1
|
Lucia-Campos C, Parenti I, Latorre-Pellicer A, Gil-Salvador M, Bestetti I, Finelli P, Larizza L, Arnedo M, Ayerza-Casas A, Del Rincón J, Trujillano L, Morte B, Pérez-Jurado LA, Lapunzina P, Leitão E, Beygo J, Lich C, Kilpert F, Kaya S, Depienne C, Kaiser FJ, Ramos FJ, Puisac B, Pié J. An intragenic duplication in the AFF2 gene associated with Cornelia de Lange syndrome phenotype. Front Genet 2024; 15:1472543. [PMID: 39553472 PMCID: PMC11563810 DOI: 10.3389/fgene.2024.1472543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 10/11/2024] [Indexed: 11/19/2024] Open
Abstract
Cornelia de Lange syndrome (CdLS, OMIM #122470, #300590, #300882, #610759, and #614701) is a rare congenital disorder that affects the development of multiple organs and is characterized by physical abnormalities and cognitive and behavioral disabilities. Its molecular basis is mainly based on alterations in genes encoding structural and regulatory proteins related to the cohesin complex. Moreover, other transcriptional regulatory factors have been linked to this syndrome. However, additional causative genes are still unknown, since many patients still lack a molecular diagnosis. Herein, we describe a case with multiple affected family members presenting with an intragenic duplication in the AFF2 gene. The direct tandem intragenic duplication of exons 10, 11 and 12 was detected through high-resolution array Comparative Genomic Hybridization and next-generation sequencing technologies. Confirming the X-linked inheritance pattern, the duplication was found in the patient, his mother and his maternal aunt affected (dizygotic twins). Targeted sequencing with Oxford Nanopore Technologies revealed an aberrant transcript which is predominantly expressed in the patient and his aunt. Along with these results, a significant reduction in AFF2 gene expression levels was detected in these two individuals. Clinically both subjects exhibit a classic CdLS phenotype, whereas the mother is mostly unaffected. Consistent with the phenotypical differences observed between the mother and the aunt, there is a marked difference in X-inactivation patterns skewing. Given the crucial role of AFF2 in transcriptional regulation, it is not surprising that AFF2 variants can give rise to CdLS phenotypes. Therefore, the AFF2 gene should be considered for the molecular diagnosis of this syndrome.
Collapse
Affiliation(s)
- Cristina Lucia-Campos
- Department of Pharmacology and Physiology, Unit of Clinical Genetics and Functional Genomics, School of Medicine, University of Zaragoza, CIBERER-GCV02 and IIS-Aragon, Zaragoza, Spain
| | - Ilaria Parenti
- Institute of Human Genetics, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Ana Latorre-Pellicer
- Department of Pharmacology and Physiology, Unit of Clinical Genetics and Functional Genomics, School of Medicine, University of Zaragoza, CIBERER-GCV02 and IIS-Aragon, Zaragoza, Spain
| | - Marta Gil-Salvador
- Department of Pharmacology and Physiology, Unit of Clinical Genetics and Functional Genomics, School of Medicine, University of Zaragoza, CIBERER-GCV02 and IIS-Aragon, Zaragoza, Spain
| | - Ilaria Bestetti
- SS Medical Genetics Laboratory, SC Clinical Pathology, Foundation IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Palma Finelli
- SS Medical Genetics Laboratory, SC Clinical Pathology, Foundation IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Milan, Italy
| | - Lidia Larizza
- Experimental Research Laboratory of Medical Cytogenetics and Molecular Genetics, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - María Arnedo
- Department of Pharmacology and Physiology, Unit of Clinical Genetics and Functional Genomics, School of Medicine, University of Zaragoza, CIBERER-GCV02 and IIS-Aragon, Zaragoza, Spain
| | - Ariadna Ayerza-Casas
- Department of Pharmacology and Physiology, Unit of Clinical Genetics and Functional Genomics, School of Medicine, University of Zaragoza, CIBERER-GCV02 and IIS-Aragon, Zaragoza, Spain
- Unit of Paediatric Cardiology, Service of Paediatrics, University Hospital “Miguel Servet”, Zaragoza, Spain
| | - Julia Del Rincón
- Department of Pharmacology and Physiology, Unit of Clinical Genetics and Functional Genomics, School of Medicine, University of Zaragoza, CIBERER-GCV02 and IIS-Aragon, Zaragoza, Spain
