1
|
Nilsson S, Tokariev A, Vehviläinen T, Fellman V, Vanhatalo S, Norman E. Depression of cortical neuronal activity after a low-dose fentanyl in preterm infants. Acta Paediatr 2025; 114:109-115. [PMID: 39258825 PMCID: PMC11627449 DOI: 10.1111/apa.17411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 06/17/2024] [Accepted: 08/20/2024] [Indexed: 09/12/2024]
Abstract
AIM Opioids might be harmful to the developing brain and dosing accuracy is important. We aimed at investigating fentanyl effects on cortical activity in infants using computational re-analysis of bedside recorded EEG signals. METHODS Fifteen infants born at median 26.4 gestational weeks (range 23.3-34.1), with a birth weight 740 grams (530-1420) and postnatal age 7 days (5-11) received fentanyl 0.5 or 2 μg/kg intravenously before a skin-breaking procedure or tracheal intubation, respectively. Cortical activity was continuously recorded using amplitude-integrated electroencephalography (aEEG). Analyses using three computational EEG features representing cortical synchrony and signal power, were conducted five minutes pre- and 10 minutes post the drug administration. RESULTS Visual assessment of trends displayed from the EEG metrics did not indicate systematic changes. However, the magnitude of the changes in the parietal and right hemisphere signals after the dose was significantly correlated (ρ < -0.5, p < 0.05) to the EEG amplitude and frequency power level before drug administration. This effect started after 3-4 min. CONCLUSION Fentanyl, even in small doses, may affect cortical activity in the preterm brain. The effect is robustly related to the state of cortical activity prior to drug treatment, which must be taken into account when analysing the effects of sedative drugs.
Collapse
Affiliation(s)
- Sofie Nilsson
- Pediatrics, Department of Clinical Sciences LundLund University, Skane University HospitalLundSweden
| | - Anton Tokariev
- Department of Clinical Neurophysiology, BABA Center, New Children's HospitalHelsinki University Hospital and University of HelsinkiHelsinkiFinland
| | - Timo Vehviläinen
- Department of Clinical Neurophysiology, BABA Center, New Children's HospitalHelsinki University Hospital and University of HelsinkiHelsinkiFinland
| | - Vineta Fellman
- Pediatrics, Department of Clinical Sciences LundLund University, Skane University HospitalLundSweden
- Folkhälsan Research Center and Children's HospitalUniversity of HelsinkiHelsinkiFinland
| | - Sampsa Vanhatalo
- Department of Clinical Neurophysiology, BABA Center, New Children's HospitalHelsinki University Hospital and University of HelsinkiHelsinkiFinland
- Department of Physiology, ClinicumUniversity of HelsinkiHelsinkiFinland
| | - Elisabeth Norman
- Pediatrics, Department of Clinical Sciences LundLund University, Skane University HospitalLundSweden
| |
Collapse
|
2
|
Martini S, Thewissen L, Austin T, da Costa CS, de Boode WP, Dempsey E, Kooi E, Pellicer A, Rhee CJ, Riera J, Wolf M, Wong F. Near-infrared spectroscopy monitoring of neonatal cerebrovascular reactivity: where are we now? Pediatr Res 2024; 96:884-895. [PMID: 36997690 DOI: 10.1038/s41390-023-02574-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 02/09/2023] [Accepted: 02/17/2023] [Indexed: 06/19/2023]
Abstract
Cerebrovascular reactivity defines the ability of the cerebral vasculature to regulate its resistance in response to both local and systemic factors to ensure an adequate cerebral blood flow to meet the metabolic demands of the brain. The increasing adoption of near-infrared spectroscopy (NIRS) for non-invasive monitoring of cerebral oxygenation and perfusion allowed investigation of the mechanisms underlying cerebrovascular reactivity in the neonatal population, confirming important associations with pathological conditions including the development of brain injury and adverse neurodevelopmental outcomes. However, the current literature on neonatal cerebrovascular reactivity is mainly still based on small, observational studies and is characterised by methodological heterogeneity; this has hindered the routine application of NIRS-based monitoring of cerebrovascular reactivity to identify infants most at risk of brain injury. This review aims (1) to provide an updated review on neonatal cerebrovascular reactivity, assessed using NIRS; (2) to identify critical points that need to be addressed with targeted research; and (3) to propose feasibility trials in order to fill the current knowledge gaps and to possibly develop a preventive or curative approach for preterm brain injury. IMPACT: NIRS monitoring has been largely applied in neonatal research to assess cerebrovascular reactivity in response to blood pressure, PaCO2 and other biochemical or metabolic factors, providing novel insights into the pathophysiological mechanisms underlying cerebral blood flow regulation. Despite these insights, the current literature shows important pitfalls that would benefit to be addressed in a series of targeted trials, proposed in the present review, in order to translate the assessment of cerebrovascular reactivity into routine monitoring in neonatal clinical practice.
Collapse
Affiliation(s)
- Silvia Martini
- Neonatal Intensive Care Unit, IRCCS AOU S. Orsola, Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy.
| | | | - Topun Austin
- Neonatal Intensive Care Unit, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | | | - Willem P de Boode
- Department of Neonatology, Radboud University Medical Center, Radboud Institute for Health Sciences, Amalia Children's Hospital, Nijmegen, The Netherlands
| | - Eugene Dempsey
- Department of Paediatrics and Child Health, INFANT Centre, University College Cork, Cork, Ireland
| | - Elisabeth Kooi
- Division of Neonatology, Beatrix Children's Hospital, University Medical Center, University of Groningen, Groningen, The Netherlands
| | - Adelina Pellicer
- Department of Neonatology, La Paz University Hospital, Madrid, Spain
| | - Christopher J Rhee
- Section of Neonatology, Baylor College of Medicine, Texas Children's Hospital, Houston, TX, USA
| | - Joan Riera
- Department of Neonatology, La Paz University Hospital, Madrid, Spain
- Center for Biomedical Technology, Technical University, Madrid, Spain
| | - Martin Wolf
- Biomedical Optics Research Laboratory, Department of Neonatology, University Hospital Zurich, Zurich, Switzerland
| | - Flora Wong
- Monash Newborn, Monash Children's Hospital, Hudson Institute of Medical Research, Department of Paediatrics, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
3
|
Austin T. The development of neonatal neurointensive care. Pediatr Res 2024; 96:868-874. [PMID: 31852010 DOI: 10.1038/s41390-019-0729-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 12/06/2019] [Accepted: 12/09/2019] [Indexed: 01/06/2023]
Abstract
Brain injury remains one of the major unsolved problems in neonatal care, with survivors at high risk of lifelong neurodisability. It is unlikely that a single intervention can ameliorate neonatal brain injury, given the complex interaction between pathological processes, developmental trajectory, genetic susceptibility, and environmental influences. However, a coordinated, interdisciplinary approach to understand the root cause enables early detection, and diagnosis with enhanced clinical care offering the best chance of improving outcomes and facilitate new lines of neuroprotective treatments. Adult neurointensive care has existed as a speciality in its own right for over 20 years; however, it is only recently that large prospective studies have demonstrated the benefit of this model of care. The 'Neuro-intensive Care Nursery' model originated at the University of California San Francisco in 2008, and since then a growing number of units worldwide have adopted this approach. As well as providing consistent coordinated care for infants from a multidisciplinary team, it provides opportunities for specialist education and training in neonatal neurology, neuromonitoring, neuroimaging and nursing. This review outlines the origins of brain-oriented care of the neonate and the development of the Neuro-NICU (neonatal intensive care unit) and discusses some of the challenges and opportunities in expanding this model of care.
Collapse
Affiliation(s)
- Topun Austin
- Neonatal Intensive Care Unit, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK.
| |
Collapse
|
4
|
Ercan G, Imamoglu EY, Şahin Ö, Çolak D, Imamoglu S. Does Cerebral Oxygenation Change during Peripherally Inserted Central Catheterization in Preterm Infants? Am J Perinatol 2024; 41:e1330-e1336. [PMID: 36669756 DOI: 10.1055/a-2016-7502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
OBJECTIVE This study aimed to evaluate the effect of peripherally inserted central venous catheterization on cerebral oxygenation by near-infrared spectroscopy in very low birth weight preterm infants. STUDY DESIGN Forty-one preterm infants (gestational age ≤32 weeks and birth weight ≤1,500 g) requiring peripherally inserted central venous catheter were included. Hemodynamic data and cerebral regional oxygen saturation values measured by near-infrared spectroscopy were prospectively collected before (T0) and every 5 minutes for 30 minutes following catheterization. When compared with baseline (T0) values, those values having relative maximum changes in the first 15 minutes and between 15 and 30 minutes were defined as T15 max and T30 max, respectively. Any change of more than a 10% decrease in baseline cerebral rSO2 was considered clinically significant. Additionally, any changes exceeding 20% in heart rate and mean arterial blood pressure values were considered significant. Following catheterization, the time interval to reach the baseline for cerebral regional oxygen saturation was noted. RESULTS Cerebral regional oxygen saturation values at T15 max and T30 max were found to have decreased significantly in 46 and 22% of patients, respectively. A statistically significant difference was observed between these two time periods (p = 0.002); no significant differences in heart rate, mean arterial blood pressure, or cerebral fractional oxygen extraction values at T15 max and T30 max were observed. All patients reached their baseline cerebral regional oxygen saturation in a median of 25 (15-60) minutes. CONCLUSION In very low birth weight preterm infants, monitoring cerebral regional oxygen saturation by near-infrared spectroscopy before and after peripherally inserted central venous catheterization may be useful in clinical practice. The assessment of factors affecting cerebral oxygenation and, in the case of low cerebral oxygenation, implementation of corrective actions before peripherally inserted central catheterization may offer a neuroprotective strategy. KEY POINTS · Monitoring cerebral rSO2 by NIRS during PICC line procedure might be useful in preterm infants.. · In this study, a significant decrease in cerebral rSO2 level following catheterization was observed.. · Implementation of corrective actions before PICC line procedure may offer a neuroprotective strategy..
