1
|
Adamczyk K, Zuzda K, Jankowski M, Świerczyński R, Chudziński K, Czapski B, Szułdrzyński K. Effects of Opioids in Cancer Pain: An Interplay Among Genetic Factors, Immune Response, and Clinical Outcomes-A Scoping Review. Cancers (Basel) 2025; 17:863. [PMID: 40075716 PMCID: PMC11899605 DOI: 10.3390/cancers17050863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 02/10/2025] [Accepted: 02/26/2025] [Indexed: 03/14/2025] Open
Abstract
Background/Objectives: Managing cancer-related pain presents complex challenges involving the interplay between analgesic efficacy, immune system responses, and patient outcomes. Methods: Following the Scale for the Assessment of Narrative Review Articles (SANRA) criteria, we conducted a comprehensive literature search in Medline, Scopus, and Web of Science databases. The review synthesized evidence regarding opioid pain management modalities, genetic variations affecting pain perception, and associated drug metabolism. Results: The literature reveals significant associations between opioid administration and immune function, with potential implications for cancer progression and survival. Genetic polymorphisms in key genes influence individual responses to pain opioid metabolism and, finally, pain management strategies. The immunosuppressive effects of opioids emerge as a critical consideration in cancer pain management, potentially influencing disease progression and treatment outcomes. Conclusions: Genetic variants influence analgesic efficacy, while the interaction between opioid-induced immunosuppression and genetic factors impacts both pain control and survival outcomes. This emphasizes the need for personalized treatment approaches considering individual genetic profiles and immune function.
Collapse
Affiliation(s)
- Kamil Adamczyk
- Department of Anesthesiology and Intensive Care, National Medical Institute of the Ministry of the Interior and Administration, 02-507 Warsaw, Poland
| | - Konrad Zuzda
- Department of Anesthesiology and Intensive Care, National Medical Institute of the Ministry of the Interior and Administration, 02-507 Warsaw, Poland
| | - Miłosz Jankowski
- Department of Anesthesiology and Intensive Care, National Medical Institute of the Ministry of the Interior and Administration, 02-507 Warsaw, Poland
| | - Rafał Świerczyński
- Department of Anesthesiology and Intensive Care, National Medical Institute of the Ministry of the Interior and Administration, 02-507 Warsaw, Poland
| | - Kamil Chudziński
- Department of Anesthesiology and Intensive Care, National Medical Institute of the Ministry of the Interior and Administration, 02-507 Warsaw, Poland
| | - Bartosz Czapski
- Department of Neurosurgery, National Medical Institute of the Ministry of the Interior and Administration, 02-507 Warsaw, Poland
| | - Konstanty Szułdrzyński
- Department of Anesthesiology and Intensive Care, National Medical Institute of the Ministry of the Interior and Administration, 02-507 Warsaw, Poland
| |
Collapse
|
2
|
Sloan G, Donatien P, Privitera R, Shillo P, Caunt S, Selvarajah D, Anand P, Tesfaye S. Vascular and nerve biomarkers in thigh skin biopsies differentiate painful from painless diabetic peripheral neuropathy. FRONTIERS IN PAIN RESEARCH 2024; 5:1485420. [PMID: 39512388 PMCID: PMC11543357 DOI: 10.3389/fpain.2024.1485420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 10/08/2024] [Indexed: 11/15/2024] Open
Abstract
Background Identifying distinct mechanisms and biomarkers for painful diabetic peripheral neuropathy (DPN) is required for advancing the treatment of this major global unmet clinical need. We previously provided evidence in calf skin biopsies that disproportion between reduced sensory small nerve fibers and increased blood vessels may distinguish painful from non-painful DPN. We proposed that overexposure of the reduced nerve fibers in DPN to increased hypoxemia-induced vasculature and related algogenic factors, e.g., nerve growth factor (NGF), leads to neuropathic pain. To further investigate this proposed mechanism, we have now studied more proximal thigh skin biopsies, to see if the same disproportion between increased vasculature and decreased nerve fibers generally differentiates painful DPN from painless DPN. Methods A total of 28 subjects with type 2 diabetes (T2DM) and 13 healthy volunteers (HV) underwent detailed clinical and neurophysiological assessments, based on the neuropathy composite score of the lower limbs [NIS(LL)] plus 7 tests. T2DM subjects were subsequently divided into three groups: painful DPN (n = 15), painless DPN (n = 7), and no DPN (n = 6). All subjects