1
|
Yang M, Huang X, Shen F, Yi J, Meng Y, Chen Y. Lef1 is transcriptionally activated by Klf4 and suppresses hyperoxia-induced alveolar epithelial cell injury. Exp Lung Res 2022; 48:213-223. [PMID: 35950640 DOI: 10.1080/01902148.2022.2108945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
PURPOSE Bronchopulmonary dysplasia (BPD) is a long-term respiratory condition. More than a quarter of extremely premature newborns are harmed by BPD. At present, there are no apparent effective drugs or treatments for the condition. In this study, we aimed to investigate the functional role and mechanism of lymphoid enhancer-binding factor 1 (Lef1) in BPD in vitro. MATERIALS AND METHODS Blood samples from BPD patients and healthy volunteers were gathered, and an in vitro model of BPD was developed in alveolar epithelial cells (AECs) MLE-12 induced by hyperoxia. Then expression of krüppel-like factor 4 (KLF4/Klf4) and LEF1/Lef1 were evaluated. After Lef1 overexpressing plasmid and the vector were transfected into hyperoxia-induced MLE-12 cells, cell proliferation assays were carried out. Cell apoptosis was investigated by a flow cytometry assay, and apoptosis related proteins Bcl-2, cleaved-caspase 3 and 9 were analyzed by a western blot assay. The binding between Klf4 and Lef1 promoter predicted on the JASPAR website was verified using luciferase and ChIP assays. For further study of the mechanism of Klf4 and Lef1 in BPD, gain-of-function experiments were performed. RESULTS The mRNA levels of KLF4/Klf4 and LEF1/Lef1 were diminished in clinical BPD serum samples and hyperoxia-induced MLE-12 cells. Overexpression of Lef1 stimulated AEC proliferation and suppressed AEC apoptosis induced by hyperoxia. Mechanically, Klf4 bound to Lef1's promoter region and aids transcription. Moreover, the results of gain-of-function experiments supported that Klf4 could impede AEC damage induced by hyperoxia via stimulating Lef1. CONCLUSION Klf4 and Lef1 expression levels were declined in hyperoxia-induced AECs, and Lef1 could be transcriptionally activated by Klf4 and protect against hyperoxia-induced AEC injury in BPD. As a result, Lef1 might become a prospective therapeutic target for BPD.
Collapse
Affiliation(s)
- Min Yang
- Department of Respiratory, Hunan Children's Hospital, Changsha, China
| | | | - Fang Shen
- Research Institute of Children, Hunan Children's Hospital, Changsha, China
| | - Juanjuan Yi
- Department of Neonate, Hunan Children's Hospital, Changsha, China
| | - Yanni Meng
- Department of Respiratory, Hunan Children's Hospital, Changsha, China
| | - Yanping Chen
- Department of Respiratory, Hunan Children's Hospital, Changsha, China
| |
Collapse
|
2
|
Owen LS, Manley BJ, Hodgson KA, Roberts CT. Impact of early respiratory care for extremely preterm infants. Semin Perinatol 2021; 45:151478. [PMID: 34474939 DOI: 10.1016/j.semperi.2021.151478] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Despite advances in neonatal intensive care, more than half of surviving infants born extremely preterm (EP; < 28 weeks' gestation) develop bronchopulmonary dysplasia (BPD). Prevention of BPD is critical because of its associated mortality and morbidity, including adverse neurodevelopmental outcomes and respiratory health in later childhood and beyond. The respiratory care of EP infants begins before birth, then continues in the delivery room and throughout the primary hospitalization. This chapter will review the evidence for interventions after birth that might improve outcomes for infants born EP, including the timing of umbilical cord clamping, strategies to avoid or minimize exposure to mechanical ventilation, modes of mechanical ventilation and non-invasive respiratory support, oxygen saturation targets, postnatal corticosteroids and other adjunct therapies.
