1
|
Peeples ES, Molloy EJ, Bearer CF. Novel biomarkers of fetal and neonatal environmental exposure, effect and susceptibility. Pediatr Res 2025:10.1038/s41390-025-03816-5. [PMID: 39939520 DOI: 10.1038/s41390-025-03816-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 11/12/2024] [Accepted: 12/09/2024] [Indexed: 02/14/2025]
Abstract
Rapid advancements in science and technology have allowed medical providers to treat wider ranges of diseases with safer and more effective therapies than ever before. One of the areas of health that has been consistently understudied, however, is one that affects us all: environmental health or the effects that the chemicals we are exposed to every day have on our acute and chronic health. This effect can be exacerbated during and shortly after pregnancy, as an individual exposure is often shared by both the mother and the fetus/neonate. The diagnosis and monitoring of chemical exposure can be quite challenging, and improving our understanding of the effects of exposure will therefore require effective use of an expanding set of biomarker tests and biological matrices. This review covers the background and history of neonatal biomarkers of exposure, effect, and susceptibility, focusing on the potential uses for the non-invasive matrix of exhaled breath for the detection and monitoring of chemical exposures. IMPACT: Provides a brief overview of Food and Drug Administration and National Institutes of Health Joint Leadership Council BEST (Biomarkers, EndpointS, and other Tools) Resource. Summarizes new and potential biomarkers for fetal exposure. Collates studies using breath as a matrix for environmental exposures.
Collapse
Affiliation(s)
- Eric S Peeples
- Pediatrics, University of Nebraska Medical Center, Omaha, NE, USA
- Neonatology, Children's Nebraska, Omaha, NE, USA
- Child Health Research Institute, Omaha, NE, USA
| | - Eleanor J Molloy
- Paediatrics, Trinity College Dublin, Trinity Research in Childhood Centre (TRiCC), Dublin, Ireland
- Trinity Translational Medicine Institute (TTMI), Dublin, Ireland
- Neonatology, Coombe Women's and Infants University Hospital, Dublin, Ireland
- Neonatology, CHI at Crumlin, Dublin, Ireland
- Children's Hospital Ireland (CHI) at Tallaght, Dublin, Ireland
| | - Cynthia F Bearer
- UH Rainbow Babies & Children's Hospital, Cleveland, OH, USA.
- Case Western Reserve University School of Medicine, Cleveland, OH, USA.
| |
Collapse
|
2
|
Lakestani S. Volatile organic compounds and cancer risk assessment in an intensive care unit. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2024; 68:1731-1739. [PMID: 39023743 PMCID: PMC11461571 DOI: 10.1007/s00484-024-02701-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 04/22/2024] [Accepted: 05/07/2024] [Indexed: 07/20/2024]
Abstract
Changes caused by air-cleaning devices in the amounts of volatile organic compounds in an intensive care unit were monitored in the study. The cancer risk and hazard index were calculated. The measurements were made for one month at isolated room and two different points and times in the intensive care unit. According to the sampling program, the air-cleaning devices were turned off in weeks 1 and 4 and turned on in weeks 2 and 3. Volatile organic compounds were collected by active sampling. Samples were analyzed by a thermal desorber coupled to a gas chromatography-mass spectrometry instrument with selective ion monitoring. The results showed that the concentrations of benzene, toluene, and o-xylene decreased by about 70% after the air-cleaning devices were installed. The cancer risk assessment for naphthalene was recorded at the highest level of cancer risk (Class A). The hazard index value of naphthalene was recorded at the harmful level when air-cleaning devices were not installed. The concentrations of benzene (p = 0.01), toluene (p = 0.02), ethylbenzene (p = 0.02), styrene (p = 0.01), and m, p-xylene (p = 0.04) before the air-cleaning devices were installed were significantly different from those recorded when the air-cleaning devices were turned on.