underwent skin punch biopsy from the upper lateral thigh 20 cm below the anterior iliac spine. Results Skin biopsies showed decreased PGP 9.5-positive intraepidermal nerve fiber (IENF) density in both painful DPN (p < 0.0001) and painless DPN (p = 0.001). Vascular marker von Willebrand Factor (vWF) density was markedly increased in painful DPN vs. other groups, including painless DPN (p = 0.01). There was a resulting significant decrease in the ratio of intraepidermal nerve fiber density to vasculature and PGP9.5 to vWF, in painful DPN vs. painless DPN (p = 0.05). These results were similar in pattern to those observed in these HV and T2DM groups previously in distal calf biopsies; however, the increase in vWF was much higher and nerve fiber density much lower in the calf than thigh for painful DPN. Thigh skin vWF density was significantly correlated with several metabolic (waist/hip ratio, HbA1c), clinical (e.g., pain score), and neurophysiological measures. Conclusion This study supports our proposal that increased dermal vasculature, and its disproportionate ratio to reduced nociceptors, may help differentiate painful DPN from painless DPN. This disproportion is greater in the distal calf than the proximal thigh skin; hence, neuropathic pain in DPN is length-dependent and first localized to the distal lower limbs, mainly feet.
Collapse
Affiliation(s)
- Gordon Sloan
- Division of Clinical Medicine, University of Sheffield, Sheffield, United Kingdom
- Diabetes Research Unit, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, United Kingdom
| | - Philippe Donatien
- Peripheral Neuropathy Unit, Imperial College London, Hammersmith Hospital, London, United Kingdom
| | - Rosario Privitera
- Peripheral Neuropathy Unit, Imperial College London, Hammersmith Hospital, London, United Kingdom
| | - Pallai Shillo
- Diabetes Research Unit, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, United Kingdom
| | - Sharon Caunt
- Diabetes Research Unit, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, United Kingdom
| | - Dinesh Selvarajah
- Division of Clinical Medicine, University of Sheffield, Sheffield, United Kingdom
- Diabetes Research Unit, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, United Kingdom
| | - Praveen Anand
- Peripheral Neuropathy Unit, Imperial College London, Hammersmith Hospital, London, United Kingdom
| | - Solomon Tesfaye
- Diabetes Research Unit, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, United Kingdom
| |
Collapse
|
3
|
Shillo P, Sloan G, Selvarajah D, Greig M, Gandhi R, Anand P, Edden RA, Wilkinson ID, Tesfaye S. Reduced Thalamic γ-Aminobutyric Acid (GABA) in Painless but Not Painful Diabetic Peripheral Neuropathy. Diabetes 2024; 73:1317-1324. [PMID: 38776434 DOI: 10.2337/db23-0921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 05/20/2024] [Indexed: 05/25/2024]
Abstract
Alterations in the structure, function, and microcirculation of the thalamus, a key brain region involved in pain pathways, have previously been demonstrated in patients with painless and painful diabetic peripheral neuropathy (DPN). However, thalamic neurotransmitter levels including γ-aminobutyric acid (GABA) (inhibitory neurotransmitter) and glutamate (excitatory neurotransmitter) in different DPN phenotypes are not known. We performed a magnetic resonance spectroscopy study and quantified GABA and glutamate levels within the thalamus, in a carefully characterized cohort of participants with painless and painful DPN. Participants with DPN (painful and painless combined) had a significantly lower GABA:H2O ratio compared with those without DPN (healthy volunteers [HV] and participants with diabetes without DPN [no DPN]). Participants with painless DPN had the lowest GABA:H2O ratio, which reached significance compared with HV and no DPN, but not painful DPN. There was no difference in GABA:H2O in painful DPN compared with all other groups. A significant correlation with GABA:H2O and neuropathy severity was also seen. This study demonstrates that lower levels of thalamic GABA in participants with painless DPN may reflect neuroplasticity due to reduced afferent pain impulses, whereas partially preserved levels of GABA in painful DPN may indicate that central GABAergic pathways are involved in the mechanisms of neuropathic pain in diabetes. ARTICLE HIGHLIGHTS
Collapse
Affiliation(s)
- Pallai Shillo
- Diabetes Research Unit, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, U.K
| | - Gordon Sloan
- Diabetes Research Unit, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, U.K
- Division of Clinical Medicine, University of Sheffield, Sheffield, U.K