| | - Laura Trujillano
- Department of Pharmacology and Physiology, Unit of Clinical Genetics and Functional Genomics, School of Medicine, University of Zaragoza, CIBERER-GCV02 and IIS-Aragon, Zaragoza, Spain
- Clinical and Molecular Genetics Area, Vall d’Hebron Hospital, Medicine Genetics Group, Vall d’Hebron Research Institute (VHIR), Barcelona, Spain
| | - Beatriz Morte
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - Luis A. Pérez-Jurado
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
- Genetics Service, Hospital del Mar Research Institute (IMIM), Barcelona, Spain
- Genetics Unit, University Pompeu Fabra, Barcelona, Spain
| | - Pablo Lapunzina
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
- Institute of Medical and Molecular Genetics (INGEMM), University Hospital “La Paz”-IdiPAZ, Madrid, Spain
- ERN-ITHACA, University Hospital La Paz, Madrid, Spain
| | - Elsa Leitão
- Institute of Human Genetics, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Jasmin Beygo
- Institute of Human Genetics, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Christina Lich
- Institute of Human Genetics, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Fabian Kilpert
- Institute of Human Genetics, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Sabine Kaya
- Institute of Human Genetics, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Christel Depienne
- Institute of Human Genetics, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Frank J. Kaiser
- Institute of Human Genetics, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- Center for Rare Diseases (Essener Zentrum für Seltene Erkrankungen, EZSE), University Hospital Essen, Essen, Germany
| | - Feliciano J. Ramos
- Department of Paediatrics, Unit of Clinical Genetics, Service of Paediatrics, University Hospital “Lozano Blesa”, School of Medicine, University of Zaragoza, CIBERER-GCV02 and IIS-Aragon, Zaragoza, Spain
| | - Beatriz Puisac
- Department of Pharmacology and Physiology, Unit of Clinical Genetics and Functional Genomics, School of Medicine, University of Zaragoza, CIBERER-GCV02 and IIS-Aragon, Zaragoza, Spain
| | - Juan Pié
- Department of Pharmacology and Physiology, Unit of Clinical Genetics and Functional Genomics, School of Medicine, University of Zaragoza, CIBERER-GCV02 and IIS-Aragon, Zaragoza, Spain
| |
Collapse
|
2
|
Yue X, Chen M, Ke X, Yang H, Gong F, Wang L, Duan L, Pan H, Zhu H. Clinical Characteristics, Genetic Analysis, and Literature Review of Cornelia de Lange Syndrome Type 4 Associated With a RAD21 Variant. Mol Genet Genomic Med 2024; 12:e70009. [PMID: 39286962 PMCID: PMC11406311 DOI: 10.1002/mgg3.70009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/13/2024] [Accepted: 08/27/2024] [Indexed: 09/19/2024] Open
Abstract
BACKGROUND Cornelia de Lange syndrome (CdLS) is an uncommon congenital developmental disorder distinguished by intellectual disorder and distinctive facial characteristics, with a minority of cases attributed to RAD21 variants. METHODS A patient was admitted to the endocrinology department at Peking Union Medical College Hospital, where 2 mL of peripheral venous blood was collected from the patient and his parents. DNA was extracted for whole-exome sequencing (WES) analysis, and the genetic variation of the parents was confirmed through Sanger sequencing. RESULTS A 13.3-year-old male patient with a height of 136.5 cm (-3.5 SDS) and a weight of 28.4 kg (-3.1 SDS) was found to have typical craniofacial features. WES revealed a pathogenic variant c.1143G>A (p.Trp381*) in the RAD21 gene. He was diagnosed with CdLS type 4 (OMIM #614701). We reviewed 36 patients with CdLS related to RAD21 gene variants reported worldwide from May 2012 to March 2024. Patient's variant status, clinical characteristics, and rhGH treatment response were summarized. Frameshift variants constituted the predominant variant type, representing 36% (13/36) of cases. Clinical features included verbal developmental delay and intellectual disorder observed in 94% of patients. CONCLUSION This study reported the third case of CdLS type 4 in China caused by a RAD21 gene variant, enriching the genetic mutational spectrum.
