1
|
Zhang MW, Tan FQ, Yang JR, Yu JG. Cardiovascular events in crush syndrome: on-site therapeutic strategies and pharmacological investigations. Front Pharmacol 2024; 15:1472971. [PMID: 39372200 PMCID: PMC11452875 DOI: 10.3389/fphar.2024.1472971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 09/11/2024] [Indexed: 10/08/2024] Open
Abstract
Crush syndrome often occurs after severe crush injury caused by disasters or accidents, and is associated with high mortality and poor prognosis. Cardiovascular complications, such as cardiac arrest, hypovolemic shock, and hyperkalemia-related cardiac dysfunction, are the primary causes of on-site death in crush syndrome. Prehospital evaluation, together with timely and correct treatment, is of great benefit to crush syndrome patients, which is difficult in most cases due to limited conditions. Based on current data and studies, early fluid resuscitation remains the most important on-site treatment for crush syndrome. Novel solutions and drugs used in fluid resuscitation have been investigated for their effectiveness and benefits. Several drugs have proven effective for the prevention or treatment of cardiovascular complications in crush syndrome, such as hypovolemic shock, hyperkalemia-induced cardiac complications, myocardial ischemia/reperfusion injury, ventricular dysfunction, and coagulation disorder experimentally. Moreover, these drugs are beneficial for other complications of crush syndrome, such as renal dysfunction. In this review, we will summarize the existing on-site treatments for crush syndrome and discuss the potential pharmacological interventions for cardiovascular complications to provide clues for clinical therapy of crush syndrome.
Collapse
|
2
|
Li D, Zhang Y, Chen Y, Yang B, Chen J, Shi J, Guo X, Liu Y, Zhang L, Lv Q, Fan H. Advancing crush syndrome management: the potent role of Sodium zirconium cyclosilicate in early hyperkalemia intervention and survival enhancement in a rat model. Front Pharmacol 2024; 15:1381954. [PMID: 38803437 PMCID: PMC11128686 DOI: 10.3389/fphar.2024.1381954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 04/25/2024] [Indexed: 05/29/2024] Open
Abstract
Background: Crush Syndrome (CS), a severe trauma resulting from prolonged muscle compression, is commonly seen in large-scale disasters such as earthquakes. It not only causes localized tissue damage but also triggers electrolyte imbalances, particularly hyperkalemia, increasing the risk of early mortality. This study aims to assess the early intervention effects of Sodium Zirconium Cyclosilicate (SZC) on hyperkalemia in rat CS model. Methods: A rat CS model was established using a self-developed multi-channel intelligent small-animal crush injury platform. Rats in the experimental groups were treated with varying doses of SZC before compression and immediately post-decompression. The efficacy of SZC was evaluated by continuous monitoring of blood potassium levels and survival rates. Serum creatinine (Cre) and blood urea nitrogen (BUN) levels were analyzed, and renal damage was assessed through histopathological examination. Results: SZC treatment significantly reduced blood potassium levels and improved survival rates in rats. Compared to the placebo group, the SZC-treated rats showed a significant decrease in blood potassium levels at 6 and 12 h post-decompression, maintaining lower levels at 24 h. Biochemical analysis indicated no significant impact of SZC on renal function, with no notable differences in Cre and BUN levels between groups. Histopathological findings revealed similar levels of renal damage in both groups. Conclusion: SZC demonstrates significant early intervention effects on hyperkalemia in a rat model of crush injury, effectively improving survival rates without adverse effects on renal function. These results provide a new strategic direction for the clinical treatment of Crush Syndrome and lay the foundation for future clinical applications.
