaballo
- CNR Nanotec, Institute of Nanotechnology, Via Monteroni, 73100, Lecce, Italy
| | - L Pantalone
- Laboratory of Cancer Pathology, Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
- Department of Medical, Oral and Biotechnological Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - M Ronci
- Laboratory of Cancer Pathology, Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
- Department of Medical, Oral and Biotechnological Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - L Magnani
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, UK
- Department of Surgery and Cancer, Imperial College London, London, UK
- Department of Oncology and Haemato-Oncology, Università Degli Studi di Milano, Milan, Italy
| | - D Sergi
- Department of Radiology, V. Fazzi Hospital, 73100, Lecce, Italy
| | - A Tinelli
- Department of Obstetrics and Gynecology and CERICSAL, (CEntro di RIcerca Clinico SALentino), "Veris Delli Ponti Hospital", 73020, ScorranoScorrano (Lecce), Italy
| | - S Tacconi
- Department of Biology and Biotechnology "Charles Darwin", Sapienza University of Rome, P.Le Aldo Moro 5, 00185, Rome, Italy
| | - L Siculella
- Department of Experimental Medicine, University of Salento, Lecce, Italy
| | - A M Giudetti
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Lecce, Italy
| | - I Fournier
- Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse (PRISM), Lille University, Inserm, CHU Lille, U1192, Lille, France
| | - M Salzet
- Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse (PRISM), Lille University, Inserm, CHU Lille, U1192, Lille, France
| | - M Trerotola
- Laboratory of Cancer Pathology, Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy.
- Department of Medical, Oral and Biotechnological Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy.
| | - D Vergara
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Lecce, Italy.
| |
Collapse
|
8
|
Singh DD, Haque S, Kim Y, Han I, Yadav DK. Remodeling of tumour microenvironment: strategies to overcome therapeutic resistance and innovate immunoengineering in triple-negative breast cancer. Front Immunol 2024; 15:1455211. [PMID: 39720730 PMCID: PMC11666570 DOI: 10.3389/fimmu.2024.1455211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 10/31/2024] [Indexed: 12/26/2024] Open
Abstract
Triple-negative breast cancer (TNBC) stands as the most complex and daunting subtype of breast cancer affecting women globally. Regrettably, treatment options for TNBC remain limited due to its clinical complexity. However, immunotherapy has emerged as a promising avenue, showing success in developing effective therapies for advanced cases and improving patient outcomes. Improving TNBC treatments involves reducing side effects, minimizing systemic toxicity, and enhancing efficacy. Unlike traditional cancer immunotherapy, engineered nonmaterial's can precisely target TNBC, facilitating immune cell access, improving antigen presentation, and triggering lasting immune responses. Nanocarriers with enhanced sensitivity and specificity, specific cellular absorption, and low toxicity are gaining attention. Nanotechnology-driven immunoengineering strategies focus on targeted delivery systems using multifunctional molecules for precise tracking, diagnosis, and therapy in TNBC. This study delves into TNBC's tumour microenvironment (TME) remodeling, therapeutic resistance, and immunoengineering strategies using nanotechnology.