Collapse
Affiliation(s)
- Sanaz Lakestani
- Scientific Industrial and Technological Application and Research Center, Bolu Abant Izzet Baysal University, 14030, Golkoy, Bolu, Turkey.
| |
Collapse
|
3
|
de Kroon RR, Frerichs NM, Struys EA, de Boer NK, de Meij TGJ, Niemarkt HJ. The Potential of Fecal Volatile Organic Compound Analysis for the Early Diagnosis of Late-Onset Sepsis in Preterm Infants: A Narrative Review. SENSORS (BASEL, SWITZERLAND) 2024; 24:3162. [PMID: 38794014 PMCID: PMC11124895 DOI: 10.3390/s24103162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/01/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024]
Abstract
Early diagnosis and treatment of late-onset sepsis (LOS) is crucial for survival, but challenging. Intestinal microbiota and metabolome alterations precede the clinical onset of LOS, and the preterm gut is considered an important source of bacterial pathogens. Fecal volatile organic compounds (VOCs), formed by physiologic and pathophysiologic metabolic processes in the preterm gut, reflect a complex interplay between the human host, the environment, and microbiota. Disease-associated fecal VOCs can be detected with an array of devices with various potential for the development of a point-of-care test (POCT) for preclinical LOS detection. While characteristic VOCs for common LOS pathogens have been described, their VOC profiles often overlap with other pathogens due to similarities in metabolic pathways, hampering the construction of species-specific profiles. Clinical studies have, however, successfully discriminated LOS patients from healthy individuals using fecal VOC analysis with the highest predictive value for Gram-negative pathogens. This review discusses the current advancements in the development of a non-invasive fecal VOC-based POCT for early diagnosis of LOS, which may potentially provide opportunities for early intervention and targeted treatment and could improve clinical neonatal outcomes. Identification of confounding variables impacting VOC synthesis, selection of an optimal detection device, and development of standardized sampling protocols will allow for the development of a novel POCT in the near future.
Collapse
Affiliation(s)
- Rimke R. de Kroon
- Department of Pediatric Gastroenterology, Emma Children’s Hospital, Amsterdam Gastroenterology Endocrinology Metabolism Research Institute, Amsterdam University Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
- Amsterdam Reproduction and Development Research Institute, Amsterdam University Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Nina M. Frerichs
- Department of Pediatric Gastroenterology, Emma Children’s Hospital, Amsterdam Gastroenterology Endocrinology Metabolism Research Institute, Amsterdam University Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
- Amsterdam Reproduction and Development Research Institute, Amsterdam University Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Eduard A. Struys
- Department of Laboratory Medicine, Amsterdam University Medical Center, Location AMC, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Nanne K. de Boer
- Department of Gastroenterology and Hepatology, Amsterdam Gastroenterology Endocrinology Metabolism Research Institute, Amsterdam University Medical Center, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
| | - Tim G. J. de Meij
- Department of Pediatric Gastroenterology, Emma Children’s Hospital, Amsterdam Gastroenterology Endocrinology Metabolism Research Institute, Amsterdam University Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Hendrik J. Niemarkt
- Department of Neonatology, Maxima Medisch Centrum, De Run 4600, 5504 DB Veldhoven, The Netherlands
- Department of Electrical Engineering, TU Eindhoven, Eindhoven University of Technology, Postbus 513, 5600 MB Eindhoven, The Netherlands
| |
Collapse
|
4
|
Truong T, Kim J. A Wearable Strain Sensor Utilizing Shape Memory Polymer/Carbon Nanotube Composites Measuring Respiration Movements. Polymers (Basel) 2024; 16:373. [PMID: 38337262 DOI: 10.3390/polym16030373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/18/2024] [Accepted: 01/26/2024] [Indexed: 02/12/2024] Open
Abstract
Flexible wearable sensors are integral in diverse applications, particularly in healthcare and human-computer interaction systems. This paper introduces a resistive stretch sensor crafted from shape memory polymers (SMP) blended with carbon nanotubes (CNTs) and coated with silver paste. Initially, the sensor's characteristics underwent evaluation using a Universal Testing Machine (UTM) and an LCR meter. These sensors showcased exceptional sensitivity, boasting a gauge factor of up to 20 at 5% strain, making them adept at detecting subtle movements or stimuli. Subsequently, the study conducted a comparison between SMP-CNT conductors with and without the silver coating layer. The durability of the sensors was validated through 1000 cycles of stretching at 4% ∆R/R0. Lastly, the sensors were utilized for monitoring respiration and measuring human breathing. Fourier transform and power spectrum density (PSD) analysis were employed to discern frequency components. Positioned between the chest and abdominal wall for contact-based respiration monitoring, the sensors revealed a dominant frequency of approximately 0.35 Hz. Signal filtering further enhanced their ability to capture respiration signals, establishing them as valuable tools for next-generation personalized healthcare applications.