Collapse
Affiliation(s)
- Louise S Owen
- Department of Obstetrics and Gynaecology, The University of Melbourne, Melbourne, Australia; Newborn Research Centre, The Royal Women's Hospital, Flemington Road, Parkville, Melbourne, VIC 3052, Australia; Clinical Sciences, Murdoch Children's Research Institute, Melbourne, Australia.
| | - Brett J Manley
- Department of Obstetrics and Gynaecology, The University of Melbourne, Melbourne, Australia; Newborn Research Centre, The Royal Women's Hospital, Flemington Road, Parkville, Melbourne, VIC 3052, Australia; Clinical Sciences, Murdoch Children's Research Institute, Melbourne, Australia
| | - Kate A Hodgson
- Department of Obstetrics and Gynaecology, The University of Melbourne, Melbourne, Australia; Newborn Research Centre, The Royal Women's Hospital, Flemington Road, Parkville, Melbourne, VIC 3052, Australia
| | - Calum T Roberts
- Monash Newborn, Monash Children's Hospital, Monash University, Clayton, VIC, Australia; Department of Paediatrics, Monash University, Clayton, VIC, Australia; The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC, Australia
| |
Collapse
|
3
|
Yue L, Lu X, Dennery PA, Yao H. Metabolic dysregulation in bronchopulmonary dysplasia: Implications for identification of biomarkers and therapeutic approaches. Redox Biol 2021; 48:102104. [PMID: 34417157 PMCID: PMC8710987 DOI: 10.1016/j.redox.2021.102104] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 08/11/2021] [Accepted: 08/12/2021] [Indexed: 12/03/2022] Open
Abstract
Bronchopulmonary dysplasia (BPD) is a common chronic lung disease in premature infants. Accumulating evidence shows that dysregulated metabolism of glucose, lipids and amino acids are observed in premature infants. Animal and cell studies demonstrate that abnormal metabolism of these substrates results in apoptosis, inflammation, reduced migration, abnormal proliferation or senescence in response to hyperoxic exposure, and that rectifying metabolic dysfunction attenuates neonatal hyperoxia-induced alveolar simplification and vascular dysgenesis in the lung. BPD is often associated with several comorbidities, including pulmonary hypertension and neurodevelopmental abnormalities, which significantly increase the morbidity and mortality of this disease. Here, we discuss recent progress on dysregulated metabolism of glucose, lipids and amino acids in premature infants with BPD and in related in vivo and in vitro models. These findings suggest that metabolic dysregulation may serve as a biomarker of BPD and plays important roles in the pathogenesis of this disease. We also highlight that targeting metabolic pathways could be employed in the prevention and treatment of BPD.
Collapse
Affiliation(s)
- Li Yue
- Department of Orthopedics, Warren Alpert Medical School of Brown University and Rhode Island Hospital, Providence, RI, USA
| | - Xuexin Lu
- Department of Pediatrics, Ascension St. John Hospital, Detroit, MI, USA
| | - Phyllis A Dennery
- Department of Molecular Biology, Cell Biology & Biochemistry, Division of Biology and Medicine, Brown University, Providence, RI, USA; Department of Pediatrics, Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Hongwei Yao
- Department of Molecular Biology, Cell Biology & Biochemistry, Division of Biology and Medicine, Brown University, Providence, RI, USA.
| |
Collapse
|
4
|
Albinni S, Marx M, Lang IM. Focused Update on Pulmonary Hypertension in Children-Selected Topics of Interest for the Adult Cardiologist. MEDICINA (KAUNAS, LITHUANIA) 2020; 56:E420. [PMID: 32825190 PMCID: PMC7559541 DOI: 10.3390/medicina56090420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/13/2020] [Accepted: 08/16/2020] [Indexed: 11/16/2022]
Abstract
Pulmonary hypertensive vascular disease (PHVD), and pulmonary hypertension (PH), which is a broader term, are severe conditions associated with high morbidity and mortality at all ages. Treatment guidelines in childhood are widely adopted from adult data and experience, though big differences may exist regarding aetiology, concomitant conditions and presentation. Over the past few years, paediatric aspects have been incorporated into the common guidelines, which currently address both children and adults with pulmonary hypertension (PH). There are multiple facets of PH in the context of cardiac conditions in childhood. Apart from Eisenmenger syndrome (ES), the broad spectrum of congenital heart disease (CHD) comprises PH in failing Fontan physiology, as well as segmental PH. In this review we provide current data and novel aspects on the pathophysiological background and individual management concepts of these conditions. Moreover, we focus on paediatric left heart failure with PH and its challenging issues, including end stage treatment options, such as mechanical support and paediatric transplantation. PH in the context of rare congenital disorders, such as Scimitar Syndrome and sickle cell disease is discussed. Based on current data, we provide an overview on multiple underlying mechanisms of PH involved in these conditions, and different management strategies in children and adulthood. In addition, we summarize the paediatric aspects and the pros and cons of the recently updated definitions of PH. This review provides deeper insights into some challenging conditions of paediatric PH in order to improve current knowledge and care for children and young adults.
