1
|
Li Y, He M, Zhang W, Liu W, Xu H, Yang M, Zhang H, Liang H, Li W, Wu Z, Fu W, Xu S, Liu X, Fan S, Zhou L, Wang C, Zhang L, Li Y, Gu J, Yin J, Zhang Y, Xia Y, Mao X, Cheng T, Shi J, Du Y, Gao Y. Expansion of human megakaryocyte-biased hematopoietic stem cells by biomimetic Microniche. Nat Commun 2023; 14:2207. [PMID: 37072407 PMCID: PMC10113370 DOI: 10.1038/s41467-023-37954-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 04/04/2023] [Indexed: 04/20/2023] Open
Abstract
Limited numbers of available hematopoietic stem cells (HSCs) limit the widespread use of HSC-based therapies. Expansion systems for functional heterogenous HSCs remain to be optimized. Here, we present a convenient strategy for human HSC expansion based on a biomimetic Microniche. After demonstrating the expansion of HSC from different sources, we find that our Microniche-based system expands the therapeutically attractive megakaryocyte-biased HSC. We demonstrate scalable HSC expansion by applying this strategy in a stirred bioreactor. Moreover, we identify that the functional human megakaryocyte-biased HSCs are enriched in the CD34+CD38-CD45RA-CD90+CD49f lowCD62L-CD133+ subpopulation. Specifically, the expansion of megakaryocyte-biased HSCs is supported by a biomimetic niche-like microenvironment, which generates a suitable cytokine milieu and supplies the appropriate physical scaffolding. Thus, beyond clarifying the existence and immuno-phenotype of human megakaryocyte-biased HSC, our study demonstrates a flexible human HSC expansion strategy that could help realize the strong clinical promise of HSC-based therapies.
Collapse
Affiliation(s)
- Yinghui Li
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, PUMC Department of Stem Cell and Regenerative Medicine, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Mei He
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, PUMC Department of Stem Cell and Regenerative Medicine, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Wenshan Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, PUMC Department of Stem Cell and Regenerative Medicine, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Wei Liu
- Department of Biomedical Engineering, School of Medicine, Tsinghua-PKU Center for Life Sciences, Tsinghua University, 100084, Beijing, China
- Beijing CytoNiche Biotechnology Co. Ltd., 100195, Beijing, China
| | - Hui Xu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, PUMC Department of Stem Cell and Regenerative Medicine, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Ming Yang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, PUMC Department of Stem Cell and Regenerative Medicine, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Hexiao Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, PUMC Department of Stem Cell and Regenerative Medicine, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Haiwei Liang
- Department of Biomedical Engineering, School of Medicine, Tsinghua-PKU Center for Life Sciences, Tsinghua University, 100084, Beijing, China
| | - Wenjing Li
- Department of Biomedical Engineering, School of Medicine, Tsinghua-PKU Center for Life Sciences, Tsinghua University, 100084, Beijing, China
| | - Zhaozhao Wu
- Department of Biomedical Engineering, School of Medicine, Tsinghua-PKU Center for Life Sciences, Tsinghua University, 100084, Beijing, China
| | - Weichao Fu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, PUMC Department of Stem Cell and Regenerative Medicine, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Shiqi Xu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, PUMC Department of Stem Cell and Regenerative Medicine, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Xiaolei Liu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, PUMC Department of Stem Cell and Regenerative Medicine, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Sibin Fan
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, PUMC Department of Stem Cell and Regenerative Medicine, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Liwei Zhou
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, PUMC Department of Stem Cell and Regenerative Medicine, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Chaoqun Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, PUMC Department of Stem Cell and Regenerative Medicine, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Lele Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, PUMC Department of Stem Cell and Regenerative Medicine, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Yafang Li
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, PUMC Department of Stem Cell and Regenerative Medicine, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Jiali Gu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, PUMC Department of Stem Cell and Regenerative Medicine, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Jingjing Yin
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, PUMC Department of Stem Cell and Regenerative Medicine, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Yiran Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, PUMC Department of Stem Cell and Regenerative Medicine, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Yonghui Xia
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, PUMC Department of Stem Cell and Regenerative Medicine, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Xuemei Mao
- Nankai Hospital, Tianjin Hospital of Integrated Traditional Chinese and Western Medicine, Tianjin, 300100, China
| | - Tao Cheng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, PUMC Department of Stem Cell and Regenerative Medicine, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China.
