1
|
Ou S, Lin Y, Zhang Y, Shi K, Wu H. Epidemiology and tumor microenvironment of ocular surface and orbital tumors on growth and malignant transformation. Front Oncol 2024; 14:1388156. [PMID: 39421442 PMCID: PMC11484446 DOI: 10.3389/fonc.2024.1388156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 09/16/2024] [Indexed: 10/19/2024] Open
Abstract
The ocular surface and orbit constitute unique microenvironments in the human body. Current advances in molecular research have deepened our understanding of tumor development in these regions. Tumors exhibit greater heterogeneity compared to normal tissues, as revealed by pathological and histological examinations. The tumor microenvironment (TME) plays a crucial role in the proliferation and progression of cancer cells. Factors from the external environment or the body's own inflammation and microcirculation interact within the TME, maintaining a delicate balance. Disruption of this balance, through uncontrolled signal pathway activation, can transform normal or benign tissues into malignant ones. In recent years, various systemic immunotherapies have been developed for cancer treatment. This study reviews the epidemiology of ocular surface and orbital tumors include squamous cell carcinoma, basal cell carcinoma, sebaceous carcinoma and lymphoma in conjunction with their occurrence, growth, and underlying mechanisms. We propose that by examining clinical histopathological images, we can identify specific and shared microscopic features of tumors. By collecting, classifying, and analyzing data from these clinical histopathological images, we can pinpoint independent diagnostic factors characteristic of tumors. We hope this study provides a basis for future exploration of the mechanisms underlying different ocular diseases.
Collapse
Affiliation(s)
- Shangkun Ou
- Xiamen Eye Center and Eye Institute of Xiamen University, School of Medicine, Xiamen, China
- Xiamen Clinical Research Center for Eye Diseases, Xiamen, Fujian, China
- Xiamen Key Laboratory of Ophthalmology, Xiamen, Fujian, China
- Fujian Key Laboratory of Corneal and Ocular Surface Diseases, Xiamen, Fujian, China
- Xiamen Key Laboratory of Corneal and Ocular Surface Diseases, Xiamen, Fujian, China
- Translational Medicine Institute of Xiamen Eye Center of Xiamen University, Xiamen, Fujian, China
| | - Yuan Lin
- Xiamen Eye Center and Eye Institute of Xiamen University, School of Medicine, Xiamen, China
- Xiamen Clinical Research Center for Eye Diseases, Xiamen, Fujian, China
- Xiamen Key Laboratory of Ophthalmology, Xiamen, Fujian, China
- Fujian Key Laboratory of Corneal and Ocular Surface Diseases, Xiamen, Fujian, China
- Xiamen Key Laboratory of Corneal and Ocular Surface Diseases, Xiamen, Fujian, China
- Translational Medicine Institute of Xiamen Eye Center of Xiamen University, Xiamen, Fujian, China
| | - Yujie Zhang
- Xiamen Eye Center and Eye Institute of Xiamen University, School of Medicine, Xiamen, China
- Xiamen Clinical Research Center for Eye Diseases, Xiamen, Fujian, China
- Xiamen Key Laboratory of Ophthalmology, Xiamen, Fujian, China
- Fujian Key Laboratory of Corneal and Ocular Surface Diseases, Xiamen, Fujian, China
- Xiamen Key Laboratory of Corneal and Ocular Surface Diseases, Xiamen, Fujian, China
- Translational Medicine Institute of Xiamen Eye Center of Xiamen University, Xiamen, Fujian, China
| | - Ke Shi
- Xiamen Eye Center and Eye Institute of Xiamen University, School of Medicine, Xiamen, China
- Xiamen Clinical Research Center for Eye Diseases, Xiamen, Fujian, China
- Xiamen Key Laboratory of Ophthalmology, Xiamen, Fujian, China
- Fujian Key Laboratory of Corneal and Ocular Surface Diseases, Xiamen, Fujian, China
- Xiamen Key Laboratory of Corneal and Ocular Surface Diseases, Xiamen, Fujian, China