Collapse
Affiliation(s)
- Gözde Ercan
- Department of Pediatrics, Faculty of Health Sciences, Sancaktepe Prof Ilhan Varank Training and Research Hospital, İstanbul, Turkey
| | - Ebru Y Imamoglu
- Department of Neonatology, Göztepe Prof. Dr. Süleyman Yalçın City Hospital, Istanbul Medeniyet University, Istanbul, Turkey
| | - Özlem Şahin
- Department of Neonatology, Faculty of Health Sciences, Umraniye Training and Research Hospital, Istanbul, Turkey
| | - Derya Çolak
- Department of Neonatology, Faculty of Health Sciences, Umraniye Training and Research Hospital, Istanbul, Turkey
| | - Serhat Imamoglu
- Department of Ophthalmology, Haydarpasa Numune Training and Research Hospital, Istanbul, Turkey
| |
Collapse
|
5
|
Smith RL, Ikeda AK, Rowley CA, Khandhadia A, Gorbach AM, Chimalizeni Y, Taylor TE, Seydel K, Ackerman HC. Increased brain microvascular hemoglobin concentrations in children with cerebral malaria. Sci Transl Med 2023; 15:eadh4293. [PMID: 37703350 DOI: 10.1126/scitranslmed.adh4293] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 08/24/2023] [Indexed: 09/15/2023]
Abstract
Brain swelling is associated with death from cerebral malaria, but it is unclear whether brain swelling is caused by cerebral edema or vascular congestion-two pathological conditions with distinct effects on tissue hemoglobin concentrations. We used near-infrared spectroscopy (NIRS) to noninvasively study cerebral microvascular hemoglobin concentrations in 46 Malawian children with cerebral malaria. Cerebral malaria was defined by the presence of the malaria parasite Plasmodium falciparum on a blood smear, a Blantyre coma score of 2 or less, and retinopathy. Children with uncomplicated malaria (n = 33) and healthy children (n = 29) were enrolled as comparators. Cerebral microvascular hemoglobin concentrations were higher among children with cerebral malaria compared with those with uncomplicated malaria [median (25th, 75th): 145.2 (95.2, 190.0) μM versus 82.9 (65.7, 105.4) μM, P = 0.008]. Cerebral microvascular hemoglobin concentrations correlated with brain swelling score determined by MRI (r = 0.37, P = 0.03). Fluctuations in cerebral microvascular hemoglobin concentrations over a 30-min time period were characterized using detrended fluctuation analysis (DFA). DFA determined self-similarity of the cerebral microvascular hemoglobin concentration signal to be lower among children with cerebral malaria compared with those with uncomplicated malaria [0.63 (0.54, 0.70) versus 0.91 (0.82, 0.94), P < 0.0001]. The lower self-similarity of the hemoglobin concentration signal in children with cerebral malaria suggested impaired regulation of cerebral blood flow. The elevated cerebral tissue hemoglobin concentration and its correlation with brain swelling suggested that excess blood volume, potentially due to vascular congestion, may contribute to brain swelling in cerebral malaria.
Collapse
Affiliation(s)
- Rachel L Smith
- Physiology Unit, Laboratory of Malaria and Vector Research, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, Rockville, MD, USA
| | - Allison K Ikeda
- Physiology Unit, Laboratory of Malaria and Vector Research, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, Rockville, MD, USA
| | - Carol A Rowley
- Physiology Unit, Laboratory of Malaria and Vector Research, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, Rockville, MD, USA
| | - Amit Khandhadia
- Infrared Imaging and Thermometry Unit, National Institute of Biomedical Imaging and Bioengineering, Bethesda, MD, USA
| | - Alexander M Gorbach
- Infrared Imaging and Thermometry Unit, National Institute of Biomedical Imaging and Bioengineering, Bethesda, MD, USA
| | - Yamikani Chimalizeni
- Queen Elizabeth Central Hospital and Blantyre Malaria Project, Kamuzu University of Health Sciences, Blantyre, Malawi
| | - Terrie E Taylor
- Queen Elizabeth Central Hospital and Blantyre Malaria Project, Kamuzu University of Health Sciences, Blantyre, Malawi
- Department of Osteopathic Medical Specialties, College of Osteopathic Medicine, Michigan State University, East Lansing, MI, USA
| | - Karl Seydel
- Queen Elizabeth Central Hospital and Blantyre Malaria Project, Kamuzu University of Health Sciences, Blantyre, Malawi
- Department of Osteopathic Medical Specialties, College of Osteopathic Medicine, Michigan State University, East Lansing, MI, USA
| | - Hans C Ackerman
- Physiology Unit, Laboratory of Malaria and Vector Research, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, Rockville, MD, USA
| |
Collapse
|
6
|
Scano A, Guanziroli E, Brambilla C, Amendola C, Pirovano I, Gasperini G, Molteni F, Spinelli L, Molinari Tosatti L, Rizzo G, Re R, Mastropietro A. A Narrative Review on Multi-Domain Instrumental Approaches to Evaluate Neuromotor Function in Rehabilitation. Healthcare (Basel) 2023; 11:2282. [PMID: 37628480 PMCID: PMC10454517 DOI: 10.3390/healthcare11162282] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/02/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023] Open
Abstract
In clinical scenarios, the use of biomedical sensors, devices and multi-parameter assessments is fundamental to provide a comprehensive portrait of patients' state, in order to adapt and personalize rehabilitation interventions and support clinical decision-making. However, there is a huge gap between the potential of the multidomain techniques available and the limited practical use that is made in the clinical scenario. This paper reviews the current state-of-the-art and provides insights into future directions of multi-domain instrumental approaches in the clinical assessment of patients involved in neuromotor rehabilitation. We also summarize the main achievements and challenges of using multi-domain approaches in the assessment of rehabilitation for various neurological disorders affecting motor functions. Our results showed that multi-domain approaches combine information and measurements from different tools and biological signals, such as kinematics, electromyography (EMG), electroencephalography (EEG), near-infrared spectroscopy (NIRS), and clinical scales, to provide a comprehensive and objective evaluation of patients' state and recovery. This multi-domain approach permits the progress of research in clinical and rehabilitative practice and the understanding of the pathophysiological changes occurring during and after rehabilitation. We discuss the potential benefits and limitations of multi-domain approaches for clinical decision-making, personalized therapy, and prognosis. We conclude by highlighting the need for more standardized methods, validation studies, and the integration of multi-domain approaches in clinical practice and research.
Collapse
Affiliation(s)
- Alessandro Scano
- Institute of Intelligent Industrial Systems and Technologies for Advanced Manufacturing (STIIMA), Italian Council of National Research (CNR), Via A. Corti 12, 20133 Milan, Italy; (C.B.); (L.M.T.)
| | - Eleonora Guanziroli
- Villa Beretta Rehabilitation Center, Via N. Sauro 17, 23845 Costa Masnaga, Italy; (E.G.); (G.G.); (F.M.)
| | - Cristina Brambilla
- Institute of Intelligent Industrial Systems and Technologies for Advanced Manufacturing (STIIMA), Italian Council of National Research (CNR), Via A. Corti 12, 20133 Milan, Italy; (C.B.); (L.M.T.)
| | - Caterina Amendola
- Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milan, Italy; (C.A.); (R.R.)
| | - Ileana Pirovano
- Institute of Biomedical Technologies (ITB), Italian National Research Council (CNR), Via Fratelli Cervi 93, 20054 Segrate, Italy; (I.P.); (G.R.); (A.M.)
| | - Giulio Gasperini
- Villa Beretta Rehabilitation Center, Via N. Sauro 17, 23845 Costa Masnaga, Italy; (E.G.); (G.G.); (F.M.)
| | - Franco Molteni
- Villa Beretta Rehabilitation Center, Via N. Sauro 17, 23845 Costa Masnaga, Italy; (E.G.); (G.G.); (F.M.)
| | - Lorenzo Spinelli
- Institute for Photonics and Nanotechnology (IFN), Italian National Research Council (CNR), Piazza Leonardo da Vinci 32, 20133 Milan, Italy;
| | - Lorenzo Molinari Tosatti
- Institute of Intelligent Industrial Systems and Technologies for Advanced Manufacturing (STIIMA), Italian Council of National Research (CNR), Via A. Corti 12, 20133 Milan, Italy; (C.B.); (L.M.T.)
| | - Giovanna Rizzo
- Institute of Biomedical Technologies (ITB), Italian National Research Council (CNR), Via Fratelli Cervi 93, 20054 Segrate, Italy; (I.P.); (G.R.); (A.M.)
| | - Rebecca Re
- Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milan, Italy; (C.A.); (R.R.)