Collapse
Affiliation(s)
- Desh Deepak Singh
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, India
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan, Saudi Arabia
| | - Youngsun Kim
- Department of Obstetrics and Gynecology, Kyung Hee University Medical Center, Seoul, Republic of Korea
| | - Ihn Han
- Plasma Bioscience Research Center, Applied Plasma Medicine Center, Department of Electrical & Biological Physics, Kwangwoon University, Seoul, Republic of Korea
| | - Dharmendra Kumar Yadav
- Department of Biologics, College of Pharmacy, Hambakmoeiro 191, Yeonsu-gu, Incheon, Republic of Korea
| |
Collapse
|
9
|
Capatina AL, Malcolm JR, Stenning J, Moore RL, Bridge KS, Brackenbury WJ, Holding AN. Hypoxia-induced epigenetic regulation of breast cancer progression and the tumour microenvironment. Front Cell Dev Biol 2024; 12:1421629. [PMID: 39282472 PMCID: PMC11392762 DOI: 10.3389/fcell.2024.1421629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 08/19/2024] [Indexed: 09/19/2024] Open
Abstract
The events that control breast cancer progression and metastasis are complex and intertwined. Hypoxia plays a key role both in oncogenic transformation and in fueling the metastatic potential of breast cancer cells. Here we review the impact of hypoxia on epigenetic regulation of breast cancer, by interfering with multiple aspects of the tumour microenvironment. The co-dependent relationship between oxygen depletion and metabolic shift to aerobic glycolysis impacts on a range of enzymes and metabolites available in the cell, promoting posttranslational modifications of histones and chromatin, and changing the gene expression landscape to facilitate tumour development. Hormone signalling, particularly through ERα, is also tightly regulated by hypoxic exposure, with HIF-1α expression being a prognostic marker for therapeutic resistance in ER+ breast cancers. This highlights the strong need to understand the hypoxia-endocrine signalling axis and exploit it as a therapeutic target. Furthermore, hypoxia has been shown to enhance metastasis in TNBC cells, as well as promoting resistance to taxanes, radiotherapy and even immunotherapy through microRNA regulation and changes in histone packaging. Finally, several other mediators of the hypoxic response are discussed. We highlight a link between ionic dysregulation and hypoxia signalling, indicating a potential connection between HIF-1α and tumoural Na+ accumulation which would be worth further exploration; we present the role of Ca2+ in mediating hypoxic adaptation via chromatin remodelling, transcription factor recruitment and changes in signalling pathways; and we briefly summarise some of the findings regarding vesicle secretion and paracrine induced epigenetic reprogramming upon hypoxic exposure in breast cancer. By summarising these observations, this article highlights the heterogeneity of breast cancers, presenting a series of pathways with potential for therapeutic applications.
Collapse
Affiliation(s)
| | - Jodie R Malcolm
- Department of Biology, University of York, York, United Kingdom
| | - Jack Stenning
- Department of Biology, University of York, York, United Kingdom
| | - Rachael L Moore
- York Biomedical Research Institute, University of York, York, United Kingdom
| | - Katherine S Bridge
- Department of Biology, University of York, York, United Kingdom
- York Biomedical Research Institute, University of York, York, United Kingdom
| | - William J Brackenbury
- Department of Biology, University of York, York, United Kingdom
- York Biomedical Research Institute, University of York, York, United Kingdom
| | - Andrew N Holding
- Department of Biology, University of York, York, United Kingdom
- York Biomedical Research Institute, University of York, York, United Kingdom
| |
Collapse
|
10
|
Ma Y, Zhang H, Shen X, Yang X, Deng Y, Tian Y, Chen Z, Pan Y, Luo H, Zhong C, Yu S, Lu A, Zhang B, Tang T, Zhang G. Aptamer functionalized hypoxia-potentiating agent and hypoxia-inducible factor inhibitor combined with hypoxia-activated prodrug for enhanced tumor therapy. Cancer Lett 2024; 598:217102. [PMID: 38969157 DOI: 10.1016/j.canlet.2024.217102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 06/22/2024] [Accepted: 07/01/2024] [Indexed: 07/07/2024]
Abstract
Triple-negative breast cancer (TNBC) is the most lethal subtype of breast cancer. Hypoxia-activated prodrugs (HAPs) have shown promise as potential therapeutic agents for TNBC. While increasing hypoxia levels may promote the HAP activation, it raises concerns regarding HIF1α-dependent drug resistance. It is desirable to develop a targeted approach that enhances tumor hypoxia for HAP activation without promoting HIF1α-dependent drug resistance in TNBC treatment. Herein, we proposed a multi-responsive carrier-free self-assembled nanomedicine named AQ4N@CA4T1ASO. This nanomedicine first targeted tumors by the TNBC-targeting aptamers (T1), and then disassembled in the reductive and acidic conditions within tumors. The released Combretastatin 4 (CA4) could exacerbate hypoxia, thereby promoting the conversion of inactive Banoxantrone (AQ4N) to its active form, AQ4. Simultaneously, the released antisense oligonucleotide (ASO) could attenuate hypoxia-induced HIF1α mRNA expression, thereby sensitizing the tumor to chemotherapy. Overall, this smart nanomedicine represents a profound targeted therapy strategy, combining "hypoxia-potentiating, hypoxia-activated, chemo-sensitization" approaches for TNBC treatment. In vivo study demonstrated significant suppression of tumor growth, highlighting the promising potential of this nanomedicine for future clinical translation.