- Tianjin Institutes of Health Science, Tianjin, 301600, China.
| | - Jun Shi
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, PUMC Department of Stem Cell and Regenerative Medicine, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China.
- Tianjin Institutes of Health Science, Tianjin, 301600, China.
| | - Yanan Du
- Department of Biomedical Engineering, School of Medicine, Tsinghua-PKU Center for Life Sciences, Tsinghua University, 100084, Beijing, China.
- Beijing CytoNiche Biotechnology Co. Ltd., 100195, Beijing, China.
| | - Yingdai Gao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, PUMC Department of Stem Cell and Regenerative Medicine, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China.
- Tianjin Institutes of Health Science, Tianjin, 301600, China.
| |
Collapse
|
2
|
Sagaser KG, Malinowski J, Westerfield L, Proffitt J, Hicks MA, Toler TL, Blakemore KJ, Stevens BK, Oakes LM. Expanded carrier screening for reproductive risk assessment: An evidence-based practice guideline from the National Society of Genetic Counselors. J Genet Couns 2023. [PMID: 36756860 DOI: 10.1002/jgc4.1676] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 12/20/2022] [Accepted: 12/23/2022] [Indexed: 02/10/2023]
Abstract
Expanded carrier screening (ECS) intends to broadly screen healthy individuals to determine their reproductive chance for autosomal recessive (AR) and X-linked (XL) conditions with infantile or early-childhood onset, which may impact reproductive management (Committee Opinion 690, Obstetrics and Gynecology, 2017, 129, e35). Compared to ethnicity-based screening, which requires accurate knowledge of ancestry for optimal test selection and appropriate risk assessment, ECS panels consist of tens to hundreds of AR and XL conditions that may be individually rare in various ancestries but offer a comprehensive approach to inherited disease screening. As such, the term "equitable carrier screening" may be preferable. This practice guideline provides evidence-based recommendations for ECS using the GRADE Evidence to Decision framework (Guyatt et al., BMJ, 2008, 336, 995; Guyatt et al., BMJ, 2008, 336, 924). We used evidence from a recent systematic evidence review (Ramdaney et al., Genetics in Medicine, 2022, 20, 374) and compiled data from peer-reviewed literature, scientific meetings, and clinical experience. We defined and prioritized the outcomes of informed consent, change in reproductive plans, yield in identification of at-risk carrier pairs/pregnancies, perceived barriers to ECS, amount of provider time spent, healthcare costs, frequency of severely/profoundly affected offspring, incidental findings, uncertain findings, patient satisfaction, and provider attitudes. Despite the recognized barriers to implementation and change in management strategies, this analysis supported implementation of ECS for these outcomes. Based upon the current level of evidence, we recommend ECS be made available for all individuals considering reproduction and all pregnant reproductive pairs, as ECS presents an ethnicity-based carrier screening alternative which does not rely on race-based medicine. The final decision to pursue carrier screening should be directed by shared decision-making, which takes into account specific features of patients as well as their preferences and values. As a periconceptional reproductive risk assessment tool, ECS is superior compared to ethnicity-based carrier screening in that it both identifies more carriers of AR and XL conditions as well as eliminates a single race-based medical practice. ECS should be offered to all who are currently pregnant, considering pregnancy, or might otherwise biologically contribute to pregnancy. Barriers to the broad implementation of and access to ECS should be identified and addressed so that test performance for carrier screening will not depend on social constructs such as race.