| | - Dinesh Selvarajah
- Division of Clinical Medicine, University of Sheffield, Sheffield, U.K
| | - Marni Greig
- Diabetes Research Unit, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, U.K
| | - Rajiv Gandhi
- Diabetes Research Unit, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, U.K
| | - Praveen Anand
- Peripheral Neuropathy Unit, Imperial College London, London, U.K
| | - Richard A Edden
- Department of Neuroradiology, Johns Hopkins University, Baltimore, MD
| | - Iain D Wilkinson
- Academic Unit of Radiology, University of Sheffield, Sheffield, U.K
| | - Solomon Tesfaye
- Diabetes Research Unit, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, U.K
| |
Collapse
|
4
|
Chantelau EA, Schröer O. Trial of a Trivial Quantitative Heat-Pain Stimulus for Detecting Severe Loss of Nociception. J Diabetes Sci Technol 2024; 18:930-936. [PMID: 36546575 PMCID: PMC11307220 DOI: 10.1177/19322968221144328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND Loss of nociception (LON) at the feet of persons with diabetes mellitus develops gradually over years and remains asymptomatic until the first painless diabetic foot ulceration (DFU). Severe LON with pain insensitivity can be diagnosed with a mechanical (pinprick) pain stimulus of 512-mN force. A comparable "suprathreshold" heat-pain stimulus may have the same potential. OBJECTIVE A six-second, 51°C heat-pain stimulus delivered on a 38.5-mm² spot by a commercial medical device (bite away®, to treat insect bites) was explored in a prospective cross-sectional diagnostic accuracy study to detect DFU-related LON. METHODS Seventy-two participants were studied: 12 with and 30 without diabetic neuropathy according to the conventional criteria, and 30 patients with a history of painless DFU (indicative of end-stage LON, reference standard). The feet were stimulated at the plantar and dorsal sides. A palmar surface was stimulated for control purposes. Participants scored stimulated pain intensity 0 to 10 on a numerical rating scale. RESULTS At hands, pain intensity was rated six on average by all participants. Persons without neuropathy scored 7 (0-10), median (range), at the plantar side and 8.5 (2-10) at the dorsal side of the foot, while those with DFU scored 0 (0-8) and 0 (0-10), respectively. A pain response of 0 at the foot dorsum detected DFU-related LON with a sensitivity of 65% (specificity, 100%; positive and negative predictive values, 100% and 96%, respectively). CONCLUSIONS Due to its high specificity, the test seems advantageous for diagnostic purposes, complementary to current screening tests.
Collapse
Affiliation(s)
| | - Oliver Schröer
- Outpatient Diabetic Foot Clinic, St. Martinus-Krankenhaus Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
5
|
Aziz N, Dash B, Wal P, Kumari P, Joshi P, Wal A. New Horizons in Diabetic Neuropathies: An Updated Review on their Pathology, Diagnosis, Mechanism, Screening Techniques, Pharmacological, and Future Approaches. Curr Diabetes Rev 2024; 20:e201023222416. [PMID: 37867268 DOI: 10.2174/0115733998242299231011181615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 07/16/2023] [Accepted: 08/25/2023] [Indexed: 10/24/2023]
Abstract
BACKGROUND One of the largest problems for global public health is diabetes mellitus (DM) and its micro and macrovascular consequences. Although prevention, diagnosis, and treatment have generally improved, its incidence is predicted to keep rising over the coming years. Due to the intricacy of the molecular mechanisms, which include inflammation, oxidative stress, and angiogenesis, among others, discovering treatments to stop or slow the course of diabetic complications is still a current unmet need. METHODS The pathogenesis and development of diabetic neuropathies may be explained by a wide variety of molecular pathways, hexosamine pathways, such as MAPK pathway, PARP pathway, oxidative stress pathway polyol (sorbitol) pathway, cyclooxygenase pathway, and lipoxygenase pathway. Although diabetic neuropathies can be treated symptomatically, there are limited options for treating the underlying cause. RESULT Various pathways and screening models involved in diabetic neuropathies are discussed, along with their possible outcomes. Moreover, both medicinal and non-medical approaches to therapy are also explored. CONCLUSION This study highlights the probable involvement of several processes and pathways in the establishment of diabetic neuropathies and presents in-depth knowledge of new therapeutic approaches intended to stop, delay, or reverse different types of diabetic complications.