- Institute for Photonics and Nanotechnology (IFN), Italian National Research Council (CNR), Piazza Leonardo da Vinci 32, 20133 Milan, Italy;
| | - Alfonso Mastropietro
- Institute of Biomedical Technologies (ITB), Italian National Research Council (CNR), Via Fratelli Cervi 93, 20054 Segrate, Italy; (I.P.); (G.R.); (A.M.)
| |
Collapse
|
7
|
Chao H, Acosta S, Rusin C, Rhee C. Comparison of Near-Infrared Spectroscopy-Based Cerebral Autoregulatory Indices in Extremely Low Birth Weight Infants. CHILDREN (BASEL, SWITZERLAND) 2023; 10:1361. [PMID: 37628360 PMCID: PMC10453436 DOI: 10.3390/children10081361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/20/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023]
Abstract
BACKGROUND Premature infants are born with immature cerebral autoregulation function and are vulnerable to pressure passive cerebral circulation and subsequent brain injury. Measurements derived from near-infrared spectroscopy (NIRS) have enabled continuous assessment of cerebral vasoreactivity. Although NIRS has enabled a growing field of research, the lack of clear standardization in the field remains problematic. A major limitation of current literature is the absence of a comparative analysis of the different methodologies. OBJECTIVES To determine the relationship between NIRS-derived continuous indices of cerebral autoregulation in a cohort of extremely low birth weight (ELBW) infants. METHODS Premature infants of birth weight 401-1000 g were studied during the first 72 h of life. The cerebral oximetry index (COx), hemoglobin volume index (HVx), and tissue oxygenation heart rate reactivity index (TOHRx) were simultaneously calculated. The relationship between each of the indices was assessed with Pearson correlation. RESULTS Fifty-eight infants with a median gestational age of 25.8 weeks and a median birth weight of 738 g were included. Intraventricular hemorrhage (IVH) was detected in 33% of individuals. COx and HVx demonstrated the highest degree of correlation, although the relationship was moderate at best (r = 0.543, p < 0.001). No correlation was found either between COx and TOHRx (r = 0.318, p < 0.015) or between HVx and TOHRx (r = 0.287, p < 0.029). No significant differences in these relationships were found with respect to IVH and no IVH in subgroup analysis. CONCLUSIONS COx, HVx, and TOHRx are not numerically equivalent. Caution must be applied when interpreting or comparing results based on different methodologies for measuring cerebral autoregulation. Uniformity regarding data acquisition and analytical methodology are needed to firmly establish a gold standard for neonatal cerebral autoregulation monitoring.
Collapse
Affiliation(s)
- Howard Chao
- Department of Pediatrics, Division of Neonatology, Baylor College of Medicine, Texas Children’s Hospital, Houston, TX 77030, USA
| | - Sebastian Acosta
- Department of Pediatrics, Division of Cardiology, Baylor College of Medicine, Texas Children’s Hospital, Houston, TX 77030, USA
| | - Craig Rusin
- Department of Pediatrics, Division of Cardiology, Baylor College of Medicine, Texas Children’s Hospital, Houston, TX 77030, USA
| | - Christopher Rhee
- Department of Pediatrics, Division of Neonatology, Baylor College of Medicine, Texas Children’s Hospital, Houston, TX 77030, USA
| |
Collapse
|
8
|
Scholkmann F, Vollenweider FX. Psychedelics and fNIRS neuroimaging: exploring new opportunities. NEUROPHOTONICS 2023; 10:013506. [PMID: 36474478 PMCID: PMC9717437 DOI: 10.1117/1.nph.10.1.013506] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 11/14/2022] [Indexed: 06/17/2023]
Abstract
In this Outlook paper, we explain to the optical neuroimaging community as well as the psychedelic research community the great potential of using optical neuroimaging with functional near-infrared spectroscopy (fNIRS) to further explore the changes in brain activity induced by psychedelics. We explain why we believe now is the time to exploit the momentum of the current resurgence of research on the effects of psychedelics and the momentum of the increasing progress and popularity of the fNIRS technique to establish fNIRS in psychedelic research. With this article, we hope to contribute to this development.
Collapse
Affiliation(s)
- Felix Scholkmann
- University Hospital Zurich, University of Zurich, Biomedical Optics Research Laboratory, Department of Neonatology, Zurich, Switzerland
- University of Bern, Institute of Complementary and Integrative Medicine, Bern, Switzerland
| | - Franz X. Vollenweider
- University Hospital of Psychiatry, University of Zurich, Neuropsychopharmacology and Brain Imaging, Department of Psychiatry, Psychotherapy and Psychosomatics, Zurich, Switzerland
| |
Collapse
|
9
|
Gude P, Weber TP, Dazert S, Teig N, Mathmann P, Georgevici AI, Neumann K. Comparison of cerebral oxygen desaturation events between children under general anesthesia and chloral hydrate sedation - a randomized controlled trial. BMC Pediatr 2022; 22:720. [PMID: 36529729 PMCID: PMC9762051 DOI: 10.1186/s12887-022-03739-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 11/08/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND During pediatric general anesthesia (GA) and sedation, clinicians aim to maintain physiological parameters within normal ranges. Accordingly, regional cerebral oxygen saturation (rScO2) should not drop below preintervention baselines. Our study compared rScO2 desaturation events in children undergoing GA or chloral hydrate sedation (CHS). METHODS Ninety-two children undergoing long auditory assessments were randomly assigned to two study arms: CHS (n = 40) and GA (n = 52). Data of 81 children (mean age 13.8 months, range 1-36 months) were analyzed. In the GA group, we followed a predefined 10 N concept (no fear, no pain, normovolemia, normotension, normocardia, normoxemia, normocapnia, normonatremia, normoglycemia, and normothermia). In this group, ENT surgeons performed minor interventions in 29 patients based on intraprocedural microscopic ear examinations. In the CHS group, recommendations for monitoring and treatment of children undergoing moderate sedation were met. Furthermore, children received a double-barreled nasal oxygen cannula to measure end-tidal carbon dioxide (etCO2) and allow oxygen administration. Chloral hydrate was administered in the parent's presence. Children had no intravenous access which is an advantage of sedation techniques. In both groups, recommendations for fasting were followed and an experienced anesthesiologist was present during the entire procedure. Adverse event (AE) was a decline in cerebral oxygenation to below 50% or below 20% from the baseline for ≥1 min. The primary endpoint was the number of children with AE across the study arms. Secondary variables were: fraction of inspired oxygen (FIO2), oxygen saturation (SpO2), etCO2, systolic and mean blood pressure (BP), and heart rate (HR); these variables were analyzed for their association with drop in rScO2 to below baseline (%drop_rScO2). RESULTS The incidence of AE across groups was not different. The analysis of secondary endpoints showed evidence that %drop_rScO2 is more dependent on HR and FIO2 than on BP and etCO2. CONCLUSIONS This study highlights the strong association between HR and rScO2 in children aged < 3 years, whereas previous studies had primarily discussed the role of BP and etCO2. Prompt HR correction may result in shorter periods of cerebral desaturation. TRIAL REGISTRATION The study was retrospectively registered with the German Clinical Trials Registry (DRKS00024362, 04/02/2021).
Collapse
Affiliation(s)
- Philipp Gude
- Department of Anesthesiology and Intensive Care Medicine, St. Josef and St. Elisabeth-Hospital, Ruhr University Bochum, Gudrunstr. 56, D-44791, Bochum, Germany.
| | - Thomas P Weber
- Department of Anesthesiology and Intensive Care Medicine, St. Josef and St. Elisabeth-Hospital, Ruhr University Bochum, Gudrunstr. 56, D-44791, Bochum, Germany
| | - Stefan Dazert
- Department of Otorhinolaryngology, Head and Neck Surgery, St. Elisabeth-Hospital, Ruhr University Bochum, Bochum, Germany
| | - Norbert Teig
- University Children's Hospital, Ruhr University Bochum, Bochum, Germany
| | - Philipp Mathmann
- Department of Phoniatrics and Pedaudiology, University Hospital Münster, University of Münster, Münster, Germany
| | - Adrian I Georgevici
- Department of Anesthesiology and Intensive Care Medicine, St. Josef and St. Elisabeth-Hospital, Ruhr University Bochum, Gudrunstr. 56, D-44791, Bochum, Germany
| | - Katrin Neumann
- Department of Phoniatrics and Pedaudiology, University Hospital Münster, University of Münster, Münster, Germany
- Division of Phoniatrics and Pediatric Audiology, Department of Otorhinolaryngology, Head and Neck Surgery, St. Elisabeth-Hospital, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
10
|
Brunsch CL, Mebius MJ, Berger RMF, Bos AF, Kooi EMW. Early Cerebrovascular Autoregulation in Neonates with Congenital Heart Disease. CHILDREN (BASEL, SWITZERLAND) 2022; 9:1686. [PMID: 36360414 PMCID: PMC9688918 DOI: 10.3390/children9111686] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/28/2022] [Accepted: 11/01/2022] [Indexed: 11/09/2024]
Abstract
Neonates with congenital heart disease (CHD) display delayed brain development, predisposing them to impaired cerebrovascular autoregulation (CAR) and ischemic brain injury. For this paper, we analyzed the percentage of time with impaired CAR (%time impaired CAR) during the first 72 h after birth, the relation with clinical factors, and survival in 57 neonates with CHD. The primary outcome was a correlation coefficient of cerebral oxygenation (rcSO2) and mean arterial blood pressure (MABP, mmHg) for two hours on a daily basis. The %time impaired CAR ranged from 9.3% of the studied time on day one to 4.6% on day three. Variables associated with more %time impaired CAR were the use of inotropes (day 1, B = 19.5, 95%CI = 10.6-28.3; day 3, B = 11.5, 95%CI = 7.1-16), lower MABP (day 1, B = -0.6, 95%CI = -1.2-0.0), and dextro-transposition of the great arteries (dTGA) (16.2%) compared with other CHD types (2.0-5.0%; day 1, p = 0.022). Survival was not an associated variable. To summarize, impaired CAR was found in CHD neonates in up to 9.3% of the studied time. More evidence is necessary to evaluate an association with inotropes, dTGA, %time impaired CAR, and long-term outcome, further in larger cohorts.