Collapse
Affiliation(s)
- Katelynn G Sagaser
- Division of Maternal Fetal Medicine, Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | - Lauren Westerfield
- Department of Human and Molecular Genetics, Baylor College of Medicine, Texas Children's Pavilion for Women at Texas Children's Hospital, Houston, Texas, USA
| | | | | | - Tomi L Toler
- Division of Genetics & Genomic Medicine, Department of Pediatrics, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - Karin J Blakemore
- Division of Maternal Fetal Medicine, Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Blair K Stevens
- Department of Obstetrics, Gynecology and Reproductive Sciences, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | | |
Collapse
|
3
|
Corda V, Murgia F, Dessolis F, Murru S, Chervenak FA, McCullough LB, Monni G. Professionally responsible management of the ethical and social challenges of antenatal screening and diagnosis of β-thalassemia in a high-risk population. J Perinat Med 2021; 49:847-852. [PMID: 33721919 DOI: 10.1515/jpm-2021-0021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 02/16/2021] [Indexed: 01/19/2023]
Abstract
Thalassemias are among the most frequent genetic disorders worldwide. They are an important social and economic strain in high-risk populations. The benefit of β-thalassemia screening programs is growing evident but the capacity to diagnose fetal β-thalassemia exceeds the treatment possibilities and even when treatment before birth becomes feasible, difficult decisions about the relative risks will remain. This paper can be of practical and ethically justified aid when counseling women about screening, diagnosis, and treatment of β-thalassemia. It takes in consideration various social challenges, medical issues such as antenatal screening, preimplantation genetic diagnosis, prenatal diagnosis, non-invasive prenatal testing and prenatal therapy. We also describe the Sardinian experience in applying and promoting high-risk population screening and diagnosis programs and future trends in the management of β-thalassemia.
Collapse
Affiliation(s)
- Valentina Corda
- Department of Obstetrics and Gynecology, Prenatal and Preimplantation Genetic Diagnosis, Fetal Therapy, Microcitemico Pediatric Hospital "A. Cao", Cagliari, Sardinia, Italy
| | - Federica Murgia
- Department of Obstetrics and Gynecology, Prenatal and Preimplantation Genetic Diagnosis, Fetal Therapy, Microcitemico Pediatric Hospital "A. Cao", Cagliari, Sardinia, Italy
| | - Francesca Dessolis
- Department of Obstetrics and Gynecology, Prenatal and Preimplantation Genetic Diagnosis, Fetal Therapy, Microcitemico Pediatric Hospital "A. Cao", Cagliari, Sardinia, Italy
| | - Stefania Murru
- Laboratory of Genetics and Genomics, Microcitemico Pediatric Hospital "A. Cao", Cagliari, Sardinia, Italy
| | - Frank A Chervenak
- Department of Obstetrics and Gynecology, Zucker School of Medicine at Hofstra/Northwell and Lenox Hill Hospital, New York, USA
| | - Laurence B McCullough
- Department of Obstetrics and Gynecology, Zucker School of Medicine at Hofstra/Northwell and Lenox Hill Hospital, New York, USA
| | - Giovanni Monni
- Department of Obstetrics and Gynecology, Prenatal and Preimplantation Genetic Diagnosis, Fetal Therapy, Microcitemico Pediatric Hospital "A. Cao", Cagliari, Sardinia, Italy
| |
Collapse
|
4
|
Ultrasound-guided in Utero Transplantation of Placental Stem Cells into the Liver of Crigler-Najjar Syndrome Model Rat. Transplantation 2020; 103:e182-e187. [PMID: 30985583 DOI: 10.1097/tp.0000000000002735] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND Advances in prenatal screening and early diagnosis of genetic disease will potentially allow for preemptive treatment of anticipated postnatal disease by in utero cell transplantation (IUCT). This strategy carries potential benefits over postnatal treatment, which might allow for improved engraftment and function of the transplanted cells. Congenital metabolic disorders may be an ideal target for this type of therapy, as in most cases, they require replacement of a single deficient hepatic enzyme, and multiple small-animal models exist for preclinical testing. METHODS The Gunn rat, a Crigler-Najjar syndrome model animal lacking UDP-glucuronosyltransferase (UGT1A1), was used as recipient. Human amniotic epithelial cells (hAECs), which possess hepatic differentiation potential, were transplanted into the midgestation fetal Gunn rat liver via ultrasound-guided IUCT. The impact of IUCT on live birth and postnatal survival was evaluated. Human cell engraftment was immunohistochemically analyzed on postnatal day 21. RESULTS Ultrasound-guided IUCT was conducted in rat fetuses on embryonic day 16. Following IUCT, the antihuman mitochondria-positive cells were detected in the liver of recipient rats at postnatal day 21. CONCLUSIONS Here, we have introduced ultrasound-guided IUCT of hAEC using a small-animal model of a congenital metabolic disorder without immunosuppression. The immunological advantage of IUCT was demonstrated with xenogeneic IUCT. This procedure is suitable to conduct preclinical studies for exploring the feasibility and efficacy of ultrasound-guided transuterine cell injection using rodent disease models.