Collapse
Affiliation(s)
- Namra Aziz
- Pranveer Singh Institute of Technology (Pharmacy), Bhauti, Kanpur 209305, UP, India
| | - Biswajit Dash
- Department of Pharmaceutical Technology, School of Medical Sciences, ADAMAS University, Kolkata 700 126, West Bengal, India
| | - Pranay Wal
- Pranveer Singh Institute of Technology (Pharmacy), Bhauti, Kanpur 209305, UP, India
| | - Prachi Kumari
- Pranveer Singh Institute of Technology (Pharmacy), Bhauti, Kanpur 209305, UP, India
| | - Poonam Joshi
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun 248007, Uttarakhand, India
| | - Ankita Wal
- Pranveer Singh Institute of Technology (Pharmacy), Bhauti, Kanpur 209305, UP, India
| |
Collapse
|
6
|
Gnanamoorthy T, Paul J, Alagesan J, Harikrishnan N. Frequency of neuropathy symptoms in diabetic patients. SCRIPTA MEDICA 2024; 55:557-565. [DOI: 10.5937/scriptamed55-52812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025] Open
Abstract
Background/Aim: One of the most common consequences of diabetes mellitus is diabetic neuropathy, which is triggered on by nerve damage. The characteristic of neuropathies is a progressive loss of nerve fibre function resulting in numbness, tingling, aching, burning and throbbing sensations. In addition, it adds to the risk of falls, joint deformities, muscular atrophy and foot ulcers. The study aimed to analyse the incidence of motor and sensory dysfunctions in patients with diabetes mellitus in Chennai, India. Methods: This was an observational study of analytic type. Clinically diagnosed diabetic patients between the age of 45 to 60 years were considered for this study. Patients who consented to participate in this study, with a history of diabetes mellitus spanning more than ten years were chosen. Patients found to have other causes of neuropathy, diabetic ulceration, lactating (or) pregnant women and non-cooperative patients were excluded from this study. All the subjects enrolled in the study at the mentioned centres were given the Michigan neuropathy screening instrument (MNSI). Total score of MNSI was calculated and interpreted for the prevalence. Results: A total of 246 subjects have participated in this study out of which 54 % were male and 46 % were female, 127 (51 %) had diabetic peripheral neuropathy, 41 (17 %) had partial diabetic neuropathy and 78 (32 %) had no symptoms of diabetic neuropathy. Conclusion: Through the questionnaire and physical examination, the current study demonstrated a high prevalence of motor and sensory impairments as well as diabetic neuropathy symptoms in the diabetic population.