Collapse
Affiliation(s)
- Celina L. Brunsch
- Neonatology, Beatrix Children’s Hospital, University Medical Center Groningen, University of Groningen, 9713GZ Groningen, The Netherlands
| | - Mirthe J. Mebius
- Neonatology, Beatrix Children’s Hospital, University Medical Center Groningen, University of Groningen, 9713GZ Groningen, The Netherlands
| | - Rolf M. F. Berger
- Center for Congenital Heart Disease, Pediatric Cardiology, Beatrix Children’s Hospital, University Medical Center Groningen, University of Groningen, 9713GZ Groningen, The Netherlands
| | - Arend F. Bos
- Neonatology, Beatrix Children’s Hospital, University Medical Center Groningen, University of Groningen, 9713GZ Groningen, The Netherlands
| | - Elisabeth M. W. Kooi
- Neonatology, Beatrix Children’s Hospital, University Medical Center Groningen, University of Groningen, 9713GZ Groningen, The Netherlands
| |
Collapse
|
11
|
Neary JP, Singh J, Sirant LW, Gaul CA, Martin S, Stuart-Hill L, Candow DG, Mang CS, Kratzig GP. History of Brain Injury Alters Cerebral Haemodynamic Oscillations with Cardiac Influence. Brain Sci 2022; 12:1443. [PMID: 36358369 PMCID: PMC9688194 DOI: 10.3390/brainsci12111443] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 10/19/2022] [Accepted: 10/21/2022] [Indexed: 11/08/2024] Open
Abstract
(1) Background: Cerebral autoregulation is altered during acute mild traumatic brain injury, or concussion. However, it is unknown how a history of concussion can impact cerebral haemodynamic activity during a task that elicits an autoregulatory response. (2) Methods: We assessed cerebral haemodynamic activity in those with a history of three or more concussions. The study included 44 retired athletes with concussion history and 25 control participants. We recorded participants' relative changes in right and left pre-frontal cortex oxygenation collected by near-infrared spectroscopy and continuous beat-to-beat blood pressure measured by finger photoplethysmography. Participants completed a 5-min seated rest followed by a 5-min repeated squat (10-s) stand (10-s) maneuver (0.05 Hz) to elicit a cerebral autoregulatory response. Wavelet transformation was applied to the collected signals, allowing separation into cardiac interval I (0.6 to 2 Hz), respiratory interval II (0.145 to 0.6 Hz), and smooth muscle cell interval III (0.052 to 0.145 Hz). (3) Results: Significant increases at cardiac interval I were found for the wavelet amplitude of oxy-haemoglobin and haemoglobin difference at the right pre-frontal cortex. No significant difference was found at the left pre-frontal cortex or the blood pressure wavelet amplitudes. (4) Conclusions: Contributions from cardiac activity to the pre-frontal cortex oxygenation are elevated when eliciting dynamic cerebral autoregulation in those with a history of three or more concussions.
Collapse
Affiliation(s)
- J. Patrick Neary
- Faculty of Kinesiology & Health Studies, University of Regina, Regina, SK S4S 0A2, Canada
| | - Jyotpal Singh
- Faculty of Kinesiology & Health Studies, University of Regina, Regina, SK S4S 0A2, Canada
| | - Luke W. Sirant
- Faculty of Kinesiology & Health Studies, University of Regina, Regina, SK S4S 0A2, Canada
| | - Catherine A. Gaul
- School of Exercise Science, Physical and Health Education, University of Victoria, Victoria, BC V8P 5C2, Canada
| | - Steve Martin
- School of Exercise Science, Physical and Health Education, University of Victoria, Victoria, BC V8P 5C2, Canada
| | - Lynneth Stuart-Hill
- School of Exercise Science, Physical and Health Education, University of Victoria, Victoria, BC V8P 5C2, Canada
| | - Darren G. Candow
- Faculty of Kinesiology & Health Studies, University of Regina, Regina, SK S4S 0A2, Canada
| | - Cameron S. Mang
- Faculty of Kinesiology & Health Studies, University of Regina, Regina, SK S4S 0A2, Canada
| | - Gregory P. Kratzig
- Department of Psychology, University of Regina, Regina, SK S4S 0A2, Canada
| |
Collapse
|
12
|
Martini S, Czosnyka M, Smielewski P, Iommi M, Galletti S, Vitali F, Paoletti V, Camela F, Austin T, Corvaglia L. Clinical determinants of cerebrovascular reactivity in very preterm infants during the transitional period. Pediatr Res 2022; 92:135-141. [PMID: 35513715 DOI: 10.1038/s41390-022-02090-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/29/2022] [Accepted: 04/10/2022] [Indexed: 11/09/2022]
Abstract
BACKGROUND Preterm infants are at enhanced risk of brain injury due to altered cerebral haemodynamics during postnatal transition. This observational study aimed to assess the clinical determinants of transitional cerebrovascular reactivity and its association with intraventricular haemorrhage (IVH). METHODS Preterm infants <32 weeks underwent continuous monitoring of cerebral oxygenation and heart rate over the first 72 h after birth. Serial cranial and cardiac ultrasound assessments were performed to evaluate the ductal status and to diagnose IVH onset. The moving correlation coefficient between cerebral oxygenation and heart rate (TOHRx) was calculated. Linear mixed-effect models were used to analyse the impact of relevant clinical variables on TOHRx. The association between TOHRx and IVH development was also assessed. RESULTS Seventy-seven infants were included. A haemodynamically significant patent ductus arteriosus (hsPDA) (β = 0.044, 95% CI: 0.007-0.081) and ongoing dopamine treatment (β = 0.096, 95% CI: 0.032-0.159) were associated with increasing TOHRx, indicating impaired cerebrovascular reactivity. A significant association between TOHRx, mean arterial blood pressure (β = -0.004, 95% CI: -0.007, -0.001) and CRIB-II score (β = 0.007, 95% CI: 0.001-0.015) was also observed. TOHRx was significantly higher in infants developing high-grade IVH compared to those without IVH. CONCLUSIONS Dopamine treatment, low blood pressure, hsPDA and high CRIB-II are associated with impaired cerebrovascular reactivity during postnatal transition, with potential implications on IVH development. IMPACT The correlation coefficient between cerebral oxygenation and heart rate (TOHRx) provides a non-invasive estimation of cerebrovascular reactivity, whose failure has a potential pathogenic role in the development of IVH in preterm infants. This study shows that cerebrovascular reactivity during the transitional period improves over time and is affected by specific clinical and therapeutic factors, whose knowledge could support the development of individualized neuroprotective strategies in at-risk preterm infants. The evidence of increased TOHRx in infants developing high-grade compared to low-grade or no IVH during the transitional period further supports the role of impaired cerebrovascular reactivity in IVH pathophysiology.
Collapse
Affiliation(s)
- Silvia Martini
- Neonatal Intensive Care Unit, IRCCS S. Orsola-Malpighi Hospital, Bologna, Italy. .,Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy.
| | - Marek Czosnyka
- Brain Physics Laboratory, Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Addenbrookes Hospital, Cambridge, UK
| | - Peter Smielewski
- Brain Physics Laboratory, Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Addenbrookes Hospital, Cambridge, UK
| | - Marica Iommi
- Department of Biomedical and Neuromotor Sciences, Division of Hygiene and Biostatistics, University of Bologna, Bologna, Italy
| | - Silvia Galletti
- Neonatal Intensive Care Unit, IRCCS S. Orsola-Malpighi Hospital, Bologna, Italy.,Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Francesca Vitali
- Neonatal Intensive Care Unit, IRCCS S. Orsola-Malpighi Hospital, Bologna, Italy
| | - Vittoria Paoletti
- Neonatal Intensive Care Unit, IRCCS S. Orsola-Malpighi Hospital, Bologna, Italy
| | - Federica Camela
- Neonatal Intensive Care Unit, IRCCS S. Orsola-Malpighi Hospital, Bologna, Italy
| | - Topun Austin
- Neonatal Intensive Care Unit, The Rosie Hospital, Cambridge University Hospitals, Cambridge, UK
| | - Luigi Corvaglia
- Neonatal Intensive Care Unit, IRCCS S. Orsola-Malpighi Hospital, Bologna, Italy.,Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
13
|
Luis GOJ, Alicia RF. Perspectives: Regional brain oxygen saturation: beyond the brain there is also life. Curr Pharm Des 2022; 28:1589-1591. [DOI: 10.2174/1381612828666220318120311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 02/01/2022] [Indexed: 11/22/2022]
Abstract
Abstract:
Some procedures, such as cardiovascular surgery, may compromise brain perfusion and require careful management to preserve the integrity of the central nervous system. In this setting, regional cerebral oxygen saturation [rSO2] emerges as an alternative, minimally invasive, monitoring system. The mechanism by which regional oxygen is measured is based on the refraction and absorption of a signal with a specific wavelength. Diagnostic and therapeutic algorithms for these settings. This would allow for a more rational use of goal-directed therapies that reduce morbidity and mortality in these patients.
Collapse
Affiliation(s)
- Guerrero Orriach Jose Luis
- Institute of Biomedical Research in Malaga, Malaga, Spain
- Department of Anesthesiology, Virgen de la Victoria University Hospital, Malaga, Spain
- Department of Pharmacology and Pediatrics, School of Medicine, University of Malaga, Malaga, Spain
| | - Ramirez Fernandez Alicia
- Institute of Biomedical Research in Malaga, Malaga, Spain
- Department of Anesthesiology, Virgen de la Victoria University Hospital, Malaga, Spain
- Department of Pharmacology and Pediatrics, School of Medicine, University of Malaga, Malaga, Spain
| |
Collapse
|
14
|
Fan JL, Nogueira RC, Brassard P, Rickards CA, Page M, Nasr N, Tzeng YC. Integrative physiological assessment of cerebral hemodynamics and metabolism in acute ischemic stroke. J Cereb Blood Flow Metab 2022; 42:454-470. [PMID: 34304623 PMCID: PMC8985442 DOI: 10.1177/0271678x211033732] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Restoring perfusion to ischemic tissue is the primary goal of acute ischemic stroke care, yet only a small portion of patients receive reperfusion treatment. Since blood pressure (BP) is an important determinant of cerebral perfusion, effective BP management could facilitate reperfusion. But how BP should be managed in very early phase of ischemic stroke remains a contentious issue, due to the lack of clear evidence. Given the complex relationship between BP and cerebral blood flow (CBF)-termed cerebral autoregulation (CA)-bedside monitoring of cerebral perfusion and oxygenation could help guide BP management, thereby improve stroke patient outcome. The aim of INFOMATAS is to 'identify novel therapeutic targets for treatment and management in acute ischemic stroke'. In this review, we identify novel physiological parameters which could be used to guide BP management in acute stroke, and explore methodologies for monitoring them at the bedside. We outline the challenges in translating these potential prognostic markers into clinical use.
