1
|
Psoroulas S, Paunoiu A, Corradini S, Hörner-Rieber J, Tanadini-Lang S. MR-linac: role of artificial intelligence and automation. Strahlenther Onkol 2025; 201:298-305. [PMID: 39843783 PMCID: PMC11839841 DOI: 10.1007/s00066-024-02358-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 09/27/2024] [Indexed: 01/24/2025]
Abstract
The integration of artificial intelligence (AI) into radiotherapy has advanced significantly during the past 5 years, especially in terms of automating key processes like organ at risk delineation and treatment planning. These innovations have enhanced consistency, accuracy, and efficiency in clinical practice. Magnetic resonance (MR)-guided linear accelerators (MR-linacs) have greatly improved treatment accuracy and real-time plan adaptation, particularly for tumors near radiosensitive organs. Despite these improvements, MR-guided radiotherapy (MRgRT) remains labor intensive and time consuming, highlighting the need for AI to streamline workflows and support rapid decision-making. Synthetic CTs from MR images and automated contouring and treatment planning will reduce manual processes, thus optimizing treatment times and expanding access to MR-linac technology. AI-driven quality assurance will ensure patient safety by predicting machine errors and validating treatment delivery. Advances in intrafractional motion management will increase the accuracy of treatment, and the integration of imaging biomarkers for outcome prediction and early toxicity assessment will enable more precise and effective treatment strategies.
Collapse
Affiliation(s)
- Serena Psoroulas
- Department of Radiation Oncology, University Hospital Zurich, University of Zurich, Rämistrasse 100, 8091, Zurich, Switzerland
| | - Alina Paunoiu
- Department of Radiation Oncology, University Hospital Zurich, University of Zurich, Rämistrasse 100, 8091, Zurich, Switzerland
| | - Stefanie Corradini
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
| | - Juliane Hörner-Rieber
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg, Germany
- Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Radiation Oncology, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Stephanie Tanadini-Lang
- Department of Radiation Oncology, University Hospital Zurich, University of Zurich, Rämistrasse 100, 8091, Zurich, Switzerland.
| |
Collapse
|
2
|
Ahunbay A, Paulson E, Ahunbay E, Zhang Y. Deep learning-based quick MLC sequencing for MRI-guided online adaptive radiotherapy: a feasibility study for pancreatic cancer patients. Phys Med Biol 2025; 70:045020. [PMID: 39883962 DOI: 10.1088/1361-6560/adb099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 01/30/2025] [Indexed: 02/01/2025]
Abstract
Objective.One bottleneck of magnetic resonance imaging (MRI)-guided online adaptive radiotherapy is the time-consuming daily online replanning process. The current leaf sequencing method takes up to 10 min, with potential dosimetric degradation and small segment openings that increase delivery time. This work aims to replace this process with a fast deep learning-based method to provide deliverable MLC sequences almost instantaneously, potentially accelerating and enhancing online adaption.Approach.Daily MRIs and plans from 242 daily fractions of 49 abdomen cancer patients on a 1.5 T MR-Linac were used. The architecture included: (1) a recurrent conditional generative adversarial network model to predict segment shapes from a fluence map (FM), recurrently predicting each segment's shape; and (2) a linear matrix equation module to optimize the monitor units (MUs) weights of segments. Multiple models with different segment numbers per beam (4-7) were trained. The final MLC sequences with the smallest relative absolute errors were selected. The predicted MLC sequence was imported into treatment planning system for dose calculation and compared with the original plans.Main results.The gamma passing rate for all fractions was 99.7 ± 0.2% (2%/2 mm criteria) and 92.7 ± 1.6% (1%/1 mm criteria). The average number of segments per beam in the proposed method was 6.0 ± 0.6 compared to 7.5 ± 0.3 in the original plan. The average total MUs were reduced from 1641 ± 262 to 1569.5 ± 236.7 in the predicted plans. The estimated delivery time was reduced from 9.7 min to 8.3 min, an average reduction of 14% and up to 25% for individual plans. Execution time for one plan was less than 10 s using a GTX1660TIGPU.Significance.The developed models can quickly and accurately generate an optimized, deliverable leaf sequence from a FM with fewer segments. This can seamlessly integrate into the current online replanning workflow, greatly expediting the daily plan adaptation process.
