1
|
Ardura-Garcia C, Curtis N, Zimmermann P. Systematic review of the impact of intestinal microbiota on vaccine responses. NPJ Vaccines 2024; 9:254. [PMID: 39706841 DOI: 10.1038/s41541-024-01000-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 10/17/2024] [Indexed: 12/23/2024] Open
Abstract
The intestinal microbiota plays a critical role in host immunity and might contribute to the significant variation between individuals' vaccine responses. A systematic search was done using MEDLINE and Embase to identify original human studies investigating the association between intestinal microbiota composition and humoral and cellular vaccine responses. In total, 30 publications (26 studies, 14 in infants, 12 in adults), were included. Of these, 26 publications found an association between intestinal microbiota composition and vaccine responses. A beneficial effect of Actynomycetota (particularly Bifidobacterium) and a detrimental effect of Pseudomonadota (particularly Gammaproteobacteria) were observed across studies. Study designs were highly heterogenous, with variation in vaccine type, outcome measure, timing of stool analysis and analysis methods. Overall, studies support the concept that the composition of the intestinal microbiota influences vaccine responses. Further adequately powered studies are needed to confirm this association and inform potential microbiota-targeted interventions to optimise vaccine responses.
Collapse
Affiliation(s)
- Cristina Ardura-Garcia
- Department of Paediatrics, Fribourg Hospital, Fribourg, Switzerland
- Cambodia Oxford Medical Research Unit, Angkor Hospital for Children, Siem Reap, Cambodia
| | - Nigel Curtis
- Department of Paediatrics, The University of Melbourne, Parkville, VIC, Australia
- Infectious Diseases Research Group, Murdoch Children's Research Institute, Parkville, VIC, Australia
- Infectious Diseases Unit, The Royal Children's Hospital Melbourne, Parkville, VIC, Australia
| | - Petra Zimmermann
- Department of Paediatrics, Fribourg Hospital, Fribourg, Switzerland.
- Department of Paediatrics, The University of Melbourne, Parkville, VIC, Australia.
- Infectious Diseases Research Group, Murdoch Children's Research Institute, Parkville, VIC, Australia.
- Department for Community Health, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland.
| |
Collapse
|
2
|
Anumula S, Nalla K, Pandala P, Kotha R, Harsha N. Rural Versus Urban Mothers' Microbiome Difference and Its Effect on Neonates: A Systematic Review. Cureus 2024; 16:e55607. [PMID: 38586721 PMCID: PMC10995522 DOI: 10.7759/cureus.55607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/05/2024] [Indexed: 04/09/2024] Open
Abstract
The growth and development of microorganisms are stimulated by external stimuli. Urbanization has changed the macroenvironment and individual microenvironmental factors such as smoking, alcohol, and diet, which can alter the microbiota and influence disease in the mother and child. However, the microbiome difference between rural and urban mothers and its effect on neonates have received little attention, as per sources; we have not found any systematic review. This review determined the microbiome difference between rural and urban mothers and its effect on neonates. Five studies selected based on inclusion/exclusion criteria were retrieved from PubMed, Scopus, and Embase databases, and evidence-based comparisons were made to establish the microbiome difference in rural and urban mothers and its effect on neonates. The study findings indicate that microbiome development in newborns is hindered by urbanization. Infants born to urban mothers have reduced microbial diversity, thereby having decreased protective immunity.