Collapse
Affiliation(s)
- Yuan Ma
- Law Sau Fai Institute for Advancing Translational Medicine in Bone &Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, 999077, China
| | - Huarui Zhang
- Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, 999077, China
| | - Xinyang Shen
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Xin Yang
- Law Sau Fai Institute for Advancing Translational Medicine in Bone &Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, 999077, China
| | - Yan Deng
- Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, 999077, China
| | - Yuan Tian
- Law Sau Fai Institute for Advancing Translational Medicine in Bone &Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, 999077, China
| | - Zefeng Chen
- Law Sau Fai Institute for Advancing Translational Medicine in Bone &Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, 999077, China
| | - Yufei Pan
- Law Sau Fai Institute for Advancing Translational Medicine in Bone &Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, 999077, China
| | - Hang Luo
- Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, 999077, China
| | - Chuanxin Zhong
- Law Sau Fai Institute for Advancing Translational Medicine in Bone &Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, 999077, China
| | - Sifan Yu
- Law Sau Fai Institute for Advancing Translational Medicine in Bone &Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, 999077, China
| | - Aiping Lu
- Law Sau Fai Institute for Advancing Translational Medicine in Bone &Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, 999077, China
| | - Baoting Zhang
- Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, 999077, China.
| | - Tao Tang
- Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, 999077, China; Department of Gynecology, The Sixth Affiliated Hospital of Jinan University, Dongguan Eastern Central Hospital, Dongguan, Guangdong, 523560, China.
| | - Ge Zhang
- Law Sau Fai Institute for Advancing Translational Medicine in Bone &Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, 999077, China.
| |
Collapse
|
11
|
Shang Y, Liu T, Wang W. The potential of lenvatinib in breast cancer therapy. Med Oncol 2024; 41:233. [PMID: 39172293 DOI: 10.1007/s12032-024-02477-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 08/12/2024] [Indexed: 08/23/2024]
Abstract
Breast cancer, as a highly prevalent cancer among women, is one of the main causes of female mortality due to cancer. There is a need for more treatment options to improve the survival time of breast cancer patients. Metastasis to distant organs is a standard indicator of advanced breast cancer and a primary cause of breast cancer mortality, making the control of breast cancer metastasis crucial. Targeted therapy, with its advantages of precision, high effectiveness, and minimal side effects, has garnered significant attention as a hot research topic in breast cancer treatment. Among these therapies, anti-angiogenic therapy aim to inhibit tumor angiogenesis, control tumor growth, and reduce metastasis. Additionally, anti-angiogenic therapy can restructure the tumor vasculature, enhancing the effectiveness of other anti-cancer drugs. Lenvatinib, an orally available small molecule multi-targeted tyrosine kinase inhibitor, exerts its anti-tumor effects mainly by inhibiting tumor angiogenesis and tumor cell proliferation. It has been approved for the treatment of thyroid cancer, renal cell carcinoma, and hepatocellular carcinoma. Due to its multi-targeted nature, lenvatinib not only has direct anti-tumor effects but also possesses immunomodulatory activity, which can enhance the tumor immune response. This makes it a promising candidate for a broad range of cancers. Recent studies have explored the role of lenvatinib in breast cancer, including its various mechanisms of action and its use as a monotherapy or in combination to control breast cancer progression. This review will summarize the molecular mechanisms and research progress of lenvatinib in breast cancer treatment, discussing its potential applications and therapeutic prospects in managing breast cancer.
Collapse
Affiliation(s)
- Yuefeng Shang
- Department of Radiation Oncology, Tumor Hospital of Harbin Medical University, Harbin, Heilongjiang, People's Republic of China
- Department of Breast Surgery, Tumor Hospital of Harbin Medical University, Harbin, Heilongjiang, People's Republic of China
| | - Tong Liu
- Department of Radiation Oncology, Tumor Hospital of Harbin Medical University, Harbin, Heilongjiang, People's Republic of China
- Department of Breast Surgery, Tumor Hospital of Harbin Medical University, Harbin, Heilongjiang, People's Republic of China
| | - Wenjing Wang
- Beijing Institute of Hepatology, Beijing YouAn Hospital, Capital Medical University, Beijing, People's Republic of China.