Collapse
Affiliation(s)
- Jui-Lin Fan
- Manaaki Mānawa - The Centre for Heart Research, Department of Physiology, Faculty of Medical & Health Sciences, University of Auckland, Auckland, New Zealand
| | - Ricardo C Nogueira
- Neurology Department, School of Medicine, Hospital das Clinicas, University of São Paulo, São Paulo, Brazil.,Neurology Department, Hospital Nove de Julho, São Paulo, Brazil
| | - Patrice Brassard
- Department of Kinesiology, Faculty of Medicine, Université Laval, Québec, Canada.,Research Center of the Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, Canada
| | - Caroline A Rickards
- Department of Physiology & Anatomy, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Matthew Page
- Department of Radiology, Wellington Regional Hospital, Wellington, New Zealand
| | - Nathalie Nasr
- Department of Neurology, Toulouse University Hospital, NSERM UMR 1297, Toulouse, France
| | - Yu-Chieh Tzeng
- Wellington Medical Technology Group, Department of Surgery & Anaesthesia, University of Otago, Wellington, New Zealand.,Centre for Translational Physiology, Department of Surgery & Anaesthesia, University of Otago, Wellington, New Zealand
| |
Collapse
|
15
|
Schwab AL, Mayer B, Bassler D, Hummler HD, Fuchs HW, Bryant MB. Cerebral Oxygenation in Preterm Infants Developing Cerebral Lesions. Front Pediatr 2022; 10:809248. [PMID: 35498781 PMCID: PMC9039301 DOI: 10.3389/fped.2022.809248] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 03/10/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND We investigated the association between cerebral tissue oxygen saturation (cStO2) measured by near-infrared spectroscopy (NIRS) and cerebral lesions including intraventricular hemorrhage (IVH) and periventricular leukomalacia (PVL). METHODS Preterm infants <1,500 g received continuous cStO2 monitoring, initiated at the earliest time possible and recorded until 72 h of life. Mean cStO2 over periods of 5, 15, 30 min and 1 h were calculated. To calculate the burden of cerebral hypoxia, we defined a moving threshold based on the 10th percentile of cStO2 of healthy study participants and calculated the area under the threshold (AUT). cStO2 <60% for >5 min was regarded a critical event. The study was registered on clinicaltrials.gov (ID NCT01430728, URL: https://clinicaltrials.gov/ct2/show/NCT01430728?id=NCT01430728&draw=2&rank=1). RESULTS Of 162 infants (gestational age: mean 27.2 weeks, standard deviation 20 days; birth weight: mean 852 g, standard deviation 312 g) recorded, 24/12 (14.8%/7.4) developed any/severe IVH/PVL. Mean cStO2 was significantly lower in infants with IVH/PVL as well as severe IVH/PVL. In addition, we observed critical events defined by mean cStO2 over 5 min <60% in four infants with severe IVH/PVL during NIRS monitoring. AUT showed no statistically significant difference between outcome groups. CONCLUSION These findings suggest that cStO2 is lower in infants developing IVH/PVL. This may be related to lower oxygenation and/or perfusion and implies that cStO2 could potentially serve as an indicator of imminent cerebral lesions.
Collapse
Affiliation(s)
- Angelika L Schwab
- Division of Neonatology and Pediatric Intensive Care, Department of Pediatrics and Adolescent Medicine, University Hospital Ulm, Ulm, Germany
| | - Benjamin Mayer
- Institute of Epidemiology and Medical Biometry, Ulm University, Ulm, Germany
| | - Dirk Bassler
- Neonatal Department, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Helmut D Hummler
- Division of Neonatology and Pediatric Intensive Care, Department of Pediatrics and Adolescent Medicine, University Hospital Ulm, Ulm, Germany
| | - Hans W Fuchs
- Division of Neonatology and Pediatric Intensive Care, Department of Pediatrics and Adolescent Medicine, University Hospital Ulm, Ulm, Germany
| | - Manuel B Bryant
- Division of Neonatology and Pediatric Intensive Care, Department of Pediatrics and Adolescent Medicine, University Hospital Ulm, Ulm, Germany.,Neonatal Department, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| |
Collapse
|
16
|
Terada K, Nakamura S, Nakao Y, Fukudome K, Miyagi Y, Onishi T, Kusaka T. Cerebral hemoglobin oxygenation in children with congenital heart disease. Pediatr Int 2022; 64:e14726. [PMID: 33826774 DOI: 10.1111/ped.14726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 03/08/2021] [Accepted: 04/02/2021] [Indexed: 11/28/2022]
Abstract
BACKGROUND It is important to identify the pathological characteristics of cerebral circulation and oxygen metabolism at the bedside in children with congenital heart disease (CHD) to prevent neurodevelopmental impairments. The brain regional oxygen saturation index (rSO2 ) can be easily obtained at the bedside with near-infrared spectroscopy and has been widely used in the management of children with CHD in recent years. METHODS To determine if the rSO2 before or after CHD surgery is a good predictor of cerebral oxygen metabolism, we investigated the impact of different clinical variables on the correlation between rSO2 and reference values under steady ratios of hemoglobin oxygen saturation in the internal jugular vein (SjvO2 ) or femoral artery (SaO2 ) (0.75:0.25, 0.66:0.34, and 0.50:0.50) in 186 children with CHD undergoing cardiac catheterization. RESULTS In three patient groups-double ventricles before surgery, double ventricles after surgery, and single ventricle before surgery-there were significant relationships between rSO2 and the reference values of SO2 under all three steady ratios of SjvO2 and SaO2 . No relationship with the reference values was found for the single ventricle after surgery group. CONCLUSIONS Regional oxygen saturation index is useful for assessing cerebral oxygenation in children with CHD, but knowledge of the underlying cardiac pathology in CHD, especially in the case of a single ventricle after surgery, is important for the correct interpretation of rSO2 measurements obtained using near-infrared spectroscopy.
Collapse
Affiliation(s)
- Kazuya Terada
- Division of Pediatric Cardiology, Shikoku Medical Center for Children and Adults, Kagawa, Japan
| | - Shinji Nakamura
- Maternal Perinatal Center, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Yasuhiro Nakao
- Maternal Perinatal Center, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Keisuke Fukudome
- Division of Pediatric Cardiology, Shikoku Medical Center for Children and Adults, Kagawa, Japan
| | - Yuichi Miyagi
- Division of Pediatric Cardiology, Shikoku Medical Center for Children and Adults, Kagawa, Japan
| | - Tatsuya Onishi
- Division of Pediatric Cardiology, Shikoku Medical Center for Children and Adults, Kagawa, Japan
| | - Takashi Kusaka
- Department of Pediatrics, Faculty of Medicine, Kagawa University, Kagawa, Japan
| |
Collapse
|
17
|
Castillo-Pinto C, Sen K, Gropman A. Neuromonitoring in Rare Disorders of Metabolism. THE YALE JOURNAL OF BIOLOGY AND MEDICINE 2021; 94:645-655. [PMID: 34970103 PMCID: PMC8686771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Inborn errors of metabolism (IEM) are a unique class of genetic diseases due to mutations in genes involved in key metabolic pathways. The combined incidence of IEM has been estimated to be as high as 1:1000. Urea Cycle disorders (UCD), one class of IEM, can present with cerebral edema and represent a possible target to explore the utility of different neuromonitoring techniques during an hyperammonemic crisis. The last two decades have brought advances in the early identification and comprehensive management of UCD, including further understanding of neuroimaging patterns associated with neurocognitive function. Nonetheless, very important questions remain about the potential acute neurotoxic effects of hyperammonemia to better understand how to treat and prevent secondary brain injury. In this review, we describe existing neuromonitoring techniques that have been used in rare metabolic disorders to assess and allow amelioration of ongoing brain injury. Directions of future research should be focused on identifying new diagnostic approaches in the management of metabolic crises to optimize care and reduce long term morbidity and mortality in patients with IEM.
Collapse
Affiliation(s)
| | - Kuntal Sen
- Neurogenetics and Neurodevelopmental Pediatrics, Children's National, Washington DC, USA
| | - Andrea Gropman
- Neurogenetics and Neurodevelopmental Pediatrics, Children's National, Washington DC, USA
| |
Collapse
|
18
|
Cerebral oxygen saturation-a useful bedside vital sign for neonatal encephalopathy. J Perinatol 2021; 41:2577-2579. [PMID: 33547404 DOI: 10.1038/s41372-021-00916-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 11/24/2020] [Accepted: 01/14/2021] [Indexed: 11/08/2022]
|
19
|
Costa FG, Hakimi N, Van Bel F. Neuroprotection of the Perinatal Brain by Early Information of Cerebral Oxygenation and Perfusion Patterns. Int J Mol Sci 2021; 22:ijms22105389. [PMID: 34065460 PMCID: PMC8160954 DOI: 10.3390/ijms22105389] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/07/2021] [Accepted: 05/17/2021] [Indexed: 02/01/2023] Open
Abstract
Abnormal patterns of cerebral perfusion/oxygenation are associated with neuronal damage. In preterm neonates, hypoxemia, hypo-/hypercapnia and lack of cerebral autoregulation are related to peri-intraventricular hemorrhages and white matter injury. Reperfusion damage after perinatal hypoxic ischemia in term neonates seems related with cerebral hyperoxygenation. Since biological tissue is transparent for near infrared (NIR) light, NIR-spectroscopy (NIRS) is a noninvasive bedside tool to monitor brain oxygenation and perfusion. This review focuses on early assessment and guiding abnormal cerebral oxygenation/perfusion patterns to possibly reduce brain injury. In term infants, early patterns of brain oxygenation helps to decide whether or not therapy (hypothermia) and add-on therapies should be considered. Further NIRS-related technical advances such as the use of (functional) NIRS allowing simultaneous estimation and integrating of heart rate, respiration rate and monitoring cerebral autoregulation will be discussed.