Collapse
|
7
|
Garcia-Mesa Y, Cabo R, González-Gay M, García-Piqueras J, Viña E, Martínez I, Cobo T, García-Suárez O. Relationship of PIEZO1 and PIEZO2 vascular expression with diabetic neuropathy. Front Physiol 2023; 14:1243966. [PMID: 38054043 PMCID: PMC10694834 DOI: 10.3389/fphys.2023.1243966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 10/27/2023] [Indexed: 12/07/2023] Open
Abstract
Introduction: Diabetic distal symmetric polyneuropathy (DDSP) is the most prevalent form of diabetic peripheral neuropathy, and 25% of patients develop pain in their toes. DDSP is associated with increased cutaneous microvessel density (MVD), reduced skin blood flow, endothelial dysfunction, and impaired fluid filtration with vasodilation. The Piezo family of mechanosensitive channels is known to be involved in the control of vascular caliber by converting mechanical force into intracellular signals. Furthermore, Piezo2 is particularly involved in peripheral pain mechanisms of DDSP patients. To date, very little is known about the number, structure, and PIEZO expression in cutaneous blood vessels (BVs) of individuals with DDSP and their relation with pain and time span of diabetes. Methods and results: We studied microvessels using endothelial markers (CD34 and CD31) and smooth cell marker (α-SMA) by indirect immunohistochemical assay in sections of the glabrous skin of the toes from patients and controls. MVD was assessed through CD34 and CD31 immunoreaction. MVD determined by CD34 is higher in short-term DDSP patients (less than 15 years of evolution), regardless of pain. However, long-term DDSP patients only had increased BV density in the painful group for CD31. BVs of patients with DDSP showed structural disorganization and loss of shape. The BVs affected by painful DDSP underwent the most dramatic structural changes, showing rupture, leakage, and abundance of material that occluded the BV lumen. Moreover, BVs of DDSP patients displayed a Piezo1 slight immunoreaction, whereas painful DDSP patients showed an increase in Piezo2 immunoreaction. Discussion: These results suggest that alterations in the number, structure, and immunohistochemical profile of specific BVs can explain the vascular impairment associated with painful DDSP, as well as the temporal span of diabetes. Finally, this study points out a possible correlation between increased vascular Piezo2 immunostaining and pain and decreased vascular Piezo1 immunostaining and the development of vasodilation deficiency.
Collapse
Affiliation(s)
- Yolanda Garcia-Mesa
- Grupo SINPOS, Department of Cell Biology and Morphology, University of Oviedo, Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias, ISPA, Oviedo, Spain
| | - Roberto Cabo
- Grupo SINPOS, Department of Cell Biology and Morphology, University of Oviedo, Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias, ISPA, Oviedo, Spain
| | - Mario González-Gay
- Instituto de Investigación Sanitaria del Principado de Asturias, ISPA, Oviedo, Spain
- Sercivio de Angiología y Cirugía Vascular, Fundación Hospital de Jove, Gijón, Spain
| | - Jorge García-Piqueras
- Instituto de Investigación Sanitaria del Principado de Asturias, ISPA, Oviedo, Spain
- Servicio de Anatomía, Histología y Neurociencias, Universidad Autonoma de Madrid, Spain
| | - Eliseo Viña
- Grupo SINPOS, Department of Cell Biology and Morphology, University of Oviedo, Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias, ISPA, Oviedo, Spain
- Servicio de Cardiología, Unidad de Hemodinámica y Cardiología Intervencionista, Hospital de Cabueñes, Gijón, Spain
| | - Irene Martínez
- Instituto de Investigación Sanitaria del Principado de Asturias, ISPA, Oviedo, Spain
- Servicio de Cirugía Plástica y Reparadora, Fundación Hospital de Jove, Gijón, Spain
| | - Teresa Cobo
- Grupo SINPOS, Department of Cell Biology and Morphology, University of Oviedo, Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias, ISPA, Oviedo, Spain
- Departamento de Cirugía y Especialidades Médico-Quirúrgicas, Universidad de Oviedo, Oviedo, Spain
- Instituto Asturiano de Odontología S.L, Oviedo, Spain
| | - Olivia García-Suárez
- Grupo SINPOS, Department of Cell Biology and Morphology, University of Oviedo, Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias, ISPA, Oviedo, Spain
| |
Collapse
|
8
|
Sen CK, Roy S, Khanna S. Diabetic Peripheral Neuropathy Associated with Foot Ulcer: One of a Kind. Antioxid Redox Signal 2023. [PMID: 35850520 DOI: 10.1089/ars.2022.0093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Significance: Diabetic peripheral neuropathy (DPN) associated with a diabetic foot ulcer (DFU) is likely to be complicated with critical factors such as biofilm infection and compromised skin barrier function of the diabetic skin. Repaired skin with a history of biofilm infection is known to be compromised in barrier function. Loss of barrier function is also observed in the oxidative stress affected diabetic and aged skin. Recent Advances: Loss of barrier function makes the skin prone to biofilm infection and cellulitis, which contributes to chronic inflammation and vasculopathy. Hyperglycemia favors biofilm formation as glucose lowering led to reduction in biofilm development. While vasculopathy limits oxygen supply, the O2 cost of inflammation is high increasing hypoxia severity. Critical Issues: The host nervous system can be inhabited by bacteria. Because electrical impulses are a part of microbial physiology, polymicrobial colonization of the host's neural circuit is likely to influence transmission of action potential. The identification of perineural apatite in diabetic patients with peripheral neuropathy suggests bacterial involvement. DPN starts in both feet at the same time. Future Directions: Pair-matched studies of DPN in the foot affected with DFU (i.e., DFU-DPN) compared with DPN in the without ulcer, and intact skin barrier function, are likely to provide critical insight that would help inform effective care strategies. This review characterizes DFU-DPN from a translational science point of view presenting a new paradigm that recognizes the current literature in the context of factors that are unique to DFU-DPN.