| |
Collapse
|
12
|
Srinivasan D, Subbarayan R, Srivastava N, Radhakrishnan A, Adtani PN, Chauhan A, Krishnamoorthy L. A comprehensive overview of radiation therapy impacts of various cancer treatments and pivotal role in the immune system. Cell Biochem Funct 2024; 42:e4103. [PMID: 39073207 DOI: 10.1002/cbf.4103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/25/2024] [Accepted: 07/17/2024] [Indexed: 07/30/2024]
Abstract
The cancer treatment landscape is significantly evolving, focusing on advanced radiation therapy methods to maximize effectiveness and minimize the adverse effects. Recognized as a pivotal component in cancer and disease treatment, radiation therapy (RT) has drawn attention in recent research that delves into its intricate interplay with inflammation and the immune response. This exploration unveils the underlying processes that significantly influence treatment outcomes. In this context, the potential advantages of combining bronchoscopy with RT across diverse clinical scenarios, alongside the targeted impact of brachytherapy, are explored. Concurrently, radiation treatments serve multifaceted roles such as DNA repair, cell elimination, and generating immune stress signaling molecules known as damage-associated molecular patterns, elucidating their effectiveness in treating various diseases. External beam RT introduces versatility by utilizing particles such as photons, electrons, protons, or carbon ions, each offering distinct advantages. Advanced RT techniques contribute to the evolving landscape, with emerging technologies like FLASH, spatially fractionated RT, and others poised to revolutionize the field. The comprehension of RT, striving for improved treatment outcomes, reduced side effects, and facilitating personalized and innovative treatments for cancer and noncancer patients. After navigating these advancements, the goal is fixed to usher in a new era in which RT is a cornerstone of precision and effectiveness in medical interventions. In summarizing the myriad findings, the review underscores the significance of understanding the differential impacts of radiation approaches on inflammation and immune modulation, offering valuable insights for developing innovative therapeutic interventions that harness the immune system in conjunction with RT.
Collapse
Affiliation(s)
- Dhasarathdev Srinivasan
- Centre for Advanced Biotherapeutics and Regenerative Medicine, Faculty of Research, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, India
| | - Rajasekaran Subbarayan
- Centre for Advanced Biotherapeutics and Regenerative Medicine, Faculty of Research, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, India
| | - Nityanand Srivastava
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Arunkumar Radhakrishnan
- Department of Pharmacology, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, India
| | - Pooja Narain Adtani
- Department of Basic Medical and Dental Sciences, College of Dentistry, Gulf Medical University, Ajman, United Arab Emirates
| | - Ankush Chauhan
- Centre for Herbal Pharmacology and Environmental Sustainability, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, India
| | - Loganathan Krishnamoorthy
- Department of Allied Health Sciences-FAHS, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, India
| |
Collapse
|
13
|
Subbarayan R, Srinivasan D, Balakrishnan R, Kumar A, Usmani SS, Srivastava N. DNA damage response and neoantigens: A favorable target for triple-negative breast cancer immunotherapy and vaccine development. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2024; 389:104-152. [PMID: 39396845 DOI: 10.1016/bs.ircmb.2024.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Triple-negative breast cancer (TNBC) poses a significant clinical challenge due to its aggressive nature and limited therapeutic options. The interplay between DNA damage response (DDR) mechanisms and the emergence of neoantigens represents a promising avenue for developing targeted immunotherapeutic strategies and vaccines for TNBC. The DDR is a complex network of cellular mechanisms designed to maintain genomic integrity. In TNBC, where genetic instability is a hallmark, dysregulation of DDR components plays a pivotal role in tumorigenesis and progression. This review explores the intricate relationship between DDR and neoantigens, shedding light on the potential vulnerabilities of TNBC cells. Neoantigens, arising from somatic mutations in cancer cells, represent unique antigens that can be recognized by the immune system. TNBC's propensity for genomic instability leads to an increased mutational burden, consequently yielding a rich repertoire of neoantigens. The convergence of DDR and neoantigens in TNBC offers a distinctive opportunity for immunotherapeutic targeting. Immunotherapy has revolutionized cancer treatment by harnessing the immune system to selectively target cancer cells. The unique immunogenicity conferred by DDR-related neoantigens in TNBC positions them as ideal targets for immunotherapeutic interventions. This review also explores various immunotherapeutic modalities, including immune checkpoint inhibitors (ICIs), adoptive cell therapies, and cancer vaccines, that leverage the DDR and neoantigen interplay to enhance anti-tumor immune responses. Moreover, the potential for developing vaccines targeting DDR-related neoantigens opens new frontiers in preventive and therapeutic strategies for TNBC. The rational design of vaccines tailored to the individual mutational landscape of TNBC holds promise for precision medicine approaches. In conclusion, the convergence of DDR and neoantigens in TNBC presents a compelling rationale for the development of innovative immunotherapies and vaccines. Understanding and targeting these interconnected processes may pave the way for personalized and effective interventions, offering new hope for patients grappling with the challenges posed by TNBCs.