Collapse
|
5
|
Lum SH, Hoenig M, Gennery AR, Slatter MA. Conditioning Regimens for Hematopoietic Cell Transplantation in Primary Immunodeficiency. Curr Allergy Asthma Rep 2019; 19:52. [PMID: 31741098 PMCID: PMC6861349 DOI: 10.1007/s11882-019-0883-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
PURPOSE OF REVIEW Hematopoietic cell transplantation (HCT) is an established curative treatment for children with primary immunodeficiencies. This article reviews the latest developments in conditioning regimens for primary immunodeficiency (PID). It focuses on data regarding transplant outcomes according to newer reduced toxicity conditioning regimens used in HCT for PID. RECENT FINDINGS Conventional myeloablative conditioning regimens are associated with significant acute toxicities, transplant-related mortality, and late effects such as infertility. Reduced toxicity conditioning regimens have had significant positive impacts on HCT outcome, and there are now well-established strategies in children with PID. Treosulfan has emerged as a promising preparative agent. Use of a peripheral stem cell source has been shown to be associated with better donor chimerism in patients receiving reduced toxicity conditioning. Minimal conditioning regimens using monoclonal antibodies are in clinical trials with promising results thus far. Reduced toxicity conditioning has emerged as standard of care for PID and has resulted in improved transplant survival for patients with significant comorbidities.
Collapse
Affiliation(s)
- S H Lum
- Children's Haematopoietic Stem Cell Transplant Unit, Great North Children's Hospital, Newcastle upon Tyne Hospital NHS Foundation Trust, Newcastle upon Tyne, UK
| | - M Hoenig
- Department of Pediatrics, University Medical Center Ulm, Ulm, Germany
| | - A R Gennery
- Children's Haematopoietic Stem Cell Transplant Unit, Great North Children's Hospital, Newcastle upon Tyne Hospital NHS Foundation Trust, Newcastle upon Tyne, UK
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - M A Slatter
- Children's Haematopoietic Stem Cell Transplant Unit, Great North Children's Hospital, Newcastle upon Tyne Hospital NHS Foundation Trust, Newcastle upon Tyne, UK.
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK.
| |
Collapse
|
6
|
Abstract
Fetal surgery and fetal therapy involve surgical interventions on the fetus in utero to correct or ameliorate congenital abnormalities and give a developing fetus the best chance at a healthy life. Historical use of biomaterials in fetal surgery has been limited, and most biomaterials used in fetal surgeries today were originally developed for adult or pediatric patients. However, as the field of fetal surgery moves from open surgeries to minimally invasive procedures, many opportunities exist for innovative biomaterials engineers to create materials designed specifically for the unique challenges and opportunities of maternal-fetal surgery. Here, we review biomaterials currently used in clinical fetal surgery as well as promising biomaterials in development for eventual clinical translation. We also highlight unmet challenges in fetal surgery that could particularly benefit from novel biomaterials, including fetal membrane sealing and minimally invasive myelomeningocele defect repair. Finally, we conclude with a discussion of the underdeveloped fetal immune system and opportunities for exploitation with novel immunomodulating biomaterials.
