1
|
Cedzyński M, Świerzko AS. Collectins and ficolins in neonatal health and disease. Front Immunol 2023; 14:1328658. [PMID: 38193083 PMCID: PMC10773719 DOI: 10.3389/fimmu.2023.1328658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 12/04/2023] [Indexed: 01/10/2024] Open
Abstract
The immune system starts to develop early in embryogenesis. However, at birth it is still immature and associated with high susceptibility to infection. Adaptation to extrauterine conditions requires a balance between colonization with normal flora and protection from pathogens. Infections, oxidative stress and invasive therapeutic procedures may lead to transient organ dysfunction or permanent damage and perhaps even death. Newborns are primarily protected by innate immune mechanisms. Collectins (mannose-binding lectin, collectin-10, collectin-11, collectin-12, surfactant protein A, surfactant protein D) and ficolins (ficolin-1, ficolin-2, ficolin-3) are oligomeric, collagen-related defence lectins, involved in innate immune response. In this review, we discuss the structure, specificity, genetics and role of collectins and ficolins in neonatal health and disease. Their clinical associations (protective or pathogenic influence) depend on a variety of variables, including genetic polymorphisms, gestational age, method of delivery, and maternal/environmental microflora.
Collapse
Affiliation(s)
- Maciej Cedzyński
- Laboratory of Immunobiology of Infections, Institute of Medical Biology, Polish Academy of Sciences, Łódź, Poland
| | | |
Collapse
|
2
|
Reger RM, Meinicke A, Härtig W, Knüpfer M, Thome U, Schob S, Krause M. Changes in CSF Surface Tension in Relation to Surfactant Proteins in Children with Intraventricular Hemorrhage. Brain Sci 2022; 12:brainsci12111440. [PMID: 36358367 PMCID: PMC9688901 DOI: 10.3390/brainsci12111440] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 10/20/2022] [Accepted: 10/22/2022] [Indexed: 11/16/2022] Open
Abstract
The regulation of surface tension (ST) by surfactants plays an important role in the human respiratory system but is largely unexplored in brain homeostasis. The aim of this study was to evaluate changes in ST in relation to surfactant proteins (SPs) in children with intraventricular hemorrhage (IVH). CSF samples from 93 patients were analyzed for ST with a force tensiometer and SP-A-D and -G with ELISA assays. Patients belonged to six groups: (i) IVH before primary intervention (PI), (ii) IVH 4−28 days after PI, (iii) IVH 44−357 days after PI, (iv) hydrocephalus, (v) sepsis and (vi) controls. We found indirect correlations and significant differences in ST and SPs (all p < 0.001; except for SP-C, p = 0.007). Post hoc analyses showed significantly decreased ST in IVH patients before PI compared with patients with hydrocephalus, sepsis or controls (p < 0.001), but it increased in IVH patients over time. All SPs were significantly elevated when comparing IVH patients before PI with controls (all p < 0.001; except for SP-C, p = 0.003). Children suffering from IVH displayed an increase in SPs and a decrease in ST as coping mechanisms to preserve CSF flow. The increase in ST over time could serve as prognostic marker for the healing process.
