1
|
Tarvonen M, Manninen M, Lamminaho P, Jehkonen P, Tuppurainen V, Andersson S. Computer Vision for Identification of Increased Fetal Heart Variability in Cardiotocogram. Neonatology 2024; 121:460-467. [PMID: 38565092 DOI: 10.1159/000538134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 02/27/2024] [Indexed: 04/04/2024]
Abstract
INTRODUCTION Increased fetal heart rate variability (IFHRV), defined as fetal heart rate (FHR) baseline amplitude changes of >25 beats per minute with a duration of ≥1 min, is an early sign of intrapartum fetal hypoxia. This study evaluated the level of agreement of machine learning (ML) algorithms-based recognition of IFHRV patterns with expert analysis. METHODS Cardiotocographic recordings and cardiotocograms from 4,988 singleton term childbirths were evaluated independently by two expert obstetricians blinded to the outcomes. Continuous FHR monitoring with computer vision analysis was compared with visual analysis by the expert obstetricians. FHR signals were graphically processed and measured by the computer vision model labeled SALKA. RESULTS In visual analysis, IFHRV pattern occurred in 582 cardiotocograms (11.7%). Compared with visual analysis, SALKA recognized IFHRV patterns with an average Cohen's kappa coefficient of 0.981 (95% CI: 0.972-0.993). The sensitivity of SALKA was 0.981, the positive predictive rate was 0.822 (95% CI: 0.774-0.903), and the false-negative rate was 0.01 (95% CI: 0.00-0.02). The agreement between visual analysis and SALKA in identification of IFHRV was almost perfect (0.993) in cases (N = 146) with neonatal acidemia (i.e., umbilical artery pH <7.10). CONCLUSIONS Computer vision analysis by SALKA is a novel ML technique that, with high sensitivity and specificity, identifies IFHRV features in intrapartum cardiotocograms. SALKA recognizes potential early signs of fetal distress close to those of expert obstetricians, particularly in cases of neonatal acidemia.
Collapse
Affiliation(s)
- Mikko Tarvonen
- Department of Gynecology and Obstetrics, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Matti Manninen
- School of Engineering, Aalto University, Espoo, Finland
- Department of Geosciences and Geography, University of Helsinki, Espoo, Finland
| | - Petri Lamminaho
- Department of Mathematics and Statistic, University of Jyväskylä, Jyväskylä, Finland
| | - Petri Jehkonen
- Department of Computer, Communication and Information Sciences, Aalto University, Espoo, Finland
| | - Ville Tuppurainen
- Department of Industrial Engineering and Management, LUT University of Technology, Lappeenranta, Finland
- Helsinki University Hospital Area Administration, Helsinki, Finland
| | - Sture Andersson
- Children's Hospital, Pediatric Research Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| |
Collapse
|
2
|
Steyde G, Spairani E, Magenes G, Signorini MG. Fetal heart rate spectral analysis in raw signals and PRSA-derived curve: normal and pathological fetuses discrimination. Med Biol Eng Comput 2024; 62:437-447. [PMID: 37889432 PMCID: PMC10794317 DOI: 10.1007/s11517-023-02953-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 10/16/2023] [Indexed: 10/28/2023]
Abstract
Cardiotocography (CTG) is the most common technique for electronic fetal monitoring and consists of the simultaneous recording of fetal heart rate (FHR) and uterine contractions. In analogy with the adult case, spectral analysis of the FHR signal can be used to assess the functionality of the autonomic nervous system. To do so, several methods can be employed, each of which has its strengths and limitations. This paper aims at performing a methodological investigation on FHR spectral analysis adopting 4 different spectrum estimators and a novel PRSA-based spectral method. The performances have been evaluated in terms of the ability of the various methods to detect changes in the FHR in two common pregnancy complications: intrauterine growth restriction (IUGR) and gestational diabetes. A balanced dataset containing 2178 recordings distributed between the 32nd and 38th week of gestation was used. The results show that the spectral method derived from the PRSA better differentiates high-risk pregnancies vs. controls compared to the others. Specifically, it more robustly detects an increase in power percentage within the movement frequency band and a decrease in high frequency between pregnancies at high risk in comparison to those at low risk.