Collapse
Affiliation(s)
- Filipe Gonçalves Costa
- Department of Neonatology, University Medical Center Utrecht, 3584 EA Utrecht, The Netherlands; (F.G.C.); (N.H.)
| | - Naser Hakimi
- Department of Neonatology, University Medical Center Utrecht, 3584 EA Utrecht, The Netherlands; (F.G.C.); (N.H.)
- Artinis Medical Systems, B.V., 6662 PW Elst, The Netherlands
| | - Frank Van Bel
- Department of Neonatology, University Medical Center Utrecht, 3584 EA Utrecht, The Netherlands; (F.G.C.); (N.H.)
- Correspondence: ; Tel.: +31-887-554-545
| |
Collapse
|
20
|
Benninger KL, Inder TE, Goodman AM, Cotten CM, Nordli DR, Shah TA, Slaughter JC, Maitre NL. Perspectives from the Society for Pediatric Research. Neonatal encephalopathy clinical trials: developing the future. Pediatr Res 2021; 89:74-84. [PMID: 32221474 PMCID: PMC7529683 DOI: 10.1038/s41390-020-0859-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 01/27/2020] [Accepted: 02/20/2020] [Indexed: 12/18/2022]
Abstract
The next phase of clinical trials in neonatal encephalopathy (NE) focuses on hypothermia adjuvant therapies targeting alternative recovery mechanisms during the process of hypoxic brain injury. Identifying infants eligible for neuroprotective therapies begins with the clinical detection of brain injury and classification of severity. Combining a variety of biomarkers (serum, clinical exam, EEG, movement patterns) with innovative clinical trial design and analyses will help target infants with the most appropriate and timely treatments. The timing of magnetic resonance imaging (MRI) and MR spectroscopy after NE both assists in identifying the acute perinatal nature of the injury (days 3-7) and evaluates the full extent and evolution of the injury (days 10-21). Early, intermediate outcome of neuroprotective interventions may be best defined by the 21-day neuroimaging, with recognition that the full neurodevelopmental trajectory is not yet defined. An initial evaluation of each new therapy at this time point may allow higher-throughput selection of promising therapies for more extensive investigation. Functional recovery can be assessed using a trajectory of neurodevelopmental evaluations targeted to a prespecified and mechanistically derived hypothesis of drug action. As precision medicine revolutionizes healthcare, it should also include the redesign of NE clinical trials to allow safe, efficient, and targeted therapeutics. IMPACT: As precision medicine revolutionizes healthcare, it should also include the redesign of NE clinical trials to allow faster development of safe, effective, and targeted therapeutics. This article provides a multidisciplinary perspective on the future of clinical trials in NE; novel trial design; study management and oversight; biostatistical methods; and a combination of serum, imaging, and neurodevelopmental biomarkers can advance the field and improve outcomes for infants affected by NE. Innovative clinical trial designs, new intermediate trial end points, and a trajectory of neurodevelopmental evaluations targeted to a prespecified and mechanistically derived hypothesis of drug action can help address common challenges in NE clinical trials and allow for faster selection and validation of promising therapies for more extensive investigation.
Collapse
MESH Headings
- Biomarkers/blood
- Biomedical Research/trends
- Brain Diseases/diagnostic imaging
- Brain Diseases/etiology
- Brain Diseases/physiopathology
- Brain Diseases/therapy
- Clinical Trials as Topic
- Consensus
- Delphi Technique
- Diffusion of Innovation
- Forecasting
- Humans
- Infant, Newborn
- Infant, Newborn, Diseases/diagnostic imaging
- Infant, Newborn, Diseases/etiology
- Infant, Newborn, Diseases/physiopathology
- Infant, Newborn, Diseases/therapy
- Neonatology/trends
- Neuroimaging
- Research Design/trends
- Societies, Medical
- Societies, Scientific
- Time Factors
- Treatment Outcome
Collapse
Affiliation(s)
- Kristen L Benninger
- Division of Neonatology and Center for Perinatal Research, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, USA.
| | - Terrie E Inder
- Department of Pediatric Newborn Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Amy M Goodman
- Division of Child Neurology, Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | | | - Douglas R Nordli
- Section of Child Neurology, Department of Pediatrics, University of Chicago Pritzker School of Medicine, Chicago, IL, USA
| | - Tushar A Shah
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, Children's Hospital of The King's Daughters, Eastern Virginia Medical School, Norfolk, VA, USA
| | - James C Slaughter
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Nathalie L Maitre
- Division of Neonatology and Center for Perinatal Research, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, USA
| |
Collapse
|
21
|
Kleuskens DG, Gonçalves Costa F, Annink KV, van den Hoogen A, Alderliesten T, Groenendaal F, Benders MJN, Dudink J. Pathophysiology of Cerebral Hyperperfusion in Term Neonates With Hypoxic-Ischemic Encephalopathy: A Systematic Review for Future Research. Front Pediatr 2021; 9:631258. [PMID: 33604320 PMCID: PMC7884860 DOI: 10.3389/fped.2021.631258] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 01/07/2021] [Indexed: 01/07/2023] Open
Abstract
Worldwide neonatal hypoxic-ischemic encephalopathy (HIE) is a common cause of mortality and neurologic disability, despite the implementation of therapeutic hypothermia treatment. Advances toward new neuroprotective interventions have been limited by incomplete knowledge about secondary injurious processes such as cerebral hyperperfusion commonly observed during the first 1-5 days after asphyxia. Cerebral hyperperfusion is correlated with adverse neurodevelopmental outcome and it is a process that remains poorly understood. In order to provide an overview of the existing knowledge on the pathophysiology and highlight the gaps in current understanding of cerebral hyperperfusion in term animals and neonates with HIE, we performed a systematic research. We included papers scoping for study design, population, number of participants, study technique and relevant findings. Methodological quality was assessed using the checklist for cohort studies from The Joanna Briggs Institute. Out of 2,690 results, 34 studies were included in the final review-all prospective cohort studies. There were 14 studies of high, 17 moderate and 3 of low methodological quality. Data from the literature were analyzed in two main subjects: (1) Hemodynamic Changes subdivided into macro- and microscopic hemodynamic changes, and (2) Endogenous Pathways which was subdivided into N-methyl-D-aspartate/Mitogen activated protein kinase (NDMA/MAPK), Nitric Oxide (NO), prostanoids and other endogenous studies. Cerebral hyperperfusion in term neonates with HIE was found to be present 10-30 min after the hypoxic-ischemic event and was still present around day 10 and up to 1 month after birth. Cerebral hyperperfusion was also characterized by angiogenesis and cerebral vasodilation. Additionally, cerebral vasodilation was mediated by endogenous pathways such as MAPK through urokinase Plasminogen Activator (uPA), by neuronal NO synthase following NMDA and by prostanoid synthesis. Future research should elucidate the precise role of NMDA, MAPK and prostanoids in cerebral hyperperfusion. Moreover, research should focus on possible interventions and the effect of hypothermia on hyperperfusion. These findings should be taken into account simultaneously with brain imagining techniques, becoming a valuable asset in assessing the impact in neurodevelopmental outcome.
Collapse
Affiliation(s)
- Dianne G Kleuskens
- Department of Neonatology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Filipe Gonçalves Costa
- Department of Neonatology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Kim V Annink
- Department of Neonatology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Agnes van den Hoogen
- Department of Neonatology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Thomas Alderliesten
- Department of Neonatology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Floris Groenendaal
- Department of Neonatology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Manon J N Benders
- Department of Neonatology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Jeroen Dudink
- Department of Neonatology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
22
|
[Near-infrared spectroscopy : Technique, development, current use and perspectives]. Anaesthesist 2020; 70:190-203. [PMID: 32930804 DOI: 10.1007/s00101-020-00837-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Near-infrared spectroscopy (NIRS) has been available in research and clinical practice for more than four decades. Recently, there have been numerous publications and substantial developments in the field. This article describes the clinical application of NIRS in relation to current guidelines, with a focus on pediatric and cardiac anesthesia. It discusses technical and physiological principles, pitfalls in clinical use and presents (patho)physiological influencing factors and derived variables, such as fractional oxygen extraction (FOE) and the cerebral oxygen index (COx). Recommendations for the interpretation of NIRS values in connection with influencing factors, such as oxygen transport capacity, gas exchange and circulation as well as an algorithm for cardiac anesthesia are presented. Limitations of the method and the lack of comparability of values from different devices as well as generally accepted standard values are explained. Technical differences and advantages compared to pulse oxymetry and transcranial Doppler sonography are illuminated. Finally, the prognostic significance and requirements for future clinical studies are discussed.
Collapse
|
23
|
Abstract
Cerebrovascular autoregulation is the ability to maintain stable cerebral blood flow within a range of cerebral perfusion pressures. When cerebral perfusion pressure is outside the limits of effective autoregulation, the brain is subjected to hypoperfusion or hyperperfusion, which may cause vascular injury, hemorrhage, and/or hypoxic white matter injury. Infants born preterm, after fetal growth restriction, with congenital heart disease, or with hypoxic-ischemic encephalopathy are susceptible to a failure of cerebral autoregulation. Bedside assessment of cerebrovascular autoregulation would offer the opportunity to prevent brain injury. Clinicians need to know which patient populations and circumstances are associated with impaired/absent cerebral autoregulation.