Collapse
Affiliation(s)
- Duo Li
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China
- Wenzhou Safety (Emergency) Institute, Tianjin University, Wenzhou, China
| | - Yan Zhang
- Department of Nephrology, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Military Logistics Research Key Laboratory of Field Disease Treatment, Beijing Key Laboratory of Kidney Disease Research, First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Yuansen Chen
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China
- Wenzhou Safety (Emergency) Institute, Tianjin University, Wenzhou, China
| | - Bofan Yang
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China
- Wenzhou Safety (Emergency) Institute, Tianjin University, Wenzhou, China
| | - Jianwen Chen
- Department of Nephrology, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Military Logistics Research Key Laboratory of Field Disease Treatment, Beijing Key Laboratory of Kidney Disease Research, First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Jie Shi
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China
- Wenzhou Safety (Emergency) Institute, Tianjin University, Wenzhou, China
| | - Xiaoqin Guo
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China
- Wenzhou Safety (Emergency) Institute, Tianjin University, Wenzhou, China
| | - Yanqing Liu
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China
- Wenzhou Safety (Emergency) Institute, Tianjin University, Wenzhou, China
| | - Li Zhang
- Department of Nephrology, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Military Logistics Research Key Laboratory of Field Disease Treatment, Beijing Key Laboratory of Kidney Disease Research, First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Qi Lv
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China
- Wenzhou Safety (Emergency) Institute, Tianjin University, Wenzhou, China
| | - Haojun Fan
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China
- Wenzhou Safety (Emergency) Institute, Tianjin University, Wenzhou, China
| |
Collapse
|
3
|
Wang B, Chen C, Xiao Y, He Y, Gao Y, Kang Z, Wei X, Deng Y, Feng S, Zhou G. Geographically associated endophytic fungi contribute to the tropane alkaloids accumulation of Anisodus tanguticus. FRONTIERS IN PLANT SCIENCE 2023; 14:1297546. [PMID: 38098791 PMCID: PMC10720625 DOI: 10.3389/fpls.2023.1297546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 11/14/2023] [Indexed: 12/17/2023]
Abstract
Anisodus tanguticus is a valuable plant for extracting tropane alkaloids. However, the mechanisms by which plant microbiome mediate the accumulation of tropane alkaloids in Anisodus tanguticus are still not well understood. In this study, we collected 55 wild Anisodus tanguticus populations on the Tibetan Plateau and the tropane alkaloids content, and root-related bacteria and fungi diversity were analyzed using HPLC and 16 s rDNA and ITS sequencing. The results showed that tropane alkaloids content has obvious geographical distribution characteristics. Anisodine content had a significant positive correlation with latitude, while anisodamine and atropine content had a significant negative correlation with latitude. Variation partition analysis (VPA) showed that root endophytes play a significant role in promoting tropane alkaloid production in Anisodus tanguticus roots. The root endophytes alone explained 14% of the variation, which was the largest contributor. Soil properties variables could independently explain 5% of the variation, and climate variables could explain 1% of the variation. Of these, endophytic fungi alone accounted for 11%, while bacteria explained only 5%. Random forests and Mantel test showed that different regionally enriched endophytic fungi have a greater impact on the accumulation of tropane alkaloids than the whole endophytic fungi. Richness and relative abundance of enriched endophytic fungi in Hengduan-Qilian Mountains (HQ) group has a significant positive correlation with anisodine content, while richness and relative abundance of enriched endophytic fungi in Himalayas-Hengduan Mountains (HH) group has a significant positive correlation with anisodamine and atropine content. And, these enriched endophytic fungi have high network connectivity and distributed in separate network modules. This study further confirmed that endophytes were closely related to tropane alkaloids accumulation in Anisodus tanguticus and contribute to promote sustainable development, cultivation, and precision medicine of Anisodus tanguticus.