Collapse
Affiliation(s)
- Sulaima Albinni
- Paediatric Heart Centre Vienna, Department of Paediatrics and Adolescent Medicine, Medical University of Vienna, 1090 Wien, Austria;
| | - Manfred Marx
- Paediatric Heart Centre Vienna, Department of Paediatrics and Adolescent Medicine, Medical University of Vienna, 1090 Wien, Austria;
| | - Irene M. Lang
- AKH-Vienna, Department of Cardiology, Medical University of Vienna, 1090 Wien, Austria;
| |
Collapse
|
5
|
Zhong Q, Wang L, Qi Z, Cao J, Liang K, Zhang C, Duan J. Long Non-coding RNA TUG1 Modulates Expression of Elastin to Relieve Bronchopulmonary Dysplasia via Sponging miR-29a-3p. Front Pediatr 2020; 8:573099. [PMID: 33194901 PMCID: PMC7661792 DOI: 10.3389/fped.2020.573099] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 09/07/2020] [Indexed: 12/20/2022] Open
Abstract
Objective: Multiple studies have highlighted that long non-coding RNAs (lncRNAs) may exert paramount roles in relieving bronchopulmonary dysplasia (BPD). The aim of our investigation is to probe the role and mechanism of lncRNA taurine upregulated gene 1 (TUG1) in BPD. Methods: The current mouse model of BPD was simulated by induction of hyperoxia, and hyperoxia-induced mouse type II alveolar epithelial (MLE-12) (MLE-12) cells were established as a cellular model. Quantitative real-time polymerase chain reaction (qRT-PCR) was applied to determine relative expressions of TUG1, miR-29a-3p, and elastin (ELN). We assessed cell apoptosis by TdT-mediated dUTP-biotin nick-end labeling (TUNEL) staining. Western blot was used for detection of apoptosis-related proteins. Moreover, cell viability was tested by cell counting kit-8 (CCK-8) assay. Inflammatory factors were measured by enzyme-linked immunosorbent assay (ELISA). Dual-luciferase reporter (DLR) assay was employed to confirm relationship between genes. Results: Upregulation of miR-29a-3p was found in lung tissues of BPD mice compared with lung tissues without BPD, while downregulations of TUG1 and ELN were discovered in BPD tissues in comparison with tissues without BPD. Increasing TUG1 was shown to alleviate lung injury of BPD mice and promote proliferation of hyperoxia-induced MLE-12 cells. Meanwhile, TUG1 inhibited inflammatory response and cell apoptosis in lung tissues of BPD mice and hyperoxia-induced MLE-12 cells. miR-29a-3p was targeted by TUG1 and negatively modulated by TUG1. ELN was inversely regulated by miR-29a-3p. Meantime, suppressive effects of TUG1 on apoptosis and inflammation were reversed by decreasing ELN or increasing miR-29a-3p in hyperoxia-induced MLE-12 cells. Conclusion: lncRNA TUG1 relieved BPD through regulating the miR-29a-3p/ELN axis, which provided a therapeutic option to prevent or ameliorate BPD.
Collapse
Affiliation(s)
- Qinghua Zhong
- Department of Pediatrics, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Li Wang
- Department of Emergency, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Zhiye Qi
- Department of Pediatrics, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Jia Cao
- Department of Pediatrics, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Kun Liang
- Department of Pediatrics, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Caiying Zhang
- Department of Pediatrics, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Jiang Duan
- Department of Pediatrics, First Affiliated Hospital of Kunming Medical University, Kunming, China
| |
Collapse
|