Collapse
Affiliation(s)
- Ahmet Ahunbay
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI, United States of America
| | - Eric Paulson
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI, United States of America
| | - Ergun Ahunbay
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI, United States of America
| | - Ying Zhang
- Medical Artificial Intelligence and Automation (MAIA) Lab & Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, United States of America
| |
Collapse
|
3
|
Liu X, Chen D, Liu Y, Men K, Dai J, Quan H, Chen X. Cross-technique transfer learning for autoplanning in magnetic resonance imaging-guided adaptive radiotherapy for rectal cancer. Phys Med 2025; 129:104873. [PMID: 39709892 DOI: 10.1016/j.ejmp.2024.104873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 10/09/2024] [Accepted: 11/30/2024] [Indexed: 12/24/2024] Open
Abstract
PURPOSE Automated treatment plan generation is essential for magnetic resonance imaging (MRI)-guided adaptive radiotherapy (MRIgART) to ensure standardized treatment-plan quality. We proposed a novel cross-technique transfer learning (CTTL)-based strategy for online MRIgART autoplanning. METHOD We retrospectively analyzed the data from 210 rectal cancer patients. A source dose prediction model was initially trained using a large volume of volumetric-modulated arc therapy data. Subsequently, a single patient's pretreatment data was employed to construct a CTTL-based dose prediction model (CTTL_M) for each new patient undergoing MRIgART. The CTTL_M predicted dose distributions for subsequent treatment fractions. We optimized an auto plan using the parameters based on dose prediction. Performance of our CTTL_M was assessed using dose-volume histogram and mean absolute error (MAE). Our auto plans were compared with clinical plans regarding plan quality, efficiency, and complexity. RESULTS CTTL_M significantly improved the dose prediction accuracy, particularly in planning target volumes (median MAE: 1.27 % vs. 7.06 %). The auto plans reduced high-dose exposure to the bladder (D0.1cc: 2,601.93 vs. 2,635.43 cGy, P < 0.001) and colon (D0.1cc: 2,593.22 vs. 2,624.89 cGy, P < 0.001). The mean colon dose decreased from 1,865.08 to 1,808.16 cGy (P = 0.035). The auto plans maintained similar planning time, monitor units, and plan complexity as clinical plans. CONCLUSIONS We proposed an online ART autoplanning method for generating high-quality plans with improved organ sparing. Its high degree of automation can standardize planning quality across varying expertise levels, mitigating subjective assessment and errors.
Collapse
Affiliation(s)
- Xiaonan Liu
- School of Physics and Technology, Wuhan University, Wuhan 430072, China; National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Deqi Chen
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Yuxiang Liu
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Kuo Men
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Jianrong Dai
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Hong Quan
- School of Physics and Technology, Wuhan University, Wuhan 430072, China.
| | - Xinyuan Chen
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China.
| |
Collapse
|
4
|
Conroy L, Winter J, Khalifa A, Tsui G, Berlin A, Purdie TG. Artificial Intelligence for Radiation Treatment Planning: Bridging Gaps From Retrospective Promise to Clinical Reality. Clin Oncol (R Coll Radiol) 2025; 37:103630. [PMID: 39531894 DOI: 10.1016/j.clon.2024.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 07/31/2024] [Accepted: 08/08/2024] [Indexed: 11/16/2024]
Abstract
Artificial intelligence (AI) radiation therapy (RT) planning holds promise for enhancing the consistency and efficiency of the RT planning process. Despite technical advancements, the widespread integration of AI into RT treatment planning faces challenges. The transition from controlled retrospective environments to real-world clinical settings introduces heightened scrutiny from clinical end users, potentially leading to decreased clinical acceptance. Key considerations for implementing AI RT planning include ensuring the AI model performance aligns with clinical standards, using high-quality training data, and incorporating sufficient data variation through meticulous curation by clinical experts. Beyond technical aspects, factors such as potential biases and the level of trust clinical end users place in AI may present unforeseen obstacles for real-world clinical use. Addressing these challenges requires bridging education and expertise gaps among clinical end users, enabling them to confidently embrace and utilize AI for routine RT planning. By fostering a better understanding of AI capabilities, building trust, and providing comprehensive training, the promises of AI RT planning can be a reality in the clinical setting. This article assesses the current clinical use of AI RT planning and explores challenges and considerations for bridging gaps in knowledge and expertise for AI operationalization, with focus on training data curation, workflow integration, explainability, bias, and domain knowledge. Remaining challenges in clinical implementation of AI RT treatment planning are examined in the context of trust building approaches.