Collapse
Affiliation(s)
- Xinyu Yue
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, State Key Laboratory of Complex Severe and Rare DiseasesPeking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical CollegeBeijingChina
| | - Meiping Chen
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, State Key Laboratory of Complex Severe and Rare DiseasesPeking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical CollegeBeijingChina
| | - Xiaoan Ke
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, State Key Laboratory of Complex Severe and Rare DiseasesPeking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical CollegeBeijingChina
| | - Hongbo Yang
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, State Key Laboratory of Complex Severe and Rare DiseasesPeking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical CollegeBeijingChina
| | - Fengying Gong
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, State Key Laboratory of Complex Severe and Rare DiseasesPeking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical CollegeBeijingChina
| | - Linjie Wang
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, State Key Laboratory of Complex Severe and Rare DiseasesPeking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical CollegeBeijingChina
| | - Lian Duan
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, State Key Laboratory of Complex Severe and Rare DiseasesPeking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical CollegeBeijingChina
| | - Hui Pan
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, State Key Laboratory of Complex Severe and Rare DiseasesPeking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical CollegeBeijingChina
| | - Huijuan Zhu
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, State Key Laboratory of Complex Severe and Rare DiseasesPeking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical CollegeBeijingChina
| |
Collapse
|
3
|
di Bari I, Ceccarini C, Curcetti M, Cesarano C, Croce AI, Adipietro I, Gallicchio MG, Palladino GP, Patrizio MP, Frisoli B, Santacroce R, D'Apolito M, D'Andrea G, Castriota OM, Pierri CL, Margaglione M. Uncovering a Genetic Diagnosis in a Pediatric Patient by Whole Exome Sequencing: A Modeling Investigation in Wiedemann-Steiner Syndrome. Genes (Basel) 2024; 15:1155. [PMID: 39336746 PMCID: PMC11431573 DOI: 10.3390/genes15091155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 08/24/2024] [Accepted: 08/27/2024] [Indexed: 09/30/2024] Open
Abstract
Background: Wiedemann-Steiner syndrome (WSS), a rare autosomal-dominant disorder caused by haploinsufficiency of the KMT2A gene product, is part of a group of disorders called chromatinopathies. Chromatinopathies are neurodevelopmental disorders caused by mutations affecting the proteins responsible for chromatin remodeling and transcriptional regulation. The resulting gene expression dysregulation mediates the onset of a series of clinical features such as developmental delay, intellectual disability, facial dysmorphism, and behavioral disorders. Aim of the Study: The aim of this study was to investigate a 10-year-old girl who presented with clinical features suggestive of WSS. Methods: Clinical and genetic investigations were performed. Whole exome sequencing (WES) was used for genetic testing, performed using Illumina technology. The bidirectional capillary Sanger resequencing technique was used in accordance with standard methodology to validate a mutation discovered by WES in all family members who were available. Utilizing computational protein modeling for structural and functional studies as well as in silico pathogenicity prediction models, the effect of the mutation was examined. Results: WES identified a de novo heterozygous missense variant in the KMT2A gene KMT2A(NM_001197104.2): c.3451C>G, p.(Arg1151Gly), absent in the gnomAD database. The variant was classified as Likely Pathogenetic (LP) according to the ACMG criteria and was predicted to affect the CXXC-type zinc finger domain functionality of the protein. Modeling of the resulting protein structure suggested that this variant changes the protein flexibility due to a variation in the Gibbs free energy and in the vibrational entropy energy difference between the wild-type and mutated domain, resulting in an alteration of the DNA binding affinity. Conclusions: A novel and de novo mutation discovered by the NGS approach, enhancing the mutation spectrum in the KMT2A gene, was characterized and associated with WSS. This novel KMT2A gene variant is suggested to modify the CXXC-type zinc finger domain functionality by affecting protein flexibility and DNA binding.