Collapse
Affiliation(s)
- Bo Wang
- CAS Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Xining, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Chen Chen
- CAS Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Xining, China
| | - Yuanming Xiao
- CAS Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Xining, China
| | - Yan He
- Datong Beichuan Heyuan District National Nature Reserve, Xining, China
| | - Ying Gao
- Datong Beichuan Heyuan District National Nature Reserve, Xining, China
| | - Zongxiu Kang
- Datong Beichuan Heyuan District National Nature Reserve, Xining, China
| | - Xiaoxuan Wei
- Datong Beichuan Heyuan District National Nature Reserve, Xining, China
| | - Yujie Deng
- Datong Beichuan Heyuan District National Nature Reserve, Xining, China
| | - Shihong Feng
- Chengdu Tianxianzi agricultural science and technology development Co., LTD, Chengdu, China
| | - Guoying Zhou
- CAS Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Xining, China
| |
Collapse
|
4
|
Usuda D, Shimozawa S, Takami H, Kako Y, Sakamoto T, Shimazaki J, Inoue J, Nakayama S, Koido Y, Oba J. Crush syndrome: a review for prehospital providers and emergency clinicians. J Transl Med 2023; 21:584. [PMID: 37653520 PMCID: PMC10472640 DOI: 10.1186/s12967-023-04416-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 08/04/2023] [Indexed: 09/02/2023] Open
Abstract
INTRODUCTION Disasters and accidents have occurred with increasing frequency in recent years. Primary disasters have the potential to result in mass casualty events involving crush syndrome (CS) and other serious injuries. Prehospital providers and emergency clinicians stand on the front lines of these patients' evaluation and treatment. However, the bulk of our current knowledge, derived from historical data, has remained unchanged for over ten years. In addition, no evidence-based treatment has been established to date. OBJECTIVE This narrative review aims to provide a focused overview of, and update on, CS for both prehospital providers and emergency clinicians. DISCUSSION CS is a severe systemic manifestation of trauma and ischemia involving soft tissue, principally skeletal muscle, due to prolonged crushing of tissues. Among earthquake survivors, the reported incidence of CS is 2-15%, and mortality is reported to be up to 48%. Patients with CS can develop cardiac failure, kidney dysfunction, shock, systemic inflammation, and sepsis. In addition, late presentations include life-threatening systemic effects such as hypovolemic shock, hyperkalemia, metabolic acidosis, and disseminated intravascular coagulation. Immediately beginning treatment is the single most important factor in reducing the mortality of disaster-situation CS. In order to reduce complications from CS, early, aggressive resuscitation is recommended in prehospital settings, ideally even before extrication. However, in large-scale natural disasters, it is difficult to diagnose CS, and to reach and start treatments such as continuous administration of massive amounts of fluid, diuresis, and hemodialysis, on time. This may lead to delayed diagnosis of, and high on-site mortality from, CS. To overcome these challenges, new diagnostic and therapeutic modalities in the CS animal model have recently been advanced. CONCLUSIONS Patient outcomes can be optimized by ensuring that prehospital providers and emergency clinicians maintain a comprehensive understanding of CS. The field is poised to undergo significant advances in coming years, given recent developments in what is considered possible both technologically and surgically; this only serves to further emphasize the importance of the field, and the need for ongoing research.
Collapse
Affiliation(s)
- Daisuke Usuda
- Department of Emergency and Critical Care Medicine, Juntendo University Nerima Hospital, 3-1-10, Takanodai, Nerima-City, Tokyo, 177-8521, Japan.
| | - Shintaro Shimozawa
- Department of Emergency and Critical Care Medicine, Juntendo University Nerima Hospital, 3-1-10, Takanodai, Nerima-City, Tokyo, 177-8521, Japan
| | - Hiroki Takami
- Department of Emergency and Critical Care Medicine, Juntendo University Nerima Hospital, 3-1-10, Takanodai, Nerima-City, Tokyo, 177-8521, Japan
| | - Yoshinobu Kako
- Department of Sport Management, Faculty of Business Informatics, Jobu University, 634-1, Toya-Chou, Isesaki-City, Gunma, 372-8588, Japan
| | - Taigo Sakamoto
- Department of Emergency and Critical Care Medicine, Nippon Medical School, Graduate School of Medicine, 1-1-5, Sendagi, Bunkyo-City, Tokyo, 113-8602, Japan