Collapse
Affiliation(s)
- L Conroy
- Radiation Medicine Program, Princess Margaret Cancer Centre, 610 University Avenue, Toronto, Ontario, M5G 2M9, Canada; Techna Insitute, University Health Network, 190 Elizabeth St, Toronto, Ontario, M5G 2C4, Canada; Department of Radiation Oncology, University of Toronto, 149 College Street - Stewart Building Suite 504, Toronto, Ontario, M5T 1P5, Canada.
| | - J Winter
- Radiation Medicine Program, Princess Margaret Cancer Centre, 610 University Avenue, Toronto, Ontario, M5G 2M9, Canada; Techna Insitute, University Health Network, 190 Elizabeth St, Toronto, Ontario, M5G 2C4, Canada; Department of Radiation Oncology, University of Toronto, 149 College Street - Stewart Building Suite 504, Toronto, Ontario, M5T 1P5, Canada.
| | - A Khalifa
- Techna Insitute, University Health Network, 190 Elizabeth St, Toronto, Ontario, M5G 2C4, Canada; Department of Medical Biophysics, University of Toronto, Princess Maragret Cancer Research Tower, MaRS Centre, 101 College Street, Room 15-701, Toronto, Ontario, M5G 1L7, Canada.
| | - G Tsui
- Radiation Medicine Program, Princess Margaret Cancer Centre, 610 University Avenue, Toronto, Ontario, M5G 2M9, Canada.
| | - A Berlin
- Radiation Medicine Program, Princess Margaret Cancer Centre, 610 University Avenue, Toronto, Ontario, M5G 2M9, Canada; Techna Insitute, University Health Network, 190 Elizabeth St, Toronto, Ontario, M5G 2C4, Canada; Department of Radiation Oncology, University of Toronto, 149 College Street - Stewart Building Suite 504, Toronto, Ontario, M5T 1P5, Canada.
| | - T G Purdie
- Radiation Medicine Program, Princess Margaret Cancer Centre, 610 University Avenue, Toronto, Ontario, M5G 2M9, Canada; Techna Insitute, University Health Network, 190 Elizabeth St, Toronto, Ontario, M5G 2C4, Canada; Department of Radiation Oncology, University of Toronto, 149 College Street - Stewart Building Suite 504, Toronto, Ontario, M5T 1P5, Canada; Department of Medical Biophysics, University of Toronto, Princess Maragret Cancer Research Tower, MaRS Centre, 101 College Street, Room 15-701, Toronto, Ontario, M5G 1L7, Canada.
| |
Collapse
|
5
|
Liu X, Chen X, Chen D, Liu Y, Quan H, Gao L, Yan L, Dai J, Men K. A patient-specific auto-planning method for MRI-guided adaptive radiotherapy in prostate cancer. Radiother Oncol 2024; 200:110525. [PMID: 39245067 DOI: 10.1016/j.radonc.2024.110525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 08/29/2024] [Accepted: 09/03/2024] [Indexed: 09/10/2024]
Abstract
BACKGROUND AND PURPOSE Fast and automated generation of treatment plans is desirable for magnetic resonance imaging (MRI)-guided adaptive radiotherapy (MRIgART). This study proposed a novel patient-specific auto-planning method and validated its feasibility in improving the existing online planning workflow. MATERIALS AND METHODS Data from 40 patients with prostate cancer were collected retrospectively. A patient-specific auto-planning method was proposed to generate adaptive treatment plans. First, a population dose-prediction model (M0) was trained using data from previous patients. Second, a patient-specific model (Mps) was created for each new patient by fine-tuning M0 with the patient's data. Finally, an auto plan was optimized using the parameters derived from the predicted dose distribution by Mps. The auto plans were compared with manual plans in terms of plan quality, efficiency, dosimetric verification, and clinical evaluation. RESULTS The auto plans improved target coverage, reduced irradiation to the rectum, and provided comparable protection to other organs-at-risk. Target coverage for the planning target volume (+0.61 %, P = 0.023) and clinical target volume 4000 (+1.60 %, P < 0.001) increased. V2900cGy (-1.06 %, P = 0.004) and V1810cGy (-2.49 %, P < 0.001) to the rectal wall and V1810cGy (-2.82 %, P = 0.012) to the rectum were significantly reduced. The auto plans required less planning time (-3.92 min, P = 0.001), monitor units (-46.48, P = 0.003), and delivery time (-0.26 min, P = 0.004), and their gamma pass rates (3 %/2 mm) were higher (+0.47 %, P = 0.014). CONCLUSION The proposed patient-specific auto-planning method demonstrated a robust level of automation and was able to generate high-quality treatment plans in less time for MRIgART in prostate cancer.