Collapse
Affiliation(s)
- Elisabeth M W Kooi
- Division of Neonatology, University of Groningen, University Medical Center Groningen, Beatrix Children's Hospital, Hanzeplein 1, PO Box 30001, Groningen 9700 RB, The Netherlands.
| | - Anne E Richter
- Division of Neonatology, University of Groningen, University Medical Center Groningen, Beatrix Children's Hospital, Hanzeplein 1, PO Box 30001, Groningen 9700 RB, The Netherlands
| |
Collapse
|
24
|
Van Laere D, Meeus M, Beirnaert C, Sonck V, Laukens K, Mahieu L, Mulder A. Machine Learning to Support Hemodynamic Intervention in the Neonatal Intensive Care Unit. Clin Perinatol 2020; 47:435-448. [PMID: 32713443 DOI: 10.1016/j.clp.2020.05.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Hemodynamic support in neonatal intensive care is directed at maintaining cardiovascular wellbeing. At present, monitoring of vital signs plays an essential role in augmenting care in a reactive manner. By applying machine learning techniques, a model can be trained to learn patterns in time series data, allowing the detection of adverse outcomes before they become clinically apparent. In this review we provide an overview of the different machine learning techniques that have been used to develop models in hemodynamic care for newborn infants. We focus on their potential benefits, research pitfalls, and challenges related to their implementation in clinical care.
Collapse
Affiliation(s)
- David Van Laere
- Department of Neonatal Intensive Care, University Hospital Antwerp, Wilrijkstraat 10, Edegem BE-2650, Belgium; Laboratory of Pediatrics, Department of Life Sciences, University of Antwerp, Prinsstraat 13, Antwerpen 2000, Belgium.
| | - Marisse Meeus
- Department of Neonatal Intensive Care, University Hospital Antwerp, Wilrijkstraat 10, Edegem BE-2650, Belgium; Laboratory of Pediatrics, Department of Life Sciences, University of Antwerp, Prinsstraat 13, Antwerpen 2000, Belgium
| | - Charlie Beirnaert
- Adrem Data Lab, Department of Mathematics and Computer Science, University of Antwerp, Middelheimlaan 1, Antwerpen 2020, Belgium
| | - Victor Sonck
- ML6, Esplanade Oscar Van De Voorde 1, Ghent 9000, Belgium
| | - Kris Laukens
- Adrem Data Lab, Department of Mathematics and Computer Science, University of Antwerp, Middelheimlaan 1, Antwerpen 2020, Belgium
| | - Ludo Mahieu
- Department of Neonatal Intensive Care, University Hospital Antwerp, Wilrijkstraat 10, Edegem BE-2650, Belgium; Laboratory of Pediatrics, Department of Life Sciences, University of Antwerp, Prinsstraat 13, Antwerpen 2000, Belgium
| | - Antonius Mulder
- Department of Neonatal Intensive Care, University Hospital Antwerp, Wilrijkstraat 10, Edegem BE-2650, Belgium; Laboratory of Pediatrics, Department of Life Sciences, University of Antwerp, Prinsstraat 13, Antwerpen 2000, Belgium
| |
Collapse
|
25
|
O'Dea M, Sweetman D, Bonifacio SL, El-Dib M, Austin T, Molloy EJ. Management of Multi Organ Dysfunction in Neonatal Encephalopathy. Front Pediatr 2020; 8:239. [PMID: 32500050 PMCID: PMC7243796 DOI: 10.3389/fped.2020.00239] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Accepted: 04/20/2020] [Indexed: 12/16/2022] Open
Abstract
Neonatal Encephalopathy (NE) describes neonates with disturbed neurological function in the first post-natal days of life. NE is an overall term that does not specify the etiology of the encephalopathy although it often involves hypoxia-ischaemia. In NE, although neurological dysfunction is part of the injury and is most predictive of long-term outcome, these infants may also have multiorgan injury and compromise, which further contribute to neurological impairment and long-term morbidities. Therapeutic hypothermia (TH) is the standard of care for moderate to severe NE. Infants with NE may have co-existing immune, respiratory, endocrine, renal, hepatic, and cardiac dysfunction that require individualized management and can be impacted by TH. Non-neurological organ dysfunction not only has a negative effect on long term outcome but may also influence the efficacy of treatments in the acute phase. Post resuscitative care involves stabilization and decisions regarding TH and management of multi-organ dysfunction. This management includes detailed neurological assessment, cardio-respiratory stabilization, glycaemic and fluid control, sepsis evaluation and antibiotics, seizure identification, and monitoring and responding to biochemical and coagulation derangements. The emergence of new biomarkers of specific organ injury may have predictive value and improve the definition of organ injury and prognosis. Further evidence-based research is needed to optimize management of NE, prevent further organ dysfunction and reduce neurodevelopmental impairment.
Collapse
Affiliation(s)
- Mary O'Dea
- Discipline of Paediatrics, Trinity College, The University of Dublin, Dublin, Ireland
- Paediatric Research Laboratory, Trinity Translational Institute, St. James' Hospital, Dublin, Ireland
- Neonatology, Coombe Women and Infant's University Hospital, Dublin, Ireland
- National Children's Research Centre, Dublin, Ireland
| | - Deirdre Sweetman
- National Children's Research Centre, Dublin, Ireland
- Paediatrics, National Maternity Hospital, Dublin, Ireland
| | - Sonia Lomeli Bonifacio
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, United States
| | - Mohamed El-Dib
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Topun Austin
- Neonatal Intensive Care Unit, Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom
| | - Eleanor J. Molloy
- Discipline of Paediatrics, Trinity College, The University of Dublin, Dublin, Ireland
- Paediatric Research Laboratory, Trinity Translational Institute, St. James' Hospital, Dublin, Ireland
- Neonatology, Coombe Women and Infant's University Hospital, Dublin, Ireland
- National Children's Research Centre, Dublin, Ireland
- Paediatrics, National Maternity Hospital, Dublin, Ireland
- Neonatology, Children's Hospital Ireland (CHI) at Crumlin, Dublin, Ireland
- Paediatrics, CHI at Tallaght, Tallaght University Hospital, Dublin, Ireland
| |
Collapse
|
26
|
van Bel F, Naulaers G. Cerebral venous volume changes and pressure autoregulation in critically ill infants: an editorial comment. J Perinatol 2020; 40:693-694. [PMID: 32157218 DOI: 10.1038/s41372-020-0646-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 02/24/2020] [Accepted: 02/26/2020] [Indexed: 11/09/2022]
Affiliation(s)
- Frank van Bel
- Department of Neonatology, Wilhelmina Children's Hospital and Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands.
| | - Gunnar Naulaers
- Department of Neonatology, University Hospitals Leuven, Leuven, Belgium
| |
Collapse
|
27
|
Electroencephalographic patterns preceding cardiac arrest in neonates following cardiac surgery. Resuscitation 2019; 144:67-74. [PMID: 31560988 DOI: 10.1016/j.resuscitation.2019.09.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 09/06/2019] [Accepted: 09/11/2019] [Indexed: 11/21/2022]
Abstract
AIM To identify EEG changes that could predict impending cardiac arrest (CA) in neonates with congenital heart disease undergoing postoperative continuous EEG monitoring. METHODS Single-center observational study of neonates who underwent cardiac surgery and had CA postoperatively while undergoing EEG monitoring from 2012-2018. Clinical data were extracted from the medical record. EEG backgrounds were evaluated at defined time-points using standardized terminology. RESULTS We assessed 22 neonates. The median gestational age was 38.7 weeks (IQR 37.6, 39), the median age at surgery was 5 days (IQR 2, 8), 12 patients (55%) underwent repair for hypoplastic left heart syndrome, and the median time from cardiac intensive care unit arrival postoperatively to CA was 9.5 h (IQR 7, 23). The initial EEG background was abnormal in 15 (68%). All 22 neonates (100%) had worsening of the EEG background prior to initiation of chest compressions for CA at a median of 3 min (IQR 1.5, 3). Eighteen neonates (82%) had an EEG change more than 1 min prior to chest compressions. The EEG backgrounds immediately prior to CA were continuous low voltage in 1 (5%), excessive discontinuity in 8 (36%), burst-suppression in 2 (9%), and low voltage suppression in 11 (50%). CONCLUSION EEG background was abnormal in 68% of neonates at EEG monitoring onset and worsened in all minutes before CA. EEG background changes may be an early sign of impending CA and indicative of developing cerebral dysfunction. Further study is needed to determine whether rapid identification of EEG changes could drive implementation of interventions to prevent CA.
Collapse
|
28
|
Regional tissue oxygenation monitoring in the neonatal intensive care unit: evidence for clinical strategies and future directions. Pediatr Res 2019; 86:296-304. [PMID: 31247635 DOI: 10.1038/s41390-019-0466-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 05/24/2019] [Accepted: 06/08/2019] [Indexed: 12/19/2022]
Abstract
Near-infrared spectroscopy (NIRS)-based monitoring of regional tissue oxygenation (rSO2) is becoming more commonplace in the neonatal intensive care unit (NICU). While increasing evidence supports rSO2 monitoring, actual standards for applying this noninvasive bedside technique continue to evolve. This review highlights the current strengths and pitfalls surrounding practical NIRS-based monitoring in the neonatal population. The physiologic background of rSO2 monitoring is discussed, with attention to understanding oxygen delivery/consumption mismatch and its effects on tissue oxygen extraction. The bedside utility of both cerebral and peripheral rSO2 monitoring in the NICU is then explored from two perspectives: (1) disease/event-specific "responsive" monitoring and (2) "routine," continuous monitoring. Recent evidence incorporating both monitoring approaches is summarized with emphasis on practical applicability in the NICU. Finally, a future paradigm for a broad-based NIRS monitoring strategy is presented, with attention towards improving personalization of neonatal care and ultimately enhancing long-term outcomes.