Collapse
Affiliation(s)
- Chandan K Sen
- Indiana Center for Regenerative Medicine & Engineering, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Sashwati Roy
- Indiana Center for Regenerative Medicine & Engineering, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Savita Khanna
- Indiana Center for Regenerative Medicine & Engineering, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana, USA
| |
Collapse
|
9
|
Anand P, Privitera R, Donatien P, Fadavi H, Tesfaye S, Bravis V, Misra VP. Reversing painful and non-painful diabetic neuropathy with the capsaicin 8% patch: Clinical evidence for pain relief and restoration of function via nerve fiber regeneration. Front Neurol 2022; 13:998904. [PMID: 36388188 PMCID: PMC9643187 DOI: 10.3389/fneur.2022.998904] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 10/07/2022] [Indexed: 10/21/2023] Open
Abstract
Introduction Current oral treatments for pain in diabetic peripheral neuropathy (DPN) do not affect the progression of DPN i.e., "disease modification." We assessed whether Capsaicin 8% patch treatment can provide pain relief and also restore nerve density and function via nerve regeneration, in both painful (PDPN) and non-painful (NPDPN) diabetic peripheral neuropathy. Methods 50 participants with PDPN were randomized to receive Capsaicin 8% patch Qutenza with Standard of Care (SOC) (PDPN Q+SOC group), or SOC alone (PDPN SOC group). Pain symptoms were assessed with a diary (Numerical Pain Rating Scale, NRPS) and questionnaires. Investigations included quantitative sensory testing (QST) and distal calf skin biopsies, at baseline and 3 months after baseline visit; subsequent options were 3-monthly visits over 1 year. 25 participants with NPDPN had tests at baseline, and 3 months after all received Capsaicin 8% patch treatment. Results At 3 months after baseline, PDPN Q+SOC group had reduction in NPRS score (p = 0.0001), but not PDPN SOC group. Short-Form McGill Pain Questionnaire (SF-MPQ) showed significant reductions in scores for overall and other pain descriptors only in the PDPN Q+SOC group. Warm perception thresholds were significantly improved only in the PDPN Q+SOC group (p = 0.02), and correlated with reduction in SF-MPQ overall pain score (p = 0.04). NPDPN Q+SOC group did not report pain during the entire study. Density of intra-epidermal nerve fibers (IENF) with PGP9.5 was increased at 3 months in PDPN Q+SOC (p = 0.0002) and NPDPN Q+SOC (p = 0.002) groups, but not in the PDPN SOC group. Increased sub-epidermal nerve fibers (SENF) were observed with GAP43 (marker of regenerating nerve fibers) only in PDPN Q+SOC (p = 0.003) and NPDPN Q+SOC (p = 0.0005) groups. Pain relief in the PDPN Q+SOC group was correlated with the increased PGP9.5 IENF (p = 0.0008) and GAP43 (p = 0.004), whereas those with lack of pain relief showed no such increase; in some subjects pain relief and increased nerve fibers persisted over months. PGP9.5 IENF increase correlated with axon-reflex vasodilatation in a NPDPN Q+SOC subset (p = 0.006). Conclusions Capsaicin 8% patch can provide pain relief via nerve regeneration and restoration of function in DPN (disease modification). It may thereby potentially prevent diabetic foot complications, including ulcers.