Collapse
Affiliation(s)
- Soumya Anumula
- Pediatrics, Government Medical College Vikarabad, Vikarabad, IND
| | - Krishna Nalla
- Community Medicine, Government Medical College Jangaon, Jangaon, IND
| | | | - Rakesh Kotha
- Neonatology, Osmania Medical College, Hyderabad, IND
| | | |
Collapse
|
3
|
Mohanan A, Harilal SL, Plakkot B, Pottakkat B, Kanakkaparambil R. Nutritional Epigenetics and Gut Microbiome. EPIGENETICS AND HUMAN HEALTH 2024:121-159. [DOI: 10.1007/978-3-031-54215-2_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
4
|
Kortman GAM, Timmerman HM, Schaafsma A, Stoutjesdijk E, Muskiet FAJ, Nhien NV, van Hoffen E, Boekhorst J, Nauta A. Mothers' Breast Milk Composition and Their Respective Infant's Gut Microbiota Differ between Five Distinct Rural and Urban Regions in Vietnam. Nutrients 2023; 15:4802. [PMID: 38004196 PMCID: PMC10675055 DOI: 10.3390/nu15224802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/10/2023] [Accepted: 11/13/2023] [Indexed: 11/26/2023] Open
Abstract
Microbiota colonization and development in early life is impacted by various host intrinsic (genetic) factors, but also diet, lifestyle, as well as environmental and residential factors upon and after birth. To characterize the impact of maternal nutrition and environmental factors on vaginally born infant gut microbiota composition, we performed an observational study in five distinct geographical areas in Vietnam. Fecal samples of infants (around 39 days old) and fecal and breast milk samples of their mothers (around 28 years) were collected. The microbiota composition of all samples was analyzed by 16S rRNA gene Illumina sequencing and a bioinformatics workflow based on QIIME. In addition, various breast milk components were determined. Strong associations between the geographically determined maternal diet and breast milk composition as well as infant fecal microbiota were revealed. Most notable was the association of urban Ha Noi with relatively high abundances of taxa considered pathobionts, such as Klebsiella and Citrobacter, at the expense of Bifidobacterium. Breast milk composition was most distinct in rural Ha Long Bay, characterized by higher concentrations of, e.g., docosahexaenoic acid (DHA), eicosapentaenoic acid (EPA), selenium, and vitamin B12, while it was characterized by, e.g., iron, zinc, and α-linolenic acid (ALA) in Ha Noi. Breast milk iron levels were positively associated with infant fecal Klebsiella and negatively with Bifidobacterium, while the EPA and DHA levels were positively associated with Bifidobacterium. In conclusion, differences between five regions in Vietnam with respect to both maternal breast milk and infant gut microbiota composition were revealed, most likely in part due to maternal nutrition. Thus, there could be opportunities to beneficially steer infant microbiota development in a more desired (rural instead of urban) direction through the mother's diet.
Collapse
Affiliation(s)
| | | | - Anne Schaafsma
- Friesland Campina, Stationsplein 4, 3818 LE Amersfoort, The Netherlands
| | - Eline Stoutjesdijk
- Department of Laboratory Medicine, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands
| | - Frits A. J. Muskiet
- Department of Laboratory Medicine, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands
| | - Nguyen V. Nhien
- National Institute of Food Control, No. 65 Pham Than Duat Str., Mai Dich Ward., Cau Giay Dist., Ha Noi 100000, Vietnam
| | | | - Jos Boekhorst
- NIZO Food Research B.V., 6718 ZB Ede, The Netherlands
| | - Arjen Nauta
- Friesland Campina, Stationsplein 4, 3818 LE Amersfoort, The Netherlands
| |
Collapse
|
5
|
Lehman P, Ghimire S, Price JD, Ramer-Tait AE, Mangalam A. Diet-microbiome-immune interplay in multiple sclerosis: Understanding the impact of phytoestrogen metabolizing gut bacteria. Eur J Immunol 2023; 53:e2250236. [PMID: 37673213 PMCID: PMC11606726 DOI: 10.1002/eji.202250236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 07/19/2023] [Accepted: 09/05/2023] [Indexed: 09/08/2023]
Abstract
Multiple sclerosis (MS) is a chronic and progressive autoimmune disease of the central nervous system (CNS), with both genetic and environmental factors contributing to the pathobiology of the disease. Although HLA genes have emerged as the strongest genetic factor linked to MS, consensus on the environmental risk factors is lacking. Recently, the gut microbiota has garnered increasing attention as a potential environmental factor in MS, as mounting evidence suggests that individuals with MS exhibit microbial dysbiosis (changes in the gut microbiome). Thus, there has been a strong emphasis on understanding the role of the gut microbiome in the pathobiology of MS, specifically, factors regulating the gut microbiota and the mechanism(s) through which gut microbes may contribute to MS. Among all factors, diet has emerged to have the strongest influence on the composition and function of gut microbiota. As MS patients lack gut bacteria capable of metabolizing dietary phytoestrogen, we will specifically discuss the role of a phytoestrogen diet and phytoestrogen metabolizing gut bacteria in the pathobiology of MS. A better understanding of these mechanisms will help to harness the enormous potential of the gut microbiota as potential therapeutics to treat MS and other autoimmune diseases.