Collapse
Affiliation(s)
- TranThuyNga Truong
- Department of Smart Wearables Engineering, Soongsil University, Seoul 156-743, Republic of Korea
| | - Jooyong Kim
- Department of Materials Science and Engineering, Soongsil University, Seoul 156-743, Republic of Korea
| |
Collapse
|
5
|
Christofi E, Barran P. Ion Mobility Mass Spectrometry (IM-MS) for Structural Biology: Insights Gained by Measuring Mass, Charge, and Collision Cross Section. Chem Rev 2023; 123:2902-2949. [PMID: 36827511 PMCID: PMC10037255 DOI: 10.1021/acs.chemrev.2c00600] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Indexed: 02/26/2023]
Abstract
The investigation of macromolecular biomolecules with ion mobility mass spectrometry (IM-MS) techniques has provided substantial insights into the field of structural biology over the past two decades. An IM-MS workflow applied to a given target analyte provides mass, charge, and conformation, and all three of these can be used to discern structural information. While mass and charge are determined in mass spectrometry (MS), it is the addition of ion mobility that enables the separation of isomeric and isobaric ions and the direct elucidation of conformation, which has reaped huge benefits for structural biology. In this review, where we focus on the analysis of proteins and their complexes, we outline the typical features of an IM-MS experiment from the preparation of samples, the creation of ions, and their separation in different mobility and mass spectrometers. We describe the interpretation of ion mobility data in terms of protein conformation and how the data can be compared with data from other sources with the use of computational tools. The benefit of coupling mobility analysis to activation via collisions with gas or surfaces or photons photoactivation is detailed with reference to recent examples. And finally, we focus on insights afforded by IM-MS experiments when applied to the study of conformationally dynamic and intrinsically disordered proteins.
Collapse
Affiliation(s)
- Emilia Christofi
- Michael Barber Centre for Collaborative
Mass Spectrometry, Manchester Institute of Biotechnology, University of Manchester, Princess Street, Manchester M1 7DN, United Kingdom
| | - Perdita Barran
- Michael Barber Centre for Collaborative
Mass Spectrometry, Manchester Institute of Biotechnology, University of Manchester, Princess Street, Manchester M1 7DN, United Kingdom
| |
Collapse
|
6
|
Bous M, Tutdibi E, Nourkami-Tutdibi N, Kaiser E, Stutz R, Meyer S, Baumbach JI, Zemlin M, Goedicke-Fritz S. Patterns of volatile organic compounds in excrements of preterm neonates. Eur J Clin Invest 2023; 53:e13868. [PMID: 36062918 DOI: 10.1111/eci.13868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 08/11/2022] [Accepted: 08/27/2022] [Indexed: 12/15/2022]
Abstract
BACKGROUND As neonates are susceptible for many diseases, establishing noninvasive diagnostic methods is desirable. We hypothesized that volatile organic compounds (VOCs) could be successfully measured in diaper samples. METHODS We performed a feasibility study to investigate whether ambient air-independent headspace measurements of the VOC profiles of diapers from premature infants can be conducted using ion mobility spectrometer coupled with multi-capillary columns (B & S Analytik GmbH). RESULTS We analysed 39 diapers filled with stool (n = 10) or urine (n = 20) respectively, using empty diapers as a control (n = 9). A total of 158 different VOCs were identified, and we classified the content of the diapers (urine or stool) according to their VOC profiles with a significance level of p < 0.05. CONCLUSIONS We have developed a novel method to study headspace VOC profiles of biosamples using ion mobility spectrometry coupled with multi-capillary columns. Using this method, we have characterized the VOC profiles of stool and urine of preterm neonates. Future studies are warranted to characterize specific VOC profiles in infections and other diseases of the preterm neonate, thus establishing quick and noninvasive diagnostics in the routine care of the highly vulnerable preterm and term neonates.