Collapse
Affiliation(s)
- Praveen Anand
- Division of Neurology, Hammersmith Hospital, Imperial College London, London, United Kingdom
| | - Rosario Privitera
- Division of Neurology, Hammersmith Hospital, Imperial College London, London, United Kingdom
| | - Philippe Donatien
- Division of Neurology, Hammersmith Hospital, Imperial College London, London, United Kingdom
| | - Hassan Fadavi
- Division of Neurology, Hammersmith Hospital, Imperial College London, London, United Kingdom
| | - Solomon Tesfaye
- Diabetes Research Unit, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, United Kingdom
| | - Vassiliki Bravis
- Department of Endocrinology and Diabetes, St Mary's Hospital, Imperial College Healthcare NHS Trust, London, United Kingdom
| | - V. Peter Misra
- Division of Neurology, Hammersmith Hospital, Imperial College London, London, United Kingdom
| |
Collapse
|
10
|
Chakraborty A, Crescenzi R, Usman TA, Reyna AJ, Garza ME, Al-Ghadban S, Herbst KL, Donahue PMC, Rutkowski JM. Indications of Peripheral Pain, Dermal Hypersensitivity, and Neurogenic Inflammation in Patients with Lipedema. Int J Mol Sci 2022; 23:10313. [PMID: 36142221 PMCID: PMC9499469 DOI: 10.3390/ijms231810313] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/25/2022] [Accepted: 09/01/2022] [Indexed: 11/25/2022] Open
Abstract
Lipedema is a disease with abnormally increased adipose tissue deposition and distribution. Pain sensations have been described in the clinical evaluation of lipedema, but its etiology remains poorly understood. We hypothesized that pain sensitivity measurements and ex vivo quantitation of neuronal cell body distribution in the skin would be lipedema stage-dependent, and could, thus, serve to objectively characterize neuropathic pain in lipedema. The pain was assessed by questionnaire and peripheral cutaneous mechanical sensitization (von-Frey) in lipedema (n = 27) and control (n = 23) consenting female volunteers. Dermal biopsies from (n = 11) Stages 1-3 lipedema and control (n = 10) participants were characterized for neuronal cell body and nociceptive neuropeptide calcitonin gene-related peptide (CGRP) and nerve growth factor (NGF) distribution. Stage 2 or 3 lipedema participants responded positively to von Frey sensitization in the calf and thigh, and Stage 3 participants also responded in the arm. Lipedema abdominal skin displayed reduced Tuj-1+ neuronal cell body density, compared to healthy controls, while CGRP and NGF was significantly elevated in Stage 3 lipedema tissues. Together, dermal neuronal cell body loss is consistent with hyper-sensitization in patients with lipedema. Further study of neuropathic pain in lipedema may elucidate underlying disease mechanisms and inform lipedema clinical management and treatment impact.
Collapse
Affiliation(s)
- Adri Chakraborty
- Department of Medical Physiology, Texas A&M University School of Medicine, Bryan, TX 77807, USA
- Currently the Arthritis & Autoimmune Diseases Research Center, Boston University School of Medicine, Boston, MA 02118, USA
| | - Rachelle Crescenzi
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37232, USA
| | - Timaj A. Usman
- Department of Medical Physiology, Texas A&M University School of Medicine, Bryan, TX 77807, USA
| | - Andrea J. Reyna
- Department of Medical Physiology, Texas A&M University School of Medicine, Bryan, TX 77807, USA
| | - Maria E. Garza
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Sara Al-Ghadban
- Department of Microbiology, Immunology & Genetics, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | | | - Paula M. C. Donahue
- Physical Medicine and Rehabilitation, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Dayani Center for Health and Wellness, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Joseph M. Rutkowski
- Department of Medical Physiology, Texas A&M University School of Medicine, Bryan, TX 77807, USA
| |
Collapse
|