Collapse
Affiliation(s)
- Giulio Steyde
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133, Milano, Italy.
| | - Edoardo Spairani
- Electrical, Computer and Biomedical Engineering Department, Università di Pavia, 27100, Pavia, Italy
| | - Giovanni Magenes
- Electrical, Computer and Biomedical Engineering Department, Università di Pavia, 27100, Pavia, Italy
| | - Maria G Signorini
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133, Milano, Italy
| |
Collapse
|
3
|
Dlugatch R, Georgieva A, Kerasidou A. AI-driven decision support systems and epistemic reliance: a qualitative study on obstetricians' and midwives' perspectives on integrating AI-driven CTG into clinical decision making. BMC Med Ethics 2024; 25:6. [PMID: 38184595 PMCID: PMC10771643 DOI: 10.1186/s12910-023-00990-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 11/24/2023] [Indexed: 01/08/2024] Open
Abstract
BACKGROUND Given that AI-driven decision support systems (AI-DSS) are intended to assist in medical decision making, it is essential that clinicians are willing to incorporate AI-DSS into their practice. This study takes as a case study the use of AI-driven cardiotography (CTG), a type of AI-DSS, in the context of intrapartum care. Focusing on the perspectives of obstetricians and midwives regarding the ethical and trust-related issues of incorporating AI-driven tools in their practice, this paper explores the conditions that AI-driven CTG must fulfill for clinicians to feel justified in incorporating this assistive technology into their decision-making processes regarding interventions in labor. METHODS This study is based on semi-structured interviews conducted online with eight obstetricians and five midwives based in England. Participants were asked about their current decision-making processes about when to intervene in labor, how AI-driven CTG might enhance or disrupt this process, and what it would take for them to trust this kind of technology. Interviews were transcribed verbatim and analyzed with thematic analysis. NVivo software was used to organize thematic codes that recurred in interviews to identify the issues that mattered most to participants. Topics and themes that were repeated across interviews were identified to form the basis of the analysis and conclusions of this paper. RESULTS There were four major themes that emerged from our interviews with obstetricians and midwives regarding the conditions that AI-driven CTG must fulfill: (1) the importance of accurate and efficient risk assessments; (2) the capacity for personalization and individualized medicine; (3) the lack of significance regarding the type of institution that develops technology; and (4) the need for transparency in the development process. CONCLUSIONS Accuracy, efficiency, personalization abilities, transparency, and clear evidence that it can improve outcomes are conditions that clinicians deem necessary for AI-DSS to meet in order to be considered reliable and therefore worthy of being incorporated into the decision-making process. Importantly, healthcare professionals considered themselves as the epistemic authorities in the clinical context and the bearers of responsibility for delivering appropriate care. Therefore, what mattered to them was being able to evaluate the reliability of AI-DSS on their own terms, and have confidence in implementing them in their practice.
Collapse
Affiliation(s)
- Rachel Dlugatch
- Ethox Centre, Nuffield Department of Population Health, University of Oxford, Old Road Campus, Headington, Oxford, OX3 7LF, UK
- Usher Institute, Old Medical School, University of Edinburgh, Teviot Place, Edinburgh, EH8 9AG, UK
| | - Antoniya Georgieva
- Nuffield Department of Women's & Reproductive Health, University of Oxford, Level 3 Women's Centre, John Radcliffe Hospital, Oxford, OX3 9DU, UK
| | - Angeliki Kerasidou
- Ethox Centre, Nuffield Department of Population Health, University of Oxford, Old Road Campus, Headington, Oxford, OX3 7LF, UK.
| |
Collapse
|
4
|
Frasch MG. Fetal heart rate variability: An ocean of meanings beyond ups and downs. BJOG 2023; 130:1557-1558. [PMID: 36746779 DOI: 10.1111/1471-0528.17391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 12/13/2022] [Indexed: 02/08/2023]
Affiliation(s)
- Martin G Frasch
- Department of Obstetrics and Gynecology, Center on Human Development and Disability (CHDD), University of Washington, Seattle, Washington, USA
| |
Collapse
|
5
|
Mendis L, Palaniswami M, Brownfoot F, Keenan E. Computerised Cardiotocography Analysis for the Automated Detection of Fetal Compromise during Labour: A Review. Bioengineering (Basel) 2023; 10:1007. [PMID: 37760109 PMCID: PMC10525263 DOI: 10.3390/bioengineering10091007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/17/2023] [Accepted: 08/22/2023] [Indexed: 09/29/2023] Open
Abstract
The measurement and analysis of fetal heart rate (FHR) and uterine contraction (UC) patterns, known as cardiotocography (CTG), is a key technology for detecting fetal compromise during labour. This technology is commonly used by clinicians to make decisions on the mode of delivery to minimise adverse outcomes. A range of computerised CTG analysis techniques have been proposed to overcome the limitations of manual clinician interpretation. While these automated techniques can potentially improve patient outcomes, their adoption into clinical practice remains limited. This review provides an overview of current FHR and UC monitoring technologies, public and private CTG datasets, pre-processing steps, and classification algorithms used in automated approaches for fetal compromise detection. It aims to highlight challenges inhibiting the translation of automated CTG analysis methods from research to clinical application and provide recommendations to overcome them.