Collapse
Affiliation(s)
- Sally M Winkler
- Department of Bioengineering, University of California, Berkeley, CA, USA. and University of California, Berkeley-University of California, San Francisco Graduate Program in Bioengineering, Berkeley, CA, USA
| | - Michael R Harrison
- Division of Pediatric Surgery, UCSF Benioff Children's Hospital, San Francisco, CA, USA
| | - Phillip B Messersmith
- Department of Bioengineering, University of California, Berkeley, CA, USA. and Department of Materials Science and Engineering, University of California, Berkeley, CA, USA and Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| |
Collapse
|
7
|
Mattar CNZ, Tan YW, Johana N, Biswas A, Tan LG, Choolani M, Bakkour S, Johnson M, Chan JKY, Flake AW. Fetoscopic versus Ultrasound-Guided Intravascular Delivery of Maternal Bone Marrow Cells in Fetal Macaques: A Technical Model for Intrauterine Haemopoietic Cell Transplantation. Fetal Diagn Ther 2019; 46:175-186. [PMID: 30661073 DOI: 10.1159/000493791] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 09/14/2018] [Indexed: 11/19/2022]
Abstract
INTRODUCTION Significant limitations with existing treatments for major haemoglobinopathies motivate the development of effective intrauterine therapy. We assessed the feasibility of fetoscopic and ultrasound-guided intrauterine haemopoietic cell transplantation (IUHCT) in macaque fetuses in early gestation when haemopoietic and immunological ontogeny is anticipated to enable long-term donor cell engraftment. MATERIAL AND METHODS Fluorescent-labelled bone marrow-derived mononuclear cells from 10 pregnant Macaca fascicularis were injected into their fetuses at E71-114 (18.9-170.0E+6 cells/fetus) by fetoscopic intravenous (n = 7) or ultrasound (US)-guided intracardiac injections, with sacrifice at 24 h to examine donor-cell distribution. RESULTS Operating times ranged from 35 to 118 min. Chorionic membrane tenting and intrachorionic haemorrhage were observed only with fetoscopy (n = 2). Labelled cells were stereoscopically visualised in lung, spleen, liver, and placenta. Donor-cell chimerism was highest in liver, spleen, and heart by flow cytometry, placenta by unique polymorphism qPCR, and was undetected in blood. Chimerism was 2-3 log-fold lower in individual organs by qPCR than by flow cytometry. DISCUSSION Both fetoscopic and US-guided IUHCT were technically feasible, but fetoscopy caused more intraoperative complications in our pilot series. The discrepancy in chimerism detection predicts the challenges in long-term surveillance of donor-cell chimerism. Further studies of long-term outcomes in the non-human primate are valuable for the development of clinical protocols for IUHCT.
Collapse
Affiliation(s)
- Citra N Z Mattar
- Department of Obstetrics & Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Yi-Wan Tan
- Reproductive Medicine, KK Women's and Children's Hospital, Singapore, Singapore
| | - Nuryanti Johana
- Reproductive Medicine, KK Women's and Children's Hospital, Singapore, Singapore
| | - Arijit Biswas
- Department of Obstetrics & Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Lay-Geok Tan
- Department of Obstetrics & Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Mahesh Choolani
- Department of Obstetrics & Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Sonia Bakkour
- Blood Systems Research Institute, San Francisco, California, USA
| | - Mark Johnson
- Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Jerry K Y Chan
- Reproductive Medicine, KK Women's and Children's Hospital, Singapore, Singapore, .,Cancer and Stem Cell Biology Program, Duke-NUS Graduate Medical School, Singapore, Singapore,
| | - Alan W Flake
- Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| |
Collapse
|
8
|
King AJ, Higgs DR. Potential new approaches to the management of the Hb Bart's hydrops fetalis syndrome: the most severe form of α-thalassemia. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2018; 2018:353-360. [PMID: 30504332 PMCID: PMC6246003 DOI: 10.1182/asheducation-2018.1.353] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The α-thalassemia trait, associated with deletions removing both α-globin genes from 1 chromosome (genotype ζ αα/ζ--), is common throughout Southeast Asia. Consequently, many pregnancies in couples of Southeast Asian origin carry a 1 in 4 risk of producing a fetus inheriting no functional α-globin genes (ζ--/ζ--), leading to hemoglobin (Hb) Bart's hydrops fetalis syndrome (BHFS). Expression of the embryonic α-globin genes (ζ-globin) is normally limited to the early stages of primitive erythropoiesis, and so when the ζ-globin genes are silenced, at ∼6 weeks of gestation, there should be no α-like globin chains to pair with the fetal γ-globin chains of Hb, which consequently form nonfunctional tetramers (γ4) known as Hb Bart's. When deletions leave the ζ-globin gene intact, a low level of ζ-globin gene expression continues in definitive erythroid cells, producing small amounts of Hb Portland (ζ2γ2), a functional form of Hb that allows the fetus to survive up to the second or third trimester. Untreated, all affected individuals die at these stages of development. Prevention is therefore of paramount importance. With improvements in early diagnosis, intrauterine transfusion, and advanced perinatal care, there are now a small number of individuals with BHFS who have survived, with variable outcomes. A deeper understanding of the mechanism underlying the switch from ζ- to α-globin expression could enable persistence or reactivation of embryonic globin synthesis in definitive cells, thereby providing new therapeutic options for such patients.