- Translational Medicine Institute of Xiamen Eye Center of Xiamen University, Xiamen, Fujian, China
| | - Huping Wu
- Xiamen Eye Center and Eye Institute of Xiamen University, School of Medicine, Xiamen, China
- Xiamen Clinical Research Center for Eye Diseases, Xiamen, Fujian, China
- Xiamen Key Laboratory of Ophthalmology, Xiamen, Fujian, China
- Fujian Key Laboratory of Corneal and Ocular Surface Diseases, Xiamen, Fujian, China
- Xiamen Key Laboratory of Corneal and Ocular Surface Diseases, Xiamen, Fujian, China
- Translational Medicine Institute of Xiamen Eye Center of Xiamen University, Xiamen, Fujian, China
| |
Collapse
|
2
|
Chow L, Flaherty E, Pezzanite L, Williams M, Dow S, Wotman K. Impact of Equine Ocular Surface Squamous Neoplasia on Interactions between Ocular Transcriptome and Microbiome. Vet Sci 2024; 11:167. [PMID: 38668434 PMCID: PMC11054121 DOI: 10.3390/vetsci11040167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/28/2024] [Accepted: 04/03/2024] [Indexed: 04/29/2024] Open
Abstract
Ocular surface squamous neoplasia (OSSN) represents the most common conjunctival tumor in horses and frequently results in vision loss and surgical removal of the affected globe. Multiple etiologic factors have been identified as contributing to OSSN progression, including solar radiation exposure, genetic mutations, and a lack of periocular pigmentation. Response to conventional treatments has been highly variable, though our recent work indicates that these tumors are highly responsive to local immunotherapy. In the present study, we extended our investigation of OSSN in horses to better understand how the ocular transcriptome responds to the presence of the tumor and how the ocular surface microbiome may also be altered by the presence of cancer. Therefore, we collected swabs from the ventral conjunctival fornix from 22 eyes in this study (11 with cytologically or histologically confirmed OSSN and 11 healthy eyes from the same horses) and performed RNA sequencing and 16S microbial sequencing using the same samples. Microbial 16s DNA sequencing and bulk RNA sequencing were both conducted using an Illumina-based platform. In eyes with OSSN, we observed significantly upregulated expression of genes and pathways associated with inflammation, particularly interferon. Microbial diversity was significantly reduced in conjunctival swabs from horses with OSSN. We also performed interactome analysis and found that three bacterial taxa (Actinobacillus, Helcococcus and Parvimona) had significant correlations with more than 100 upregulated genes in samples from animals with OSSN. These findings highlight the inflammatory nature of OSSN in horses and provide important new insights into how the host ocular surface interacts with certain microbial populations. These findings suggest new strategies for the management of OSSN in horses, which may entail immunotherapy in combination with ocular surface probiotics or prebiotics to help normalize ocular cell and microbe interactions.
Collapse
Affiliation(s)
- Lyndah Chow
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA; (L.C.); (E.F.); (L.P.); (M.W.)
| | - Edward Flaherty
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA; (L.C.); (E.F.); (L.P.); (M.W.)
| | - Lynn Pezzanite
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA; (L.C.); (E.F.); (L.P.); (M.W.)
| | - Maggie Williams
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA; (L.C.); (E.F.); (L.P.); (M.W.)
| | - Steven Dow
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA; (L.C.); (E.F.); (L.P.); (M.W.)
- Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Kathryn Wotman
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA; (L.C.); (E.F.); (L.P.); (M.W.)