Collapse
Affiliation(s)
- Lochana Mendis
- Department of Electrical and Electronic Engineering, The University of Melbourne, Parkville, VIC 3010, Australia; (M.P.); (E.K.)
| | - Marimuthu Palaniswami
- Department of Electrical and Electronic Engineering, The University of Melbourne, Parkville, VIC 3010, Australia; (M.P.); (E.K.)
| | - Fiona Brownfoot
- Obstetric Diagnostics and Therapeutics Group, Department of Obstetrics and Gynaecology, The University of Melbourne, Heidelberg, VIC 3084, Australia;
| | - Emerson Keenan
- Department of Electrical and Electronic Engineering, The University of Melbourne, Parkville, VIC 3010, Australia; (M.P.); (E.K.)
- Obstetric Diagnostics and Therapeutics Group, Department of Obstetrics and Gynaecology, The University of Melbourne, Heidelberg, VIC 3084, Australia;
| |
Collapse
|
6
|
Dlugatch R, Georgieva A, Kerasidou A. Trustworthy artificial intelligence and ethical design: public perceptions of trustworthiness of an AI-based decision-support tool in the context of intrapartum care. BMC Med Ethics 2023; 24:42. [PMID: 37340408 DOI: 10.1186/s12910-023-00917-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 05/17/2023] [Indexed: 06/22/2023] Open
Abstract
BACKGROUND Despite the recognition that developing artificial intelligence (AI) that is trustworthy is necessary for public acceptability and the successful implementation of AI in healthcare contexts, perspectives from key stakeholders are often absent from discourse on the ethical design, development, and deployment of AI. This study explores the perspectives of birth parents and mothers on the introduction of AI-based cardiotocography (CTG) in the context of intrapartum care, focusing on issues pertaining to trust and trustworthiness. METHODS Seventeen semi-structured interviews were conducted with birth parents and mothers based on a speculative case study. Interviewees were based in England and were pregnant and/or had given birth in the last two years. Thematic analysis was used to analyze transcribed interviews with the use of NVivo. Major recurring themes acted as the basis for identifying the values most important to this population group for evaluating the trustworthiness of AI. RESULTS Three themes pertaining to the perceived trustworthiness of AI emerged from interviews: (1) trustworthy AI-developing institutions, (2) trustworthy data from which AI is built, and (3) trustworthy decisions made with the assistance of AI. We found that birth parents and mothers trusted public institutions over private companies to develop AI, that they evaluated the trustworthiness of data by how representative it is of all population groups, and that they perceived trustworthy decisions as being mediated by humans even when supported by AI. CONCLUSIONS The ethical values that underscore birth parents and mothers' perceptions of trustworthy AI include fairness and reliability, as well as practices like patient-centered care, the promotion of publicly funded healthcare, holistic care, and personalized medicine. Ultimately, these are also the ethical values that people want to protect in the healthcare system. Therefore, trustworthy AI is best understood not as a list of design features but in relation to how it undermines or promotes the ethical values that matter most to its end users. An ethical commitment to these values when creating AI in healthcare contexts opens up new challenges and possibilities for the design and deployment of AI.
Collapse
Affiliation(s)
- Rachel Dlugatch
- Ethox Centre, Nuffield Department of Population Health, University of Oxford, Old Road Campus, Headington, Oxford, OX3 7LF, UK
| | - Antoniya Georgieva
- Nuffield Department of Women's & Reproductive Health, University of Oxford, Level 3, Women's Centre, John Radcliffe Hospital, Oxford, OX3 9DU, UK
| | - Angeliki Kerasidou
- Ethox Centre, Nuffield Department of Population Health, University of Oxford, Old Road Campus, Headington, Oxford, OX3 7LF, UK.
| |
Collapse
|