Collapse
Affiliation(s)
- Michelle Bous
- Department of General Pediatrics and Neonatology, Saarland University Medical School, Homburg, Germany
| | - Erol Tutdibi
- Department of General Pediatrics and Neonatology, Saarland University Medical School, Homburg, Germany
| | - Nasenien Nourkami-Tutdibi
- Department of General Pediatrics and Neonatology, Saarland University Medical School, Homburg, Germany
| | - Elisabeth Kaiser
- Department of General Pediatrics and Neonatology, Saarland University Medical School, Homburg, Germany
| | - Regine Stutz
- Department of General Pediatrics and Neonatology, Saarland University Medical School, Homburg, Germany
| | - Sascha Meyer
- Department of General Pediatrics and Neonatology, Saarland University Medical School, Homburg, Germany
| | - Jörg Ingo Baumbach
- Department Bio- and Chemical Engineering, Technical University Dortmund, Dortmund, Germany
| | - Michael Zemlin
- Department of General Pediatrics and Neonatology, Saarland University Medical School, Homburg, Germany
| | - Sybelle Goedicke-Fritz
- Department of General Pediatrics and Neonatology, Saarland University Medical School, Homburg, Germany
| |
Collapse
|
7
|
Contactless radar-based breathing monitoring of premature infants in the neonatal intensive care unit. Sci Rep 2022; 12:5150. [PMID: 35338172 PMCID: PMC8956695 DOI: 10.1038/s41598-022-08836-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 03/03/2022] [Indexed: 01/18/2023] Open
Abstract
Vital sign monitoring systems are essential in the care of hospitalized neonates. Due to the immaturity of their organs and immune system, premature infants require continuous monitoring of their vital parameters and sensors need to be directly attached to their fragile skin. Besides mobility restrictions and stress, these sensors often cause skin irritation and may lead to pressure necrosis. In this work, we show that a contactless radar-based approach is viable for breathing monitoring in the Neonatal intensive care unit (NICU). For the first time, different scenarios common to the NICU daily routine are investigated, and the challenges of monitoring in a real clinical setup are addressed through different contributions in the signal processing framework. Rather than just discarding measurements under strong interference, we present a novel random body movement mitigation technique based on the time-frequency decomposition of the recovered signal. In addition, we propose a simple and accurate frequency estimator which explores the harmonic structure of the breathing signal. As a result, the proposed radar-based solution is able to provide reliable breathing frequency estimation, which is close to the reference cabled device values most of the time. Our findings shed light on the strengths and limitations of this technology and lay the foundation for future studies toward a completely contactless solution for vital signs monitoring.
Collapse
|
8
|
Wojnowski W, Kalinowska K. Machine Learning and Electronic Noses for Medical Diagnostics. Artif Intell Med 2022. [DOI: 10.1007/978-3-030-64573-1_329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2023]
|
9
|
Koomen DC, May JC, McLean JA. Insights and prospects for ion mobility-mass spectrometry in clinical chemistry. Expert Rev Proteomics 2022; 19:17-31. [PMID: 34986717 PMCID: PMC8881341 DOI: 10.1080/14789450.2022.2026218] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 12/23/2021] [Indexed: 01/19/2023]
Abstract
INTRODUCTION Ion mobility-mass spectrometry is an emerging technology in the clinical setting for high throughput and high confidence molecular characterization from complex biological samples. Ion mobility spectrometry can provide isomer separations on the basis of molecular structure, the ability of which is increasing through technological developments that afford enhanced resolving power. Integrating multiple separation dimensions, such as liquid chromatography-ion mobility-mass spectrometry (LC-IM-MS) provide dramatic enhancements in the mitigation of molecular interferences for high accuracy clinical measurements. AREAS COVERED Multidimensional separations with LC-IM-MS provide better selectivity and sensitivity in molecular analysis. Mass spectrometry imaging of tissues to inform spatial molecular distribution is improved by complementary ion mobility analyses. Biomarker identification in surgical environments is enhanced by intraoperative biochemical analysis with mass spectrometry and holds promise for integration with ion mobility spectrometry. New prospects in high resolving power ion mobility are enhancing analysis capabilities, such as distinguishing isomeric compounds. EXPERT OPINION Ion mobility-mass spectrometry holds many prospects for the field of isomer identification, molecular imaging, and intraoperative tumor margin delineation in clinical settings. These advantages are afforded while maintaining fast analysis times and subsequently high throughput. High resolving power ion mobility will enhance these advantages further, in particular for analyses requiring high confidence isobaric selectivity and detection.
Collapse
Affiliation(s)
- David C Koomen
- Department of Chemistry, Center for Innovative Technology, Institute of Chemical Biology, Institute for Integrative Biosystems Research and Education, Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, TN, USA
| | - Jody C May
- Department of Chemistry, Center for Innovative Technology, Institute of Chemical Biology, Institute for Integrative Biosystems Research and Education, Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, TN, USA
| | - John A McLean
- Department of Chemistry, Center for Innovative Technology, Institute of Chemical Biology, Institute for Integrative Biosystems Research and Education, Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
10
|
Course CW, Watkins J, Muller C, Odd D, Kotecha S, Chakraborty M. Volatile organic compounds as disease predictors in newborn infants: a systematic review. J Breath Res 2021; 15. [PMID: 33530065 DOI: 10.1088/1752-7163/abe283] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 02/02/2021] [Indexed: 11/11/2022]
Abstract
Volatile organic compounds (VOC) detected in human breath, urine, stool, sweat, saliva, and blood result from metabolic processes in the body during health or disease. Using sophisticated measurement systems, small amounts of these compounds can be detected in the above bodily fluids. Multiple studies in adults and children have shown the potential of these compounds to differentiate between healthy individuals and patients by detecting profiles of compounds in non-invasively collected samples. However, the detection of biomarkers in VOCs from neonates is particularly attractive due to the non-invasive nature of its approach, and its ability to track disease progress by longitudinal sampling. In this work we have reviewed the literature on the use of VOCs in neonates and identified areas for future work.