Collapse
Affiliation(s)
- Ighli di Bari
- Medical Genetics, Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy
| | - Caterina Ceccarini
- Medical Genetics, Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy
| | - Maria Curcetti
- Medical Genetics, Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy
| | - Carla Cesarano
- Medical Genetics, Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy
| | - Anna-Irma Croce
- Medical Genetics, Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy
| | - Iolanda Adipietro
- Medical Genetics, Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy
| | - Maria Grazia Gallicchio
- Medical Genetics, Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy
| | - Grazia Pia Palladino
- Medical Genetics, Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy
| | - Maria Pia Patrizio
- Medical Genetics, Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy
| | - Benedetta Frisoli
- Medical Genetics, Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy
| | - Rosa Santacroce
- Medical Genetics, Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy
| | - Maria D'Apolito
- Medical Genetics, Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy
| | - Giovanna D'Andrea
- Medical Genetics, Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy
| | - Ombretta Michela Castriota
- Neuropsychiatry for Child and Adolescent Unit, Department of Woman and Child, Policlinico Riuniti, 71122 Foggia, Italy
| | - Ciro Leonardo Pierri
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari "Aldo Moro", 70125 Bari, Italy
| | - Maurizio Margaglione
- Medical Genetics, Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy
| |
Collapse
|
4
|
Gruca-Stryjak K, Doda-Nowak E, Dzierla J, Wróbel K, Szymankiewicz-Bręborowicz M, Mazela J. Advancing the Clinical and Molecular Understanding of Cornelia de Lange Syndrome: A Multidisciplinary Pediatric Case Series and Review of the Literature. J Clin Med 2024; 13:2423. [PMID: 38673696 PMCID: PMC11050916 DOI: 10.3390/jcm13082423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 04/08/2024] [Accepted: 04/19/2024] [Indexed: 04/28/2024] Open
Abstract
Cornelia de Lange syndrome (CdLS) is a complex genetic disorder with distinct facial features, growth limitations, and limb anomalies. Its broad clinical spectrum presents significant challenges in pediatric diagnosis and management. Due to cohesin complex mutations, the disorder's variable presentation requires extensive research to refine care and improve outcomes. This article provides a case series review of pediatric CdLS patients alongside a comprehensive literature review, exploring clinical variability and the relationship between genotypic changes and phenotypic outcomes. It also discusses the evolution of diagnostic and therapeutic techniques, emphasizing innovations in genetic testing, including detecting mosaicism and novel genetic variations. The aim is to synthesize case studies with current research to advance our understanding of CdLS and the effectiveness of management strategies in pediatric healthcare. This work highlights the need for an integrated, evidence-based approach to diagnosis and treatment. It aims to fill existing research gaps and advocate for holistic care protocols and tailored treatment plans for CdLS patients, ultimately improving their quality of life.
Collapse
Affiliation(s)
- Karolina Gruca-Stryjak
- Department of Perinatology, Faculty of Medicine, University of Medical Sciences, 60-535 Poznan, Poland
- Department of Obstetrics and Gynecology, Polish Mother’s Memorial Hospital Research Institute, 93-338 Lodz, Poland
- Centers for Medical Genetics Diagnostyka GENESIS, 60-406 Poznan, Poland
| | - Emilia Doda-Nowak
- Faculty of Medicine, University of Medical Sciences, 61-701 Poznan, Poland (J.D.)
| | - Julia Dzierla
- Faculty of Medicine, University of Medical Sciences, 61-701 Poznan, Poland (J.D.)