Collapse
Affiliation(s)
- Andrew J King
- Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, Oxford, United Kingdom
| | - Douglas R Higgs
- Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, Oxford, United Kingdom
| |
Collapse
|
9
|
Cheng YL, Zhang XH, Sun YW, Wang WJ, Huang J, Chu NL, Fang SP, Wu ZK. Genomewide DNA Methylation Responses in Patients with β-Thalassemia Treated with Yisui Shengxue Granules (). Chin J Integr Med 2018; 25:490-496. [PMID: 29761313 DOI: 10.1007/s11655-018-2777-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2016] [Accepted: 01/09/2016] [Indexed: 11/24/2022]
Abstract
OBJECTIVE To examine the clinical effects of Yisui Shengxue Granules () in the treatment of β-thalassemia and explore its mechanism on DNA methylation levels. METHODS A randomized placebo-controlled double-blinded trial was conducted. Forty patients with β-thalassemia were recruited and distributed randomly by envelope method into an experimental group and a control group, 20 patients in each group. The patients were given Yisui Shengxue Granules in the experimental group and placebo in the control group (12 g/bag three times a day) during a 3-month intervention. Before and after 1, 2, and 3 months of treatment, peripheral intravenous blood was sampled, and blood parameters such as hemoglobin (Hb), red blood cells (RBCs), reticulocytes (Ret), and fetal hemoglobin (HbF) were analyzed. Mononuclear cells from 5 patients, who showed an obvious treatment effect, were isolated by density gradient centrifugation. DNA methylation was analyzed using an Affymetrix USA GeneChip Human Promoter 1.0 Array and Input-promoter 1.0. RESULTS Compared with pre-treatment, there was an obvious increase in Hb and RBCs counts after 1, 2, and 3 months in the experiment group (P<0.01 or P<0.05). Meanwhile, HbF increased from the 2nd to the 3rd month (P<0.05). In the control group, Hb and RBCs showed no obvioas change. After 3-month treatment, DNA methylation results from 5 patients revealed that there were 24 hypomethylated genes and 3,685 hypermethylated genes compared with pre-treatment. Genes of insulin-like growth factor 1 receptor (IGF1R) and Janus kinase 3 (JAK3) revealed the most relations with other genes (degree: 21) and genes of 1-phosphatidylinositol-4, 5-bisphosphate phosphodiesterase gamma 2 (PLCG2) and mitogen-activated protein kinase 10 (MAPK10) showed a stronger intermediary role (betweenness centrality=0.04). CONCLUSIONS JAK3 and MAPK10 are two key genes in bone marrow and the lymphatic system, and JAK3 is likely to be related to hematopoietic cytokines in the process of early hematopoiesis. (Registration No. NCT01549080).