Collapse
Affiliation(s)
- Christopher William Course
- University Hospital of Wales, University Hospital of Wales, Cardiff, Cardiff, CF14 4XW, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND
| | - John Watkins
- Cardiff University, Cardiff University, Cardiff, CF14 4YS, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND
| | - Carsten Muller
- Cardiff University, Cardiff University, Cardiff, CF14 4YS, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND
| | - David Odd
- Cardiff University, Cardiff University, Cardiff, CF14 4YS, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND
| | - Sailesh Kotecha
- Cardiff University, University Hospital of Wales, Cardiff, CF14 4XW, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND
| | - Mallinath Chakraborty
- Cardiff University, University Hospital of Wales, Cardiff, CF10 3AT, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND
| |
Collapse
|
11
|
Wright H, Bannaga AS, Iriarte R, Mahmoud M, Arasaradnam RP. Utility of volatile organic compounds as a diagnostic tool in preterm infants. Pediatr Res 2021; 89:263-268. [PMID: 32120380 DOI: 10.1038/s41390-020-0828-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 01/29/2020] [Accepted: 02/12/2020] [Indexed: 11/09/2022]
Abstract
BACKGROUND Volatile organic compounds (VOCs) are hydrocarbons that originate within different healthy and diseased tissues. VOCs can be secreted into the circulation and then excreted in the urine and faeces. In the lungs, VOCs are locally produced and can be detected in exhaled breath. VOCs can be identified using non-invasive techniques, which make their use in preterm infants safe and desirable. METHODS A systematic search of the literature in PubMed, Embase and Web of Science was conducted looking for VOCs techniques and diagnostic performance in preterm infants. A total of 50 articles identified with only seven papers were included in the final analysis in accordance with Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA). RESULTS VOCs could diagnose necrotising enterocolitis up to 4 days before a clinical diagnosis; for late onset sepsis, up to 3 days before; and for bronchopulmonary dysplasia, up to 2 weeks before. In addition to these diagnostic uses, VOCs analysis could also distinguish breastfed from formula-fed preterm neonates in the first month of life. CONCLUSION VOCs analysis is a non-invasive tool that makes the use in preterm infants of preference. VOCs analytic techniques require more research and consensus between researchers to overcome their limitations. IMPACT Volatile organic compounds are hydrocarbons that can separate between healthy and diseased states in preterm infants. Biomarker panels developed from volatile organic compounds are potential diagnostic tools. The non-invasive nature of acquiring volatile organic compounds markers make it desirable in the paediatric patients. Research into exact chemical components of the volatile organic compounds can inform about the pathophysiology of disease in preterm infants. More robust longitudinal studies with repeated experiments are required before volatile organic compounds can be applied in clinical practice.
Collapse
Affiliation(s)
- Harriet Wright
- Warwick Medical School, Warwick University, Coventry, UK
| | - Ayman S Bannaga
- Warwick Medical School, Warwick University, Coventry, UK.,University Hospital Coventry & Warwickshire, Coventry, UK
| | | | | | - Ramesh P Arasaradnam
- Warwick Medical School, Warwick University, Coventry, UK. .,University Hospital Coventry & Warwickshire, Coventry, UK. .,Applied Health Sciences, University of Coventry, Coventry, UK. .,School of Health Sciences, University of Leicester, Leicester, UK.