Collapse
Affiliation(s)
- Rajasekaran Subbarayan
- Centre for Advanced Biotherapeutics and Regenerative Medicine, FAHS, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, India
| | - Dhasarathdev Srinivasan
- Centre for Advanced Biotherapeutics and Regenerative Medicine, FAHS, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, India
| | - Ranjith Balakrishnan
- Centre for Advanced Biotherapeutics and Regenerative Medicine, FAHS, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, India
| | - Ajeet Kumar
- Department of Psychiatry, Washington university School of Medicine, St louis, MO, United States
| | - Salman Sadullah Usmani
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, United States.
| | - Nityanand Srivastava
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, United States.
| |
Collapse
|
14
|
Singh AK, Duddempudi PK, Kenchappa DB, Srivastava N, Amdare NP. Immunological landscape of solid cancer: Interplay between tumor and autoimmunity. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2024; 389:163-235. [PMID: 39396847 DOI: 10.1016/bs.ircmb.2024.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
The immune system, a central player in maintaining homeostasis, emerges as a pivotal factor in the pathogenesis and progression of two seemingly disparate yet interconnected categories of diseases: autoimmunity and cancer. This chapter delves into the intricate and multifaceted role of the immune system, particularly T cells, in orchestrating responses that govern the delicate balance between immune surveillance and self-tolerance. T cells, pivotal immune system components, play a central role in both diseases. In autoimmunity, aberrant T cell activation drives damaging immune responses against normal tissues, while in cancer, T cells exhibit suppressed responses, allowing the growth of malignant tumors. Immune checkpoint receptors, example, initially explored in autoimmunity, now revolutionize cancer treatment via immune checkpoint blockade (ICB). Though effective in various tumors, ICB poses risks of immune-related adverse events (irAEs) akin to autoimmunity. This chapter underscores the importance of understanding tumor-associated antigens and their role in autoimmunity, immune checkpoint regulation, and their implications for both diseases. It also explores autoimmunity resulting from cancer immunotherapy and shared molecular pathways in solid tumors and autoimmune diseases, highlighting their interconnectedness at the molecular level. Additionally, it sheds light on common pathways and epigenetic features shared by autoimmunity and cancer, and the potential of repurposing drugs for therapeutic interventions. Delving deeper into these insights could unlock therapeutic strategies for both autoimmunity and cancer.
Collapse
Affiliation(s)
- Ajay K Singh
- Department of Oncology, Albert Einstein College of Medicine, Bronx, NY, United States; Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States
| | | | | | - Nityanand Srivastava
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Nitin P Amdare
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States.
| |
Collapse
|
15
|
Zhi S, Chen C, Huang H, Zhang Z, Zeng F, Zhang S. Hypoxia-inducible factor in breast cancer: role and target for breast cancer treatment. Front Immunol 2024; 15:1370800. [PMID: 38799423 PMCID: PMC11116789 DOI: 10.3389/fimmu.2024.1370800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 04/26/2024] [Indexed: 05/29/2024] Open
Abstract
Globally, breast cancer stands as the most prevalent form of cancer among women. The tumor microenvironment of breast cancer often exhibits hypoxia. Hypoxia-inducible factor 1-alpha, a transcription factor, is found to be overexpressed and activated in breast cancer, playing a pivotal role in the anoxic microenvironment by mediating a series of reactions. Hypoxia-inducible factor 1-alpha is involved in regulating downstream pathways and target genes, which are crucial in hypoxic conditions, including glycolysis, angiogenesis, and metastasis. These processes significantly contribute to breast cancer progression by managing cancer-related activities linked to tumor invasion, metastasis, immune evasion, and drug resistance, resulting in poor prognosis for patients. Consequently, there is a significant interest in Hypoxia-inducible factor 1-alpha as a potential target for cancer therapy. Presently, research on drugs targeting Hypoxia-inducible factor 1-alpha is predominantly in the preclinical phase, highlighting the need for an in-depth understanding of HIF-1α and its regulatory pathway. It is anticipated that the future will see the introduction of effective HIF-1α inhibitors into clinical trials, offering new hope for breast cancer patients. Therefore, this review focuses on the structure and function of HIF-1α, its role in advancing breast cancer, and strategies to combat HIF-1α-dependent drug resistance, underlining its therapeutic potential.