Collapse
|
29
|
van Bel F, Vaes J, Groenendaal F. Prevention, Reduction and Repair of Brain Injury of the Preterm Infant. Front Physiol 2019; 10:181. [PMID: 30949060 PMCID: PMC6435588 DOI: 10.3389/fphys.2019.00181] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 02/14/2019] [Indexed: 12/15/2022] Open
Affiliation(s)
- Frank van Bel
- Department of Neonatology, Wilhelmina Children’s Hospital and Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Josine Vaes
- Laboratory of Neuroimmunology and Developmental Origins of Disease, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Floris Groenendaal
- Department of Neonatology, Wilhelmina Children’s Hospital and Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
30
|
Vedrenne-Cloquet M, Breinig S, Dechartres A, Jung C, Renolleau S, Marchand-Martin L, Durrmeyer X. Cerebral Oxygenation During Neonatal Intubation-Ancillary Study of the Prettineo-Study. Front Pediatr 2019; 7:40. [PMID: 30881948 PMCID: PMC6407664 DOI: 10.3389/fped.2019.00040] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 01/30/2019] [Indexed: 01/25/2023] Open
Abstract
Purpose: This study aimed to describe cerebral Near InfraRed Spectroscopy (NIRS) profiles during neonatal intubation using two different premedication regimens. Methods: Neonates requiring non-emergency intubation were enrolled in an ancillary study, conducted in two French Neonatal Intensive Care Units participating in a larger on-going multicenter, double blind, randomized, controlled trial. Patients were randomly assigned to the "atropine-propofol" (Prop) group or the "atropine-atracurium-sufentanil" (SufTrac) group. Regional cerebral oxygen saturation (rScO2), pulse oxymetry (SpO2), mean arterial blood pressure (MABP), and transcutaneous partial pressure of carbon dioxide (TcPCO2) were collected at 9 predefined time points from 1 min before to 60 min after the first drug injection. The two primary outcomes were a decrease in rScO2 value >20% from baseline and a decrease in fractional cerebral tissue oxygen extraction (FTOE) value >10% from baseline, at any time point. Secondary outcomes included physiological parameters changes over time and correlations between mean arterial blood pressure, and FTOE at different time points. Descriptive results were obtained and exploratory statistical analyses were performed for 24 included patients. Results: rScO2 decreased in 5/11 (46%) infants from the Prop group and 10/13 (77%) from the SufTrac group (p = 0.11); FTOE decreased in 10/11 (91%) infants from the Prop group, and 12/13 (92%) from the SufTrac group (p = 0.90). rScO2 values decreased over time in both groups, whereas FTOE's pattern appeared more stable. SpO2 and transcutaneous TcPCO2 seemed more preserved in the Prop group while MABP seemed more preserved in the SufTrac group. No important correlation was observed between MABP and FTOE (r = 0.08 to 0.12 across the time points). Conclusion: Our results suggest a frequent decrease in cerebral oxygenation without obvious impairment in cerebral autoregulation during neonatal intubation with premedication. This study confirms the feasibility and the informative value of cerebral NIRS monitoring in this setting. Clinical Trial Registration: www.ClinicalTrials.gov, identifier NCT02700893.
Collapse
Affiliation(s)
- Meryl Vedrenne-Cloquet
- Neonatal Intensive Care Unit, CHI Créteil, Créteil, France.,Pediatric Intensive Care Unit, Necker University Hospital, Paris, France
| | - Sophie Breinig
- Neonatal and Pediatric Intensive Care Unit, Toulouse University Hospital, Toulouse, France
| | - Agnes Dechartres
- Inserm U1136, Institut Pierre Louis d'Epidémiologie et de Santé Publique, Département Biostatistique santé publique, information médicale-Hôpital Pitié Salpêtrière, Assistance Publique-Hôpitaux de Paris (APHP), Sorbonne Université, Paris, France
| | - Camille Jung
- Clinical Research Center, CHI Créteil, Créteil, France
| | - Sylvain Renolleau
- Pediatric Intensive Care Unit, Necker University Hospital, Paris, France
| | - Laetitia Marchand-Martin
- INSERM, UMR1153, Obstetrical, Perinatal and Paediatric Epidemiology (Epopé) Team, Epidemiology and Biostatistics Sorbonne, Paris Descartes University, Paris, France
| | - Xavier Durrmeyer
- Neonatal Intensive Care Unit, CHI Créteil, Créteil, France.,Faculté de Médecine de Créteil, IMRB, GRC CARMAS, Université Paris Est Créteil, Créteil, France
| |
Collapse
|
31
|
Thewissen L, Caicedo A, Dereymaeker A, Van Huffel S, Naulaers G, Allegaert K, Smits A. Cerebral autoregulation and activity after propofol for endotracheal intubation in preterm neonates. Pediatr Res 2018; 84:719-725. [PMID: 30201953 DOI: 10.1038/s41390-018-0160-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 07/12/2018] [Accepted: 08/10/2018] [Indexed: 12/12/2022]
Abstract
BACKGROUND Despite increasing use of propofol in neonates, observations on cerebral effects are limited. AIM To investigate cerebral autoregulation (CAR) and activity after propofol for endotracheal intubation in preterm neonates. METHODS Twenty-two neonates received propofol before intubation as part of a published dose-finding study. Mean arterial blood pressure (MABP), near-infrared spectroscopy-derived cerebral oxygenation (rScO2), and amplitude-integrated electroencephalography (aEEG) were analyzed until 180 min after propofol. CAR was expressed as transfer function (TF) gain, indicating % change in rScO2 per 1 mmHg change in MABP. Values exceeding mean TF gain + 2 standard deviations (SD) defined impaired CAR. RESULTS After intubation with a median propofol dose of 1 (0.5-4.5) mg/kg, rScO2 remained stable during decreasing MABP. Mean (±SD) TF gain was 0.8 (±0.3)%/mmHg. Impaired CAR was identified in 1 and 5 patient(s) during drug-related hypotension and normal to raised MABP, respectively. Suppressed aEEG was observed up to 60 min after propofol. CONCLUSIONS Drug-related hypotension and decreased cerebral activity after intubation with low propofol doses in preterm neonates were observed, without evidence of cerebral ischemic hypoxia. CAR remained intact during drug-related hypotension in 95.5% of patients. Cerebral monitoring including CAR clarifies the cerebral impact of MABP fluctuations.
Collapse
Affiliation(s)
- Liesbeth Thewissen
- Department of Neonatology, University Hospitals Leuven, Leuven, Belgium.
| | - Alexander Caicedo
- Department of Electrical Engineering, ESAT-Stadius, KU Leuven, Leuven, Belgium
| | | | - Sabine Van Huffel
- Department of Electrical Engineering, ESAT-Stadius, KU Leuven, Leuven, Belgium
| | - Gunnar Naulaers
- Department of Neonatology, University Hospitals Leuven, Leuven, Belgium
| | - Karel Allegaert
- Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Anne Smits
- Department of Neonatology, University Hospitals Leuven, Leuven, Belgium
| |
Collapse
|
32
|
Andersen AV, Simonsen SA, Schytz HW, Iversen HK. Assessing low-frequency oscillations in cerebrovascular diseases and related conditions with near-infrared spectroscopy: a plausible method for evaluating cerebral autoregulation? NEUROPHOTONICS 2018; 5:030901. [PMID: 30689678 PMCID: PMC6156398 DOI: 10.1117/1.nph.5.3.030901] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 08/02/2018] [Indexed: 05/08/2023]
Abstract
BACKGROUND Cerebral autoregulation (CA) is the brain's ability to always maintain an adequate and relatively constant blood supply, which is often impaired in cerebrovascular diseases. Near-infrared spectroscopy (NIRS) examines oxygenated hemoglobin (OxyHb) in the cerebral cortex. Low- and very low-frequency oscillations ( LFOs ≈ 0.1 Hz and VLFOs ≈ 0.05 to 0.01 Hz) in OxyHb have been proposed to reflect CA. AIM To systematically review published results on OxyHb LFOs and VLFOs in cerebrovascular diseases and related conditions measured with NIRS. APPROACH A systematic search was performed in the MEDLINE database, which generated 36 studies relevant for inclusion. RESULTS Healthy people have relatively stable LFOs. LFO amplitude seems to reflect myogenic CA being decreased by vasomotor paralysis in stroke, by smooth muscle damage or as compensatory action in other conditions but can also be influenced by the sympathetic tone. VLFO amplitude is believed to reflect neurogenic and metabolic CA and is lower in stroke, atherosclerosis, and with aging. Both LFO and VLFO synchronizations appear disturbed in stroke, while the former is also altered in internal carotid stenosis and hypertension. CONCLUSION We conclude that amplitudes of LFOs and VLFOs are relatively robust measures for evaluating mechanisms of CA and synchronization analyses can show temporal disruption of CA. Further research and more coherent methodologies are needed.
Collapse
Affiliation(s)
- Adam Vittrup Andersen
- Rigshospitalet, Department of Neurology, Glostrup, Denmark
- University of Copenhagen, Department of Clinical Medicine, Copenhagen, Denmark
- Address all correspondence to: Adam Vittrup Andersen, E-mail:
| | - Sofie Amalie Simonsen
- Rigshospitalet, Department of Neurology, Glostrup, Denmark
- University of Copenhagen, Department of Clinical Medicine, Copenhagen, Denmark
| | - Henrik Winther Schytz
- Rigshospitalet, Department of Neurology, Glostrup, Denmark
- University of Copenhagen, Department of Clinical Medicine, Copenhagen, Denmark
| | - Helle Klingenberg Iversen
- Rigshospitalet, Department of Neurology, Glostrup, Denmark
- University of Copenhagen, Department of Clinical Medicine, Copenhagen, Denmark
| |
Collapse
|