Collapse
Affiliation(s)
- Xiaonan Liu
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China; School of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - Xinyuan Chen
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Deqi Chen
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Yuxiang Liu
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Hong Quan
- School of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - Linrui Gao
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Lingling Yan
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Jianrong Dai
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China.
| | - Kuo Men
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China.
| |
Collapse
|
6
|
Ong W, Lee A, Tan WC, Fong KTD, Lai DD, Tan YL, Low XZ, Ge S, Makmur A, Ong SJ, Ting YH, Tan JH, Kumar N, Hallinan JTPD. Oncologic Applications of Artificial Intelligence and Deep Learning Methods in CT Spine Imaging-A Systematic Review. Cancers (Basel) 2024; 16:2988. [PMID: 39272846 PMCID: PMC11394591 DOI: 10.3390/cancers16172988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/14/2024] [Accepted: 08/26/2024] [Indexed: 09/15/2024] Open
Abstract
In spinal oncology, integrating deep learning with computed tomography (CT) imaging has shown promise in enhancing diagnostic accuracy, treatment planning, and patient outcomes. This systematic review synthesizes evidence on artificial intelligence (AI) applications in CT imaging for spinal tumors. A PRISMA-guided search identified 33 studies: 12 (36.4%) focused on detecting spinal malignancies, 11 (33.3%) on classification, 6 (18.2%) on prognostication, 3 (9.1%) on treatment planning, and 1 (3.0%) on both detection and classification. Of the classification studies, 7 (21.2%) used machine learning to distinguish between benign and malignant lesions, 3 (9.1%) evaluated tumor stage or grade, and 2 (6.1%) employed radiomics for biomarker classification. Prognostic studies included three (9.1%) that predicted complications such as pathological fractures and three (9.1%) that predicted treatment outcomes. AI's potential for improving workflow efficiency, aiding decision-making, and reducing complications is discussed, along with its limitations in generalizability, interpretability, and clinical integration. Future directions for AI in spinal oncology are also explored. In conclusion, while AI technologies in CT imaging are promising, further research is necessary to validate their clinical effectiveness and optimize their integration into routine practice.
Collapse
Affiliation(s)
- Wilson Ong
- Department of Diagnostic Imaging, National University Hospital, 5 Lower Kent Ridge Rd, Singapore 119074, Singapore
| | - Aric Lee
- Department of Diagnostic Imaging, National University Hospital, 5 Lower Kent Ridge Rd, Singapore 119074, Singapore
| | - Wei Chuan Tan
- Department of Diagnostic Imaging, National University Hospital, 5 Lower Kent Ridge Rd, Singapore 119074, Singapore
| | - Kuan Ting Dominic Fong
- Department of Diagnostic Imaging, National University Hospital, 5 Lower Kent Ridge Rd, Singapore 119074, Singapore
| | - Daoyong David Lai
- Department of Diagnostic Imaging, National University Hospital, 5 Lower Kent Ridge Rd, Singapore 119074, Singapore
| | - Yi Liang Tan
- Department of Diagnostic Imaging, National University Hospital, 5 Lower Kent Ridge Rd, Singapore 119074, Singapore
| | - Xi Zhen Low
- Department of Diagnostic Imaging, National University Hospital, 5 Lower Kent Ridge Rd, Singapore 119074, Singapore
- Department of Diagnostic Radiology, Yong Loo Lin School of Medicine, National University of Singapore, 10 Medical Drive, Singapore 117597, Singapore
| | - Shuliang Ge
- Department of Diagnostic Imaging, National University Hospital, 5 Lower Kent Ridge Rd, Singapore 119074, Singapore
- Department of Diagnostic Radiology, Yong Loo Lin School of Medicine, National University of Singapore, 10 Medical Drive, Singapore 117597, Singapore
| | - Andrew Makmur
- Department of Diagnostic Imaging, National University Hospital, 5 Lower Kent Ridge Rd, Singapore 119074, Singapore
- Department of Diagnostic Radiology, Yong Loo Lin School of Medicine, National University of Singapore, 10 Medical Drive, Singapore 117597, Singapore
| | - Shao Jin Ong
- Department of Diagnostic Imaging, National University Hospital, 5 Lower Kent Ridge Rd, Singapore 119074, Singapore
- Department of Diagnostic Radiology, Yong Loo Lin School of Medicine, National University of Singapore, 10 Medical Drive, Singapore 117597, Singapore
| | - Yong Han Ting
- Department of Diagnostic Imaging, National University Hospital, 5 Lower Kent Ridge Rd, Singapore 119074, Singapore
- Department of Diagnostic Radiology, Yong Loo Lin School of Medicine, National University of Singapore, 10 Medical Drive, Singapore 117597, Singapore
| | - Jiong Hao Tan