| |
Collapse
|
3
|
Amano Y, Matsubara D, Kihara A, Yoshimoto T, Fukushima N, Nishino H, Mori Y, Niki T. The significance of Hippo pathway protein expression in oral squamous cell carcinoma. Front Med (Lausanne) 2024; 11:1247625. [PMID: 38444414 PMCID: PMC10912186 DOI: 10.3389/fmed.2024.1247625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 02/06/2024] [Indexed: 03/07/2024] Open
Abstract
Introduction The Hippo pathway consists of mammalian sterile 20-like kinase 1/2 (MST1/2), large tumor suppressor 1/2 (LATS1/2), and yes-associated protein (YAP)1. Herein, we present the first report on the significance of major Hippo pathway protein expression in oral squamous cell carcinoma (OSCC). Methods The analyses included oral epithelial dysplasia (OED, n = 7), carcinoma in situ (CIS, n = 14), and oral squamous cell carcinoma (OSCC, n = 109). Results Cytoplasmic expression of MST1, LATS1, and LATS2 was low in OED, CIS, and OSCC. The cytoplasmic expression of MST2 was high in OED (5/7 cases), CIS (9/14 cases), and poorly differentiated OSCC (8/8 cases) but was low/lost in a proportion of differentiated OSCC (60/101 cases). The expression of YAP1 was associated with differentiation; low YAP expression was significantly more frequent in well-differentiated OSCC (35/71 cases), compared to moderately and poorly differentiated OSCC (11/38 cases). An infiltrative invasion pattern was associated with a high expression of MST2 and high expression of YAP1. The high expression of YAP1 was associated with features of epithelial-to-mesenchymal transition (EMT), such as the loss of E-cadherin and high expression of vimentin, laminin 5, and Slug. High expression of protein arginine methyltransferase (PRMT) 1 or 5, which positively regulates YAP activity, was associated with the high expression of YAP1 (p < 0.0001). Conclusion Among the major Hippo pathway proteins, MST2 displayed a distinctive expression pattern in a significant proportion of differentiated OSCC, suggesting a possible differential role for MST2 depending on the course of OSCC progression. A high YAP1 expression may indicate aggressive OSCC with EMT via PRMTs at the invasive front.
Collapse
Affiliation(s)
- Yusuke Amano
- Department of Integrative Pathology, Jichi Medical University, Shimotsuke, Japan
| | - Daisuke Matsubara
- Department of Integrative Pathology, Jichi Medical University, Shimotsuke, Japan
- Department of Diagnostic Pathology, University of Tsukuba, Tsukuba, Japan
| | - Atsushi Kihara
- Department of Integrative Pathology, Jichi Medical University, Shimotsuke, Japan
| | - Taichiro Yoshimoto
- Department of Integrative Pathology, Jichi Medical University, Shimotsuke, Japan
| | - Noriyoshi Fukushima
- Department of Integrative Pathology, Jichi Medical University, Shimotsuke, Japan
| | - Hiroshi Nishino
- Department of Otolaryngology, Jichi Medical University, Shimotsuke, Japan
| | - Yoshiyuki Mori
- Department of Dentistry, Oral and Maxillofacial Surgery, Saitama Medical Center Jichi Medical University, Saitama, Japan
| | - Toshiro Niki
- Department of Integrative Pathology, Jichi Medical University, Shimotsuke, Japan
| |
Collapse
|
4
|
Gurnani B, Kaur K. Molecular and epigenetic mechanisms governing ocular surface squamous neoplasia: opportunities for diagnostics. Expert Rev Mol Diagn 2023:1-15. [PMID: 38131180 DOI: 10.1080/14737159.2023.2298681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 12/20/2023] [Indexed: 12/23/2023]
Abstract
INTRODUCTION Ocular surface squamous neoplasia (OSSN) is the most common ocular malignancy; the pathophysiology is influenced by molecular, genetic, and epigenetic mechanisms. The incidence of OSSN is associated with the anatomy and physiology of the ocular surface, limbal stem cell configuration, limbal vulnerability, cancer stem cells, dysplasia, neoplasia, angiogenesis, invasion, and metastasis. The key etiological factors involved are human papillomavirus (HPV), human immunodeficiency virus (HIV), immunosuppression, p53 tumor suppressor gene, hypovitaminosis A, and failure of Deoxyribonucleic acid (DNA) repair mechanisms. AREAS COVERED This special report is a focussed attempt to understand the molecular mechanism, genetic and epigenetic mechanism, and diagnostic modalities for OSSN. EXPERT OPINION While these mechanisms contribute to genome instability, promoter-specific hypermethylation might facilitate and promote tumor formation by silencing tumor suppressor genes. OSSN understanding has improved with increased literature available on various genetic, molecular, and epigenetic mechanisms, although the exact genetic and epigenetic mechanisms still need to be elucidated. It is important to note that the molecular mechanisms of OSSN can vary among individuals, and further research is required to elucidate the underlying processes fully. Understanding these mechanisms is crucial for the development of targeted therapies and improved management of OSSN.