Collapse
Affiliation(s)
- Yan-Ling Cheng
- Molecular Biology Labaratory, South of Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 102618, China
| | - Xin-Hua Zhang
- Department of Hematology, 303rd Hospital of People's Liberatory Army, Nanning, 530021, China
| | - Yu-Wen Sun
- Molecular Biology Laboratory of Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Wen-Juan Wang
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, 100069, China
| | - Jie Huang
- Department of Hematology, 303rd Hospital of People's Liberatory Army, Nanning, 530021, China
| | - Na-Li Chu
- Molecular Biology Laboratory of Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Su-Ping Fang
- Molecular Biology Laboratory of Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Zhi-Kui Wu
- Molecular Biology Laboratory of Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China.
| |
Collapse
|
10
|
Suwannakhon N, Pongsawatkul K, Seeratanachot T, Rasri W, Mahingsa K, Pingyod A, Bumrungpakdee W, Sanguansermsri T. Fast-Track Strategy for the Prevention of Hb Bart’s Hydrops Fetalis Syndrome. THALASSEMIA REPORTS 2017. [DOI: 10.4081/thal.2017.6620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We propose a fast-track strategy [direct blood DNA analysis using a quantitative real-time polymerase chain reaction (PCR) technique] for the early risk detection and prenatal diagnosis of α(0)-thalassemia (SEA and Thai deletion). Blood DNA samples were obtained from a volunteer group of 1235 ANC couples. They were assessed using quantitative real-time PCR to detect carriers of α(0)-thalassemia (SEA and Thai deletion). At-risk couples were identified, and further prenatal diagnosis by amniocentesis was implemented. Fetal DNA was isolated from the amniotic cells and characterized by quantitative real-time PCR to detect the α(0)-thalassemia mutation, which was reconfirmed using the droplet digital PCR method. Fifteen at-risk couples were identified. The timing of prenatal diagnosis was appropriate for all couples and four of the fetuses were diagnosed with Bart’s hydrops fetalis. The results were compatible with those calculated using the Hardy-Weinberg equation for a recessively inherited single gene disorder. The conclusion was that the fast-track strategy could shorten screening policy timelines, promoting early risk detection for couples and early prenatal diagnosis. The fast-track strategy might be beneficial for the prevention of hemoglobin Bart’s hydrops fetalis syndrome.
Collapse
|
11
|
Palchaudhuri R, Saez B, Hoggatt J, Schajnovitz A, Sykes DB, Tate TA, Czechowicz A, Kfoury Y, Ruchika F, Rossi DJ, Verdine GL, Mansour MK, Scadden DT. Non-genotoxic conditioning for hematopoietic stem cell transplantation using a hematopoietic-cell-specific internalizing immunotoxin. Nat Biotechnol 2016; 34:738-45. [PMID: 27272386 PMCID: PMC5179034 DOI: 10.1038/nbt.3584] [Citation(s) in RCA: 163] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 04/27/2016] [Indexed: 12/31/2022]
Abstract
Hematopoietic stem cell transplantation (HSCT) offers curative therapy for patients with hemoglobinopathies, congenital immunodeficiencies, and other conditions, possibly including AIDS. Autologous HSCT using genetically corrected cells would avoid the risk of graft-versus-host disease (GVHD), but the genotoxicity of conditioning remains a substantial barrier to the development of this approach. Here we report an internalizing immunotoxin targeting the hematopoietic-cell-restricted CD45 receptor that effectively conditions immunocompetent mice. A single dose of the immunotoxin, CD45-saporin (SAP), enabled efficient (>90%) engraftment of donor cells and full correction of a sickle-cell anemia model. In contrast to irradiation, CD45-SAP completely avoided neutropenia and anemia, spared bone marrow and thymic niches, enabling rapid recovery of T and B cells, preserved anti-fungal immunity, and had minimal overall toxicity. This non-genotoxic conditioning method may provide an attractive alternative to current conditioning regimens for HSCT in the treatment of non-malignant blood diseases.