- National University Spine Institute, Department of Orthopaedic Surgery, National University Health System, 1E, Lower Kent Ridge Road, Singapore 119228, Singapore
| | - Naresh Kumar
- National University Spine Institute, Department of Orthopaedic Surgery, National University Health System, 1E, Lower Kent Ridge Road, Singapore 119228, Singapore
| | - James Thomas Patrick Decourcy Hallinan
- Department of Diagnostic Imaging, National University Hospital, 5 Lower Kent Ridge Rd, Singapore 119074, Singapore
- Department of Diagnostic Radiology, Yong Loo Lin School of Medicine, National University of Singapore, 10 Medical Drive, Singapore 117597, Singapore
| |
Collapse
|
7
|
Cobanaj M, Corti C, Dee EC, McCullum L, Boldrini L, Schlam I, Tolaney SM, Celi LA, Curigliano G, Criscitiello C. Advancing equitable and personalized cancer care: Novel applications and priorities of artificial intelligence for fairness and inclusivity in the patient care workflow. Eur J Cancer 2024; 198:113504. [PMID: 38141549 PMCID: PMC11362966 DOI: 10.1016/j.ejca.2023.113504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 12/13/2023] [Indexed: 12/25/2023]
Abstract
Patient care workflows are highly multimodal and intertwined: the intersection of data outputs provided from different disciplines and in different formats remains one of the main challenges of modern oncology. Artificial Intelligence (AI) has the potential to revolutionize the current clinical practice of oncology owing to advancements in digitalization, database expansion, computational technologies, and algorithmic innovations that facilitate discernment of complex relationships in multimodal data. Within oncology, radiation therapy (RT) represents an increasingly complex working procedure, involving many labor-intensive and operator-dependent tasks. In this context, AI has gained momentum as a powerful tool to standardize treatment performance and reduce inter-observer variability in a time-efficient manner. This review explores the hurdles associated with the development, implementation, and maintenance of AI platforms and highlights current measures in place to address them. In examining AI's role in oncology workflows, we underscore that a thorough and critical consideration of these challenges is the only way to ensure equitable and unbiased care delivery, ultimately serving patients' survival and quality of life.
Collapse
Affiliation(s)
- Marisa Cobanaj
- National Center for Radiation Research in Oncology, OncoRay, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Chiara Corti
- Breast Oncology Program, Dana-Farber Brigham Cancer Center, Boston, MA, USA; Harvard Medical School, Boston, MA, USA; Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology, IRCCS, Milan, Italy; Department of Oncology and Hematology-Oncology (DIPO), University of Milan, Milan, Italy.
| | - Edward C Dee
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Lucas McCullum
- Department of Radiation Oncology, MD Anderson Cancer Center, Houston, TX, USA
| | - Laura Boldrini
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology, IRCCS, Milan, Italy; Department of Oncology and Hematology-Oncology (DIPO), University of Milan, Milan, Italy
| | - Ilana Schlam
- Department of Hematology and Oncology, Tufts Medical Center, Boston, MA, USA; Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Sara M Tolaney
- Breast Oncology Program, Dana-Farber Brigham Cancer Center, Boston, MA, USA; Harvard Medical School, Boston, MA, USA; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Leo A Celi
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA; Laboratory for Computational Physiology, Massachusetts Institute of Technology, Cambridge, MA, USA; Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Giuseppe Curigliano
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology, IRCCS, Milan, Italy; Department of Oncology and Hematology-Oncology (DIPO), University of Milan, Milan, Italy
| | - Carmen Criscitiello
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology, IRCCS, Milan, Italy; Department of Oncology and Hematology-Oncology (DIPO), University of Milan, Milan, Italy
| |
Collapse
|
8
|
Abstract
Magnetic resonance imaging-guided radiation therapy (MRIgRT) has improved soft tissue contrast over computed tomography (CT) based image-guided RT. Superior visualization of the target and surrounding radiosensitive structures has the potential to improve oncological outcomes partly due to safer dose-escalation and adaptive planning. In this review, we highlight the workflow of adaptive MRIgRT planning, which includes simulation imaging, daily MRI, identifying isocenter shifts, contouring, plan optimization, quality control, and delivery. Increased utilization of MRIgRT will depend on addressing technical limitations of this technology, while addressing treatment efficacy, cost-effectiveness, and workflow training.