| |
Collapse
|
12
|
Goedicke-Fritz S, Werner T, Niemarkt HJ, Wolfs TGAM, Baumbach JI, Kemp MW, Jobe AH, Rogosch T, Bous M, Kaiser E, Stutz R, Meyer S, Maier RF, Koczulla AR, Spiller OB, Kramer BW, Zemlin M. Detection of Volatile Organic Compounds as Potential Novel Biomarkers for Chorioamnionitis - Proof of Experimental Models. Front Pediatr 2021; 9:698489. [PMID: 34368028 PMCID: PMC8339372 DOI: 10.3389/fped.2021.698489] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 06/28/2021] [Indexed: 12/09/2022] Open
Abstract
Background: Histologic chorioamnionitis is only diagnosed postnatally which prevents interventions. We hypothesized that volatile organic compounds (VOCs) in the amniotic fluid might be useful biomarkers for chorioamnionitis and that VOC profiles differ between amnionitis of different origins. Methods: Time-mated ewes received intra-amniotic injections of media or saline (controls), or live Ureaplasma parvum serovar 3 (Up) 14, 7 or 3d prior to c-section at day 124 gestational age (GA). 100 μg recombinant ovine IL-1α was instilled at 7, 3 or 1d prior to delivery. Headspace VOC profiles were measured from amniotic fluids at birth using ion mobility spectrometer coupled with multi-capillary columns. Results: 127 VOC peaks were identified. 27 VOCs differed between samples from controls and Up- or IL-1α induced amnionitis. The best discrimination between amnionitis by Up vs. IL-1α was reached by 2-methylpentane, with a sensitivity/specificity of 96/95% and a positive predictive value/negative predictive values of 96 and 95%. The concentration of 2-methylpentane in VOCs peaked 7d after intra-amniotic instillation of Up. Discussion: We established a novel method to study headspace VOC profiles of amniotic fluids. VOC profiles may be a useful tool to detect and to assess the duration of amnionitis induced by Up. 2-methylpentane was previously described in the exhalate of women with pre-eclampsia and might be a volatile biomarker for amnionitis. Amniotic fluids analyzed by ion mobility spectrometry coupled with multi-capillary columns may provide bedside diagnosis of amnionitis and understanding inflammatory mechanisms during pregnancy.
Collapse
Affiliation(s)
- Sybelle Goedicke-Fritz
- Children's Hospital, Philipps University, Marburg, Germany.,Department of General Paediatrics and Neonatology, Saarland University Medical School, Homburg, Germany
| | - Thomas Werner
- Children's Hospital, Philipps University, Marburg, Germany
| | - Hendrik J Niemarkt
- Department of Neonatology, Máxima Medical Centre, Veldhoven, Netherlands
| | - Tim G A M Wolfs
- Department of Pediatrics, School of Oncology and Developmental Biology, Maastricht University, Maastricht, Netherlands
| | - Jörg Ingo Baumbach
- Center of Competence Breath Analysis, Branch Dortmund, B. Braun Melsungen AG, Melsungen, Germany
| | - Matthew W Kemp
- Division of Obstetrics and Gynecology, School of Women's and Infants' Health, University of Western Australia, Crawley, WA, Australia
| | - Alan H Jobe
- Department of Pediatrics, School of Oncology and Developmental Biology, Maastricht University, Maastricht, Netherlands
| | - Tobias Rogosch
- Children's Hospital, Philipps University, Marburg, Germany
| | - Michelle Bous
- Department of General Paediatrics and Neonatology, Saarland University Medical School, Homburg, Germany
| | - Elisabeth Kaiser
- Department of General Paediatrics and Neonatology, Saarland University Medical School, Homburg, Germany
| | - Regine Stutz
- Department of General Paediatrics and Neonatology, Saarland University Medical School, Homburg, Germany
| | - Sascha Meyer
- Department of General Paediatrics and Neonatology, Saarland University Medical School, Homburg, Germany
| | | | - Andreas Rembert Koczulla
- Department of Pulmonology, German Center of Lung Research DZL, Institute for Internal Medicine, Philipps-University of Marburg, Marburg, Germany
| | - Owen Brad Spiller
- Division of Obstetrics and Gynecology, School of Women's and Infants' Health, University of Western Australia, Crawley, WA, Australia.,Department of Microbiology, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Boris W Kramer
- Department of Pediatrics, School of Oncology and Developmental Biology, Maastricht University, Maastricht, Netherlands.,Division of Obstetrics and Gynecology, School of Women's and Infants' Health, University of Western Australia, Crawley, WA, Australia
| | - Michael Zemlin
- Department of General Paediatrics and Neonatology, Saarland University Medical School, Homburg, Germany
| |
Collapse
|
13
|
Machine Learning and Electronic Noses for Medical Diagnostics. Artif Intell Med 2021. [DOI: 10.1007/978-3-030-58080-3_329-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|