Collapse
Affiliation(s)
- Rieka M. Reger
- Department of Neurosurgery, University Hospital Leipzig, 04103 Leipzig, Germany
| | - Anton Meinicke
- Paul Flechsig Institute for Brain Research, Leipzig University, 04103 Leipzig, Germany
| | - Wolfgang Härtig
- Paul Flechsig Institute for Brain Research, Leipzig University, 04103 Leipzig, Germany
| | - Matthias Knüpfer
- Department of Neonatology, University Hospital Leipzig, 04103 Leipzig, Germany
| | - Ulrich Thome
- Department of Neonatology, University Hospital Leipzig, 04103 Leipzig, Germany
| | - Stefan Schob
- Department of Neuroradiology, University Hospital Halle, 06120 Halle (Saale), Germany
| | - Matthias Krause
- Department of Neurosurgery, University Hospital Leipzig, 04103 Leipzig, Germany
- Correspondence: ; Tel.: +49-341-9717500
| |
Collapse
|
3
|
Meinicke A, Härtig W, Winter K, Puchta J, Mages B, Michalski D, Emmer A, Otto M, Hoffmann KT, Reimann W, Krause M, Schob S. Surfactant Protein-G in Wildtype and 3xTg-AD Mice: Localization in the Forebrain, Age-Dependent Hippocampal Dot-like Deposits and Brain Content. Biomolecules 2022; 12:biom12010096. [PMID: 35053244 PMCID: PMC8773979 DOI: 10.3390/biom12010096] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 12/30/2021] [Accepted: 12/31/2021] [Indexed: 11/16/2022] Open
Abstract
The classic surfactant proteins (SPs) A, B, C, and D were discovered in the lungs, where they contribute to host defense and regulate the alveolar surface tension during breathing. Their additional importance for brain physiology was discovered decades later. SP-G, a novel amphiphilic SP, was then identified in the lungs and is mostly linked to inflammation. In the brain, it is also present and significantly elevated after hemorrhage in premature infants and in distinct conditions affecting the cerebrospinal fluid circulation of adults. However, current knowledge on SP-G-expression is limited to ependymal cells and some neurons in the subventricular and superficial cortex. Therefore, we primarily focused on the distribution of SP-G-immunoreactivity (ir) and its spatial relationships with components of the neurovascular unit in murine forebrains. Triple fluorescence labeling elucidated SP-G-co-expressing neurons in the habenula, infundibulum, and hypothalamus. Exploring whether SP-G might play a role in Alzheimer’s disease (AD), 3xTg-AD mice were investigated and displayed age-dependent hippocampal deposits of β-amyloid and hyperphosphorylated tau separately from clustered, SP-G-containing dots with additional Reelin-ir—which was used as established marker for disease progression in this specific context. Semi-quantification of those dots, together with immunoassay-based quantification of intra- and extracellular SP-G, revealed a significant elevation in old 3xTg mice when compared to age-matched wildtype animals. This suggests a role of SP-G for the pathophysiology of AD, but a confirmation with human samples is required.
Collapse
Affiliation(s)
- Anton Meinicke
- Paul Flechsig Institute for Brain Research, University of Leipzig, Liebigstr. 19, 04103 Leipzig, Germany; (A.M.); (W.H.); (J.P.); (W.R.)
- Institute of Neuroradiology, University Hospital Leipzig, Liebigstr. 20, 04103 Leipzig, Germany;
| | - Wolfgang Härtig
- Paul Flechsig Institute for Brain Research, University of Leipzig, Liebigstr. 19, 04103 Leipzig, Germany; (A.M.); (W.H.); (J.P.); (W.R.)
| | - Karsten Winter
- Institute of Anatomy, University of Leipzig, Liebigstr. 13, 04103 Leipzig, Germany; (K.W.); (B.M.)
| | - Joana Puchta
- Paul Flechsig Institute for Brain Research, University of Leipzig, Liebigstr. 19, 04103 Leipzig, Germany; (A.M.); (W.H.); (J.P.); (W.R.)
- Institute of Neuroradiology, University Hospital Leipzig, Liebigstr. 20, 04103 Leipzig, Germany;
| | - Bianca Mages
- Institute of Anatomy, University of Leipzig, Liebigstr. 13, 04103 Leipzig, Germany; (K.W.); (B.M.)
| | - Dominik Michalski
- Department of Neurology, University Hospital Leipzig, Liebigstr. 20, 04103 Leipzig, Germany;
| | - Alexander Emmer
- Department of Neurology, University Hospital Halle, Ernst-Grube-Str. 40, 06120 Halle (Saale), Germany; (A.E.); (M.O.)
| | - Markus Otto
- Department of Neurology, University Hospital Halle, Ernst-Grube-Str. 40, 06120 Halle (Saale), Germany; (A.E.); (M.O.)
| | - Karl-Titus Hoffmann
- Institute of Neuroradiology, University Hospital Leipzig, Liebigstr. 20, 04103 Leipzig, Germany;
| | - Willi Reimann
- Paul Flechsig Institute for Brain Research, University of Leipzig, Liebigstr. 19, 04103 Leipzig, Germany; (A.M.); (W.H.); (J.P.); (W.R.)
- Institute of Neuroradiology, University Hospital Leipzig, Liebigstr. 20, 04103 Leipzig, Germany;
| | - Matthias Krause
- Department of Neurosurgery, University Hospital Leipzig, Liebigstr. 20, 04103 Leipzig, Germany;
| | - Stefan Schob
- Department of Neuroradiology, Clinic and Policlinic of Radiology, University Hospital Halle, Ernst-Grube-Str. 40, 06120 Halle (Saale), Germany
- Correspondence: ; Tel.: +49-345-557-2432
| |
Collapse
|