Collapse
Affiliation(s)
- Cecil M Benitez
- Department of Radiation Oncology, UCLA Medical Center, Los Angeles, CA
| | - Michael D Chuong
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida; Miami, FL
| | - Luise A Künzel
- National Center for Tumor Diseases (NCT), Dresden; German Cancer Research Center (DKFZ), Heidelberg; Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden; Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany; Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.; OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden Rossendorf, Dresden, Germany
| | - Daniela Thorwarth
- Department of Radiation Oncology, Section for Biomedical Physics, University of Tübingen, Tübingen, Germany..
| |
Collapse
|
9
|
Rusu DN, Cunningham JM, Arch JV, Chetty IJ, Parikh PJ, Dolan JL. Impact of intrafraction motion in pancreatic cancer treatments with MR-guided adaptive radiation therapy. Front Oncol 2023; 13:1298099. [PMID: 38162503 PMCID: PMC10756668 DOI: 10.3389/fonc.2023.1298099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 11/27/2023] [Indexed: 01/03/2024] Open
Abstract
Purpose The total time of radiation treatment delivery for pancreatic cancer patients with daily online adaptive radiation therapy (ART) on an MR-Linac can range from 50 to 90 min. During this period, the target and normal tissues undergo changes due to respiration and physiologic organ motion. We evaluated the dosimetric impact of the intrafraction physiological organ changes. Methods Ten locally advanced pancreatic cancer patients were treated with 50 Gy in five fractions with intensity-modulated respiratory-gated radiation therapy on a 0.35-T MR-Linac. Patients received both pre- and post-treatment volumetric MRIs for each fraction. Gastrointestinal organs at risk (GI-OARs) were delineated on the pre-treatment MRI during the online ART process and retrospectively on the post-treatment MRI. The treated dose distribution for each adaptive plan was assessed on the post-treatment anatomy. Prescribed dose volume histogram metrics for the scheduled plan on the pre-treatment anatomy, the adapted plan on the pre-treatment anatomy, and the adapted plan on post-treatment anatomy were compared to the OAR-defined criteria for adaptation: the volume of the GI-OAR receiving greater than 33 Gy (V33Gy) should be ≤1 cubic centimeter. Results Across the 50 adapted plans for the 10 patients studied, 70% were adapted to meet the duodenum constraint, 74% for the stomach, 12% for the colon, and 48% for the small bowel. Owing to intrafraction organ motion, at the time of post-treatment imaging, the adaptive criteria were exceeded for the duodenum in 62% of fractions, the stomach in 36%, the colon in 10%, and the small bowel in 48%. Compared to the scheduled plan, the post-treatment plans showed a decrease in the V33Gy, demonstrating the benefit of plan adaptation for 66% of the fractions for the duodenum, 95% for the stomach, 100% for the colon, and 79% for the small bowel. Conclusion Post-treatment images demonstrated that over the course of the adaptive plan generation and delivery, the GI-OARs moved from their isotoxic low-dose region and nearer to the dose-escalated high-dose region, exceeding dose-volume constraints. Intrafraction motion can have a significant dosimetric impact; therefore, measures to mitigate this motion are needed. Despite consistent intrafraction motion, plan adaptation still provides a dosimetric benefit.
Collapse
Affiliation(s)
- Doris N. Rusu
- Department of Radiation Oncology, Wayne State University, Detroit, MI, United States
- Department of Radiation Oncology, Henry Ford Health System, Detroit, MI, United States
| | - Justine M. Cunningham
- Department of Radiation Oncology, Henry Ford Health System, Detroit, MI, United States
| | - Jacob V. Arch
- Department of Radiation Oncology, Henry Ford Health System, Detroit, MI, United States
| | - Indrin J. Chetty
- Department of Radiation Oncology, Henry Ford Health System, Detroit, MI, United States
- Department of Radiation Oncology, Cedars Sinai Medical Center, Los Angeles, CA, United States
| | - Parag J. Parikh
- Department of Radiation Oncology, Henry Ford Health System, Detroit, MI, United States
| | - Jennifer L. Dolan
- Department of Radiation Oncology, Henry Ford Health System, Detroit, MI, United States
| |
Collapse
|