Collapse
Affiliation(s)
- Rahul Palchaudhuri
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts, USA
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
- Harvard Stem Cell Institute, Cambridge, Massachusetts, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts, USA
| | - Borja Saez
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts, USA
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
- Harvard Stem Cell Institute, Cambridge, Massachusetts, USA
| | - Jonathan Hoggatt
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts, USA
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
- Harvard Stem Cell Institute, Cambridge, Massachusetts, USA
| | - Amir Schajnovitz
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts, USA
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
- Harvard Stem Cell Institute, Cambridge, Massachusetts, USA
| | - David B Sykes
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts, USA
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
- Harvard Stem Cell Institute, Cambridge, Massachusetts, USA
| | - Tiffany A Tate
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts, USA
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
- Harvard Stem Cell Institute, Cambridge, Massachusetts, USA
| | - Agnieszka Czechowicz
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts, USA
- Harvard Stem Cell Institute, Cambridge, Massachusetts, USA
- Program in Cellular and Molecular Medicine, Division of Hematology/Oncology, Boston Children's Hospital, Boston, Massachusetts, USA
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
- Department of Pediatric Oncology, Dana Farber Cancer Institute, Boston, Massachusetts, USA
| | - Youmna Kfoury
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts, USA
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
- Harvard Stem Cell Institute, Cambridge, Massachusetts, USA
| | - Fnu Ruchika
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts, USA
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
- Harvard Stem Cell Institute, Cambridge, Massachusetts, USA
| | - Derrick J Rossi
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts, USA
- Harvard Stem Cell Institute, Cambridge, Massachusetts, USA
- Program in Cellular and Molecular Medicine, Division of Hematology/Oncology, Boston Children's Hospital, Boston, Massachusetts, USA
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | - Gregory L Verdine
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts, USA
- Harvard Stem Cell Institute, Cambridge, Massachusetts, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts, USA
| | - Michael K Mansour
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - David T Scadden
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts, USA
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
- Harvard Stem Cell Institute, Cambridge, Massachusetts, USA
| |
Collapse
|
12
|
Kinder JM, Jiang TT, Ertelt JM, Xin L, Strong BS, Shaaban AF, Way SS. Tolerance to noninherited maternal antigens, reproductive microchimerism and regulatory T cell memory: 60 years after 'Evidence for actively acquired tolerance to Rh antigens'. CHIMERISM 2015; 6:8-20. [PMID: 26517600 PMCID: PMC5063085 DOI: 10.1080/19381956.2015.1107253] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Compulsory exposure to genetically foreign maternal tissue imprints in offspring sustained tolerance to noninherited maternal antigens (NIMA). Immunological tolerance to NIMA was first described by Dr. Ray D. Owen for women genetically negative for erythrocyte rhesus (Rh) antigen with reduced sensitization from developmental Rh exposure by their mothers. Extending this analysis to HLA haplotypes has uncovered the exciting potential for therapeutically exploiting NIMA-specific tolerance naturally engrained in mammalian reproduction for improved clinical outcomes after allogeneic transplantation. Herein, we summarize emerging scientific concepts stemming from tolerance to NIMA that includes postnatal maintenance of microchimeric maternal origin cells in offspring, expanded accumulation of immune suppressive regulatory T cells with NIMA-specificity, along with teleological benefits and immunological consequences of NIMA-specific tolerance conserved across mammalian species.
Collapse
Affiliation(s)
- Jeremy M Kinder
- a Division of Infectious Diseases and Perinatal Institute, Cincinnati Children's Hospital, Cincinnati , OH , USA
| | - Tony T Jiang
- a Division of Infectious Diseases and Perinatal Institute, Cincinnati Children's Hospital, Cincinnati , OH , USA
| | - James M Ertelt
- a Division of Infectious Diseases and Perinatal Institute, Cincinnati Children's Hospital, Cincinnati , OH , USA
| | - Lijun Xin
- a Division of Infectious Diseases and Perinatal Institute, Cincinnati Children's Hospital, Cincinnati , OH , USA
| | - Beverly S Strong
- b Center for Fetal Cellular and Molecular Therapy, Cincinnati Children's Hospital , Cincinnati , OH , USA
| | - Aimen F Shaaban
- b Center for Fetal Cellular and Molecular Therapy, Cincinnati Children's Hospital , Cincinnati , OH , USA
| | - Sing Sing Way
- a Division of Infectious Diseases and Perinatal Institute, Cincinnati Children's Hospital, Cincinnati , OH , USA
| |
Collapse
|