Collapse
Affiliation(s)
- Peter Lehman
- Department of Pathology, University of Iowa, Iowa City, IA, USA
- Department of Pathology Graduate Program, University of Iowa, Iowa City, IA, USA
| | - Sudeep Ghimire
- Department of Pathology, University of Iowa, Iowa City, IA, USA
| | - Jeffrey D. Price
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE, USA
- Nebraska Food for Health Center, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Amanda E. Ramer-Tait
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE, USA
- Nebraska Food for Health Center, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Ashutosh Mangalam
- Department of Pathology, University of Iowa, Iowa City, IA, USA
- Department of Pathology Graduate Program, University of Iowa, Iowa City, IA, USA
- Graduate Program in Immunology, University of Iowa, Iowa City, IA, USA
- Iowa City VA Healthcare System, Iowa City, IA, USA
| |
Collapse
|
6
|
Lynn DJ, Benson SC, Lynn MA, Pulendran B. Modulation of immune responses to vaccination by the microbiota: implications and potential mechanisms. Nat Rev Immunol 2022; 22:33-46. [PMID: 34002068 PMCID: PMC8127454 DOI: 10.1038/s41577-021-00554-7] [Citation(s) in RCA: 140] [Impact Index Per Article: 46.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/12/2021] [Indexed: 02/05/2023]
Abstract
The need for highly effective vaccines that induce robust and long-lasting immunity has never been more apparent. However, for reasons that are still poorly understood, immune responses to vaccination are highly variable between different individuals and different populations. Furthermore, vaccine immunogenicity is frequently suboptimal in the very populations who are at most risk from infectious disease, including infants, the elderly, and those living in low-income and middle-income countries. Although many factors have the potential to influence vaccine immunogenicity and therefore vaccine effectiveness, increasing evidence from clinical studies and animal models now suggests that the composition and function of the gut microbiota are crucial factors modulating immune responses to vaccination. In this Review, we synthesize this evidence, discuss the immunological mechanisms that potentially mediate these effects and consider the potential of microbiota-targeted interventions to optimize vaccine effectiveness.
Collapse
Affiliation(s)
- David J Lynn
- Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia.
- Flinders Health and Medical Research Institute, Flinders University, Bedford Park, South Australia, Australia.
| | - Saoirse C Benson
- Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
- Flinders Health and Medical Research Institute, Flinders University, Bedford Park, South Australia, Australia
| | - Miriam A Lynn
- Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
| | - Bali Pulendran
- Stanford University School of Medicine, Stanford University, Stanford, CA, USA
| |
Collapse
|
7
|
Stražar M, Temba GS, Vlamakis H, Kullaya VI, Lyamuya F, Mmbaga BT, Joosten LAB, van der Ven AJAM, Netea MG, de Mast Q, Xavier RJ. Gut microbiome-mediated metabolism effects on immunity in rural and urban African populations. Nat Commun 2021; 12:4845. [PMID: 34381036 PMCID: PMC8357928 DOI: 10.1038/s41467-021-25213-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 06/30/2021] [Indexed: 12/18/2022] Open
Abstract
The human gut microbiota is increasingly recognized as an important factor in modulating innate and adaptive immunity through release of ligands and metabolites that translocate into circulation. Urbanizing African populations harbor large intestinal diversity due to a range of lifestyles, providing the necessary variation to gauge immunomodulatory factors. Here, we uncover a gradient of intestinal microbial compositions from rural through urban Tanzanian, towards European samples, manifested both in relative abundance and genomic variation observed in stool metagenomics. The rural population shows increased Bacteroidetes, led by Prevotella copri, but also presence of fungi. Measured ex vivo cytokine responses were significantly associated with 34 immunomodulatory microbes, which have a larger impact on circulating metabolites than non-significant microbes. Pathway effects on cytokines, notably TNF-α and IFN-γ, differential metabolome analysis and enzyme copy number enrichment converge on histidine and arginine metabolism as potential immunomodulatory pathways mediated by Bifidobacterium longum and Akkermansia muciniphila. The authors profile stool metagenomics and plasma metabolomics in Tanzanian individuals and uncover a gradient of gut microbial profiles, from rural through urban Tanzania towards Western populations. Integration with ex vivo blood microbial stimulations reveals immune responses associated with histidine and arginine pathways, mediated by Bifidobacterium longum and Akkermansia muciniphila.