Collapse
Affiliation(s)
| | | | | | | | - Fancai Zeng
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, China
| | - Shujun Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
16
|
Said SS, Ibrahim WN. Breaking Barriers: The Promise and Challenges of Immune Checkpoint Inhibitors in Triple-Negative Breast Cancer. Biomedicines 2024; 12:369. [PMID: 38397971 PMCID: PMC10886684 DOI: 10.3390/biomedicines12020369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/06/2024] [Accepted: 01/08/2024] [Indexed: 02/25/2024] Open
Abstract
Triple-negative breast cancer (TNBC) is a highly aggressive malignancy with pronounced immunogenicity, exhibiting rapid proliferation and immune cell infiltration into the tumor microenvironment. TNBC's heterogeneity poses challenges to immunological treatments, inducing resistance mechanisms in the tumor microenvironment. Therapeutic modalities, including immune checkpoint inhibitors (ICIs) targeting PD-1, PD-L1, and CTLA-4, are explored in preclinical and clinical trials. Promising results emerge from combining ICIs with anti-TGF-β and VISTA, hindering TNBC tumor growth. TNBC cells employ complex evasion strategies involving interactions with stromal and immune cells, suppressing immune recognition through various cytokines, chemokines, and metabolites. The recent focus on unraveling humoral and cellular components aims to disrupt cancer crosstalk within the tumor microenvironment. This review identifies TNBC's latest resistance mechanisms, exploring potential targets for clinical trials to overcome immune checkpoint resistance and enhance patient survival rates.
Collapse
Affiliation(s)
| | - Wisam Nabeel Ibrahim
- Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha P.O. Box 2713, Qatar;
| |
Collapse
|
17
|
Kaur P, Ring A, Porras TB, Zhou G, Lu J, Kang I, Lang JE. Integrated Proteogenomic Analysis Reveals Distinct Potentially Actionable Therapeutic Vulnerabilities in Triple-Negative Breast Cancer Subtypes. Cancers (Basel) 2024; 16:516. [PMID: 38339267 PMCID: PMC10854633 DOI: 10.3390/cancers16030516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 01/09/2024] [Accepted: 01/15/2024] [Indexed: 02/12/2024] Open
Abstract
Triple-negative breast cancer (TNBC) is characterized by an aggressive clinical presentation and a paucity of clinically actionable genomic alterations. Here, we utilized the Cancer Genome Atlas (TCGA) to explore the proteogenomic landscape of TNBC subtypes to see whether genomic alterations can be inferred from proteomic data. We found only 4% of the protein level changes are explained by mutations, while 21% of the protein and 35% of the transcriptomics changes were determined by copy number alterations (CNAs). We found tighter coupling between proteome and genome in some genes that are predicted to be the targets of drug inhibitors, including CDKs, PI3K, tyrosine kinase (TKI), and mTOR. The validation of our proteogenomic workflow using mass spectrometry Clinical Proteomic Tumor Analysis Consortium (MS-CPTAC) data also demonstrated the highest correlation between protein-RNA-CNA. The integrated proteogenomic approach helps to prioritize potentially actionable targets and may enable the acceleration of personalized cancer treatment.
Collapse
Affiliation(s)
- Pushpinder Kaur
- Department of Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90033, USA
| | - Alexander Ring
- Department of Medical Oncology and Hematology, University Hospital Zürich, 8091 Zurich, Switzerland
| | - Tania B. Porras
- Cancer and Blood Disease Institute, Children Hospital Los Angeles, University of Southern California, Los Angeles, CA 90027, USA
| | - Guang Zhou
- Division of Breast Services, Department of General Surgery, Digestive Disease and Surgery Institute, Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Janice Lu
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90033, USA
- Division of Medical Oncology, Department of Medicine, University of Southern California Norris Cancer Center, University of Southern California, Los Angeles, CA 90033, USA
| | - Irene Kang
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90033, USA
- Division of Medical Oncology, Department of Medicine, University of Southern California Norris Cancer Center, University of Southern California, Los Angeles, CA 90033, USA
| | - Julie E. Lang
- Department of Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90033, USA
- Division of Breast Services, Department of General Surgery, Digestive Disease and Surgery Institute, Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| |
Collapse
|