| | - Karolina Wróbel
- Department of Neonatology, Faculty of Medicine, University of Medical Sciences, 60-535 Poznan, Poland
| | | | - Jan Mazela
- Department of Neonatology, Faculty of Medicine, University of Medical Sciences, 60-535 Poznan, Poland
| |
Collapse
|
5
|
Shangguan H, Wang J, Lin J, Huang X, Zeng Y, Chen R. A study on genotypes and phenotypes of short stature caused by epigenetic modification gene variants. Eur J Pediatr 2024; 183:1403-1414. [PMID: 38170291 DOI: 10.1007/s00431-023-05385-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 12/08/2023] [Accepted: 12/11/2023] [Indexed: 01/05/2024]
Abstract
Mendelian disorders of the epigenetic machinery (MDEMs) are caused by genetic mutations, a considerable fraction of which are associated with epigenetic modification. These MDEMs exhibit phenotypic overlap broadly characterized by multiorgan abnormalities. The variant detected in genes associated with epigenetic modification can lead to short stature accompanied with multiple system abnormalities. This study is aimed at presenting and summarizing the diagnostic rate, clinical, and genetic profile of MDEMs-associated short stature. Two hundred and fourteen short-stature patients with multiorgan abnormalities were enrolled. Clinical information and whole exome sequence (WES) were analyzed for these patients. WES identified 33 pathogenic/likely pathogenic variants in 19 epigenetic modulation genes (KMT2A, KMT2D, KDM6A, SETD5, KDM5C, HUWE1, UBE2A, NIPBL, SMC1A, RAD21, CREBBP, CUL4B, BPTF, ANKRD11, CHD7, SRCAP, CTCF, MECP2, UBE3A) in 33 patients (15.4%). Of note, 19 variants had never been reported previously. Furthermore, these 33 variants were associated with 16 different disorders with overlapping clinical features characterized by development delay/intelligence disability (31/33; 93.9%), small hands (14/33; 42.4%), clinodactyly of the 5th finger (14/33; 42.4%), long eyelashes (13/33; 39.4%), and hearing impairment (9/33; 27.3%). Additionally, several associated phenotypes are reported for the first time: clubbing with KMT2A variant, webbed neck with SETD5 variant, retinal detachment with CREBBP variant, sparse lateral eyebrow with HUWE1 variant, and long palpebral fissure with eversion of the lateral third of the low eyelid with SRCAP variant.Conclusions: Our study provided a new conceptual framework for further understanding short stature. Specific clinical findings may indicate that a short-stature patient may have an epigenetic modified gene variant.
Collapse
Affiliation(s)
- Huakun Shangguan
- Department of Endocrinology, Genetics and Metabolism, Fuzhou Children's Hospital of Fujian Medical University, Fuzhou, 350000, China
| | - Jian Wang
- Department of Medical Genetics, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai, Shanghai, 200127, China
| | - Jinduan Lin
- Department of Endocrinology, Genetics and Metabolism, Fuzhou Children's Hospital of Fujian Medical University, Fuzhou, 350000, China
| | - Xiaozhen Huang
- Department of Endocrinology, Genetics and Metabolism, Fuzhou Children's Hospital of Fujian Medical University, Fuzhou, 350000, China
| | - Yan Zeng
- Department of Endocrinology, Genetics and Metabolism, Fuzhou Children's Hospital of Fujian Medical University, Fuzhou, 350000, China
| | - Ruimin Chen
- Department of Endocrinology, Genetics and Metabolism, Fuzhou Children's Hospital of Fujian Medical University, Fuzhou, 350000, China.
| |
Collapse
|
6
|
Musa RE, Lester KL, Quickstad G, Vardabasso S, Shumate TV, Salcido RT, Ge K, Shpargel KB. BRD4 binds to active cranial neural crest enhancers to regulate RUNX2 activity during osteoblast differentiation. Development 2024; 151:dev202110. [PMID: 38063851 PMCID: PMC10905746 DOI: 10.1242/dev.202110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 11/16/2023] [Indexed: 01/25/2024]
Abstract
Cornelia de Lange syndrome (CdLS) is a congenital disorder featuring facial dysmorphism, postnatal growth deficits, cognitive disability and upper limb abnormalities. CdLS is genetically heterogeneous, with cases arising from mutation of BRD4, a bromodomain protein that binds and reads acetylated histones. In this study, we have modeled CdLS facial pathology through mouse neural crest cell (NCC)-specific mutation of BRD4 to characterize cellular and molecular function in craniofacial development. Mice with BRD4 NCC loss of function died at birth with severe facial hypoplasia, cleft palate, mid-facial clefting and exencephaly. Following migration, BRD4 mutant NCCs initiated RUNX2 expression for differentiation to osteoblast lineages but failed to induce downstream RUNX2 targets required for lineage commitment. BRD4 bound to active enhancers to regulate expression of osteogenic transcription factors and extracellular matrix components integral for bone formation. RUNX2 physically interacts with a C-terminal domain in the long isoform of BRD4 and can co-occupy osteogenic enhancers. This BRD4 association is required for RUNX2 recruitment and appropriate osteoblast differentiation. We conclude that BRD4 controls facial bone development through osteoblast enhancer regulation of the RUNX2 transcriptional program.