Collapse
Affiliation(s)
| | - Godfrey S Temba
- Kilimanjaro Christian Medical University College, Moshi, Tanzania.,Kilimanjaro Clinical Research Institute, Kilimanjaro Christian Medical Centre, Moshi, Tanzania
| | - Hera Vlamakis
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Vesla I Kullaya
- Kilimanjaro Clinical Research Institute, Kilimanjaro Christian Medical Centre, Moshi, Tanzania.,Department of Respiratory Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Furaha Lyamuya
- Kilimanjaro Christian Medical University College, Moshi, Tanzania
| | - Blandina T Mmbaga
- Department of Pediatrics, Kilimanjaro Clinical Research Institute, Kilimanjaro Christian Medical Centre, Moshi, Tanzania
| | - Leo A B Joosten
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands.,Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Andre J A M van der Ven
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Mihai G Netea
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands. .,Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands.
| | - Quirijn de Mast
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands.,Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Ramnik J Xavier
- Broad Institute of MIT and Harvard, Cambridge, MA, USA. .,Center for Microbiome Informatics and Therapeutics, Massachusetts Institute of Technology, Cambridge, MA, USA. .,Center for Computational and Integrative Biology and Department of Molecular Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
8
|
Baranowski T, Motil KJ. Simple Energy Balance or Microbiome for Childhood Obesity Prevention? Nutrients 2021; 13:nu13082730. [PMID: 34444890 PMCID: PMC8398395 DOI: 10.3390/nu13082730] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 07/30/2021] [Accepted: 08/03/2021] [Indexed: 12/11/2022] Open
Abstract
Obesity prevention interventions generally have either not worked or had effects inadequate to mitigate the problem. They have been predicated on the simple energy balance model, which has been severely questioned by biological scientists. Numerous other etiological mechanisms have been proposed, including the intestinal microbiome, which has been related to childhood obesity in numerous ways. Public health research is needed in regard to diet and the microbiome, which hopefully will lead to effective child obesity prevention.
Collapse
|
9
|
The Association between Early-Life Gut Microbiota and Long-Term Health and Diseases. J Clin Med 2021; 10:jcm10030459. [PMID: 33504109 PMCID: PMC7865818 DOI: 10.3390/jcm10030459] [Citation(s) in RCA: 120] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 01/12/2021] [Accepted: 01/21/2021] [Indexed: 12/14/2022] Open
Abstract
Early life gut microbiota have been increasingly recognized as major contributors to short and/or long-term human health and diseases. Numerous studies have demonstrated that human gut microbial colonization begins at birth, but continues to develop a succession of taxonomic abundances for two to three years until the gut microbiota reaches adult-like diversity and proportions. Several factors, including gestational age (GA), delivery mode, birth weight, feeding types, antibiotic exposure, maternal microbiome, and diet, influence the diversity, abundance, and function of early life gut microbiota. Gut microbial life is essential for assisting with the digestion of food substances to release nutrients, exerting control over pathogens, stimulating or modulating the immune system, and influencing many systems such as the liver, brain, and endocrine system. Microbial metabolites play multiple roles in these interactions. Furthermore, studies provide evidence supporting that imbalances of the gut microbiota in early life, referred to as dysbiosis, are associated with specific childhood or adult disease outcomes, such as asthma, atopic dermatitis, diabetes, allergic diseases, obesity, cardiovascular diseases (CVD), and neurological disorders. These findings support that the human gut microbiota may play a fundamental role in the risk of acquiring diseases that may be programmed during early life. In fact, it is critical to explore the role of the human gut microbiota in early life.
Collapse
|