Collapse
Affiliation(s)
- Bharat Gurnani
- Cataract, Cornea, Refractive Services, Trauma, External Diseases, Contact Lens and Ocular Surface, Sadguru Netra Chikitsalya, Shri Sadguru Seva Sangh Trust, Chitrakoot, India
| | - Kirandeep Kaur
- Children Eye Care Centre, Department of Pediatric Ophthalmology and Strabismus, Sadguru Netra Chikitsalya, Shri Sadguru Seva Sangh Trust, Janaki Kund, Chitrakoot, India
| |
Collapse
|
5
|
Julius P, Kang G, Siyumbwa S, Musumali J, Tso FY, Ngalamika O, Kaile T, Maate F, Moonga P, West JT, Angeletti P, Wood C. Co-infection and co-localization of Kaposi sarcoma-associated herpesvirus and Epstein-Barr virus in HIV-associated Kaposi sarcoma: a case report. Front Cell Infect Microbiol 2023; 13:1270935. [PMID: 37928187 PMCID: PMC10623342 DOI: 10.3389/fcimb.2023.1270935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 10/04/2023] [Indexed: 11/07/2023] Open
Abstract
Kaposi sarcoma (KS), a multifocal vascular neoplasm frequently observed in HIV-positive individuals, primarily affects the skin, mucous membranes, visceral organs, and lymph nodes. KS is associated primarily with Kaposi sarcoma-associated herpesvirus (KSHV) infection. In this case report, we present a rare occurrence of co-infection and co-localization of KSHV and Epstein-Barr virus (EBV) in KS arising from the conjunctiva, which, to our knowledge, has not been reported previously. Immunohistochemistry (IHC), DNA polymerase chain reaction (PCR), and EBV-encoded RNA in situ hybridization (EBER-ISH) were utilized to demonstrate the presence of KSHV and EBV infection in the ocular KS lesion. Nearly all KSHV-positive cells displayed co-infection with EBV. In addition, the KS lesion revealed co-localization of KSHV Latency-Associated Nuclear Antigen (LANA) and EBV Epstein Barr virus Nuclear Antigen-1 (EBNA1) by multi-colored immunofluorescence staining with different anti-EBNA1 antibodies, indicating the possibility of interactions between these two gamma herpesviruses within the same lesion. Additional study is needed to determine whether EBV co-infection in KS is a common or an opportunistic event that might contribute to KS development and progression.
Collapse
Affiliation(s)
- Peter Julius
- Department of Pathology and Microbiology, School of Medicine, University of Zambia, Lusaka, Zambia
| | - Guobin Kang
- Department of Interdisciplinary Oncology, Louisiana State University Health Sciences Center – New Orleans, New Orleans, LA, United States
| | - Stepfanie Siyumbwa
- Department of Pathology and Microbiology, School of Medicine, University of Zambia, Lusaka, Zambia
| | - Jane Musumali
- University Teaching Hospitals, Eye Hospital, Ministry of Health, Lusaka, Zambia
| | - For Yue Tso
- Department of Interdisciplinary Oncology, Louisiana State University Health Sciences Center – New Orleans, New Orleans, LA, United States
| | - Owen Ngalamika
- Department of Pathology and Microbiology, School of Medicine, University of Zambia, Lusaka, Zambia
| | - Trevor Kaile
- Department of Pathology and Microbiology, School of Medicine, University of Zambia, Lusaka, Zambia
| | - Fred Maate
- Department of Pathology and Microbiology, School of Medicine, University of Zambia, Lusaka, Zambia
| | - Phyllis Moonga
- University Teaching Hospitals, Eye Hospital, Ministry of Health, Lusaka, Zambia
| | - John T. West
- Department of Interdisciplinary Oncology, Louisiana State University Health Sciences Center – New Orleans, New Orleans, LA, United States
| | - Peter Angeletti
- Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Charles Wood
- Department of Interdisciplinary Oncology, Louisiana State University Health Sciences Center – New Orleans, New Orleans, LA, United States
| |
Collapse
|