Collapse
Affiliation(s)
- Rachel E. Musa
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599-7264, USA
| | - Kaitlyn L. Lester
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599-7264, USA
| | - Gabrielle Quickstad
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599-7264, USA
| | - Sara Vardabasso
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599-7264, USA
| | - Trevor V. Shumate
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599-7264, USA
| | - Ryan T. Salcido
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599-7264, USA
| | - Kai Ge
- Laboratory of Endocrinology and Receptor Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Karl B. Shpargel
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599-7264, USA
| |
Collapse
|
7
|
Tüysüz B, Kasap B, Uludağ Alkaya D, Alp Ünkar Z, Köseoğlu P, Geyik F, Özer E, Önal H, Gezdirici A, Ercan O. Investigation of (Epi)genetic causes in syndromic short children born small for gestational age. Eur J Med Genet 2023; 66:104854. [PMID: 37758162 DOI: 10.1016/j.ejmg.2023.104854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 08/08/2023] [Accepted: 09/24/2023] [Indexed: 10/03/2023]
Abstract
Intrauterine onset syndromic short stature constitutes a group of diseases that pose challenges in differential diagnosis due to their rarity and clinical as well as molecular heterogeneity. The aim of this study was to investigate the presence of (epi)genetic causes in children born small for gestational age (SGA) and manifesting clinically undiagnosed syndromic short stature. The study group comprised twenty-nine cases selected from the syndromic SGA cohort. Various analyses were performed, including chromosomal microarray (CMA), methylation-specific-multiple ligation probe amplification for chromosomes 6,14 and 20, and whole exome sequencing (WES). Pathogenic copy number variants (CNVs) on chromosomes 2q13, 22q11.3, Xp22.33, 17q21.31, 19p13.13 and 4p16.31 causing syndromic growth disturbance were detected in six patients. Maternal uniparental disomy 14 was identified in a patient. WES was performed in the remaining 22 patients, revealing pathogenic variants in nine cases; six were monoallelic (ACAN, ARID2, NIPBL, PIK3R1, SMAD4, BRIP1), two were biallelic (BRCA2, RFWD3) and one was hemizygous (HUWE1). Seven of these were novel. Craniofacial dysmorphism, which is an important clue for the diagnosis of syndromes, was very mild in all patients. This study unveiled, for the first time, that ARID2 mutatios can cause syndromic SGA. In conclusion, a high (55.2%) diagnosis rate was achieved through the utilization of CMA, epigenetic and WES analyzes; 15 rare syndromes were defined, who were born with SGA and had atypical and/or mild dysmorphic findings. This study not only drew attention to the association of some rare syndromes with SGA, but also introduced novel genes and CNVs as potential contributors to syndromic SGA.
Collapse
Affiliation(s)
- Beyhan Tüysüz
- Department of Pediatric Genetics, Istanbul University-Cerrahpaşa, Cerrahpaşa Medical Faculty, Istanbul, Turkey.
| | - Büşra Kasap
- Department of Pediatric Genetics, Istanbul University-Cerrahpaşa, Cerrahpaşa Medical Faculty, Istanbul, Turkey
| | - Dilek Uludağ Alkaya
- Department of Pediatric Genetics, Istanbul University-Cerrahpaşa, Cerrahpaşa Medical Faculty, Istanbul, Turkey
| | - Zeynep Alp Ünkar
- Department of Neonatology, Istanbul University-Cerrahpaşa, Cerrahpaşa Medical Faculty, Istanbul, Turkey
| | - Pınar Köseoğlu
- Department of Genetics, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Filiz Geyik
- Department of Genetics, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Emre Özer
- Department of Pediatric Genetics, Istanbul University-Cerrahpaşa, Cerrahpaşa Medical Faculty, Istanbul, Turkey
| | - Hasan Önal
- Department of Pediatric Endocrinology, University of Health Sciences Turkey, Başakşehir Çam ve Sakura City Hospital, Istanbul, Turkey
| | - Alper Gezdirici
- Department of Medical Genetic, University of Health Sciences Turkey, Başakşehir Çam ve Sakura City Hospital, Istanbul, Turkey
| | - Oya Ercan
- Department of Pediatric Endocrinology, Istanbul University-Cerrahpaşa, Cerrahpaşa Medical Faculty, Istanbul, Turkey
| |
Collapse
|