| | - Junya Shimazaki
- Department of Traumatology and Acute Critical Medicine, Osaka University Graduate School, 2-15, Yamadaoka, Suita-City, Osaka, 565-0871, Japan
| | - Junichi Inoue
- Department of Emergency and Critical Care Medicine, Nippon Medical School Musashikosugi Hospital, 1-383, Kosugi-Cho, Nakahara-Ku, Kawasaki-City, Kanagawa, 211-8533, Japan
| | - Shinichi Nakayama
- Department of Emergency and Critical Care Medicine, Hyogo Emergency Medical Center, 1-3-1, Wakinohamakaigandori, Chuo-Ku, Kobe-City, Hyogo, 651-0073, Japan
| | - Yuichi Koido
- National Hospital Organization Headquarters, DMAT Secretariat MHLW Japan, 3256, Midoricho, Tachikawa-City, Tokyo, 190-8579, Japan
| | - Jiro Oba
- Department of Emergency and Critical Care Medicine, Juntendo University Nerima Hospital, 3-1-10, Takanodai, Nerima-City, Tokyo, 177-8521, Japan
| |
Collapse
|
5
|
Sartim MA, Nogueira RC, Cavalcante TTA, Sousa LO, Monteiro WM, Cintra ACO, Neto-Neves EM, Sampaio SV. Hemodynamic impairment induced by Crotoxin using in vivo and ex vivo approach in a rat model. Int J Biol Macromol 2023; 232:123408. [PMID: 36709813 DOI: 10.1016/j.ijbiomac.2023.123408] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/19/2023] [Accepted: 01/20/2023] [Indexed: 01/27/2023]
Abstract
Crotalus durissus snakebite represent 10 % of snakebite cases in Brazil, which cardiovascular disorders are associated with severe cases. Considering crotoxin (CTX) as the major venom component, the present study aimed to evaluate the hemodynamic alterations induced by CTX using in vivo and ex vivo approaches in a rat model. In vivo cardiac function parameters were analyzed from anesthetized rats treated with CTX or saline only (Sham), along with serum creatine kinase MB (CK-MB) and lung myeloperoxidase. From the same animals, hearts were isolated and functional parameters evaluated in Langendorff method ex vivo. CTX binding to myoblast cell line in vitro were evaluated using confocal microscopy and flow cytometry. CTX was capable of reducing arterial and diastolic blood pressure, heart rate, along with left ventricle pressure development or decay during systole (LVdP/dtmax and LVdP/dtmin) in vivo, however no differences were found in the ex vivo approach, showing that intrinsic heart function was preserved. In vitro, CTX binding to myoblast cell line was mitigated by hexamethonium, a nicotinic acetylcholine receptor antagonist. The present study has shown that CTX induce hemodynamic failure in rats, which can help improve the clinical management of cardiovascular alterations during Crotalus durissus snakebite.
Collapse
Affiliation(s)
- Marco A Sartim
- Department of Clinical Analysis, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil; Department of Research and Development, University Nilton Lins, Manaus, Brazil; Department of Teaching and Research, Fundação de Medicina Tropical, Heitor Vieira Dourado, Manaus, Brazil
| | - Renato C Nogueira
- Department of Pharmacology, Ribeirao Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | | | - Lucas O Sousa
- Department of Clinical Analysis, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Wuelton M Monteiro
- Department of Teaching and Research, Fundação de Medicina Tropical, Heitor Vieira Dourado, Manaus, Brazil; Amazonas State University, Manaus, Brazil
| | - Adélia C O Cintra
- Department of Clinical Analysis, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Evandro M Neto-Neves
- Department of Physiological Sciences, Federal University of Espírito Santo, Vitoria, Brazil
| | - Suely V Sampaio
- Department of Clinical Analysis, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil.
| |
Collapse
|
6
|
Liu Y, Yu M, Chen L, Liu J, Li X, Zhang C, Xiang X, Li X, Lv Q. Systemic Review of Animal Models Used in the Study of Crush Syndrome. Shock 2022; 57:469-478. [PMID: 35066515 DOI: 10.1097/shk.0000000000001911] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
ABSTRACT Crush syndrome (CS), also known as traumatic rhabdomyolysis, is the leading cause of death following extrication from structural collapse due to earthquakes. Due to the unfeasibility of human studies, animal models are used to study crush syndrome pathophysiology, including biochemistry and treatment regimes. The aim of this systematic literature review was to identify the differences and benefits of various animal models used in the study of CS and provide valuable information for design of future research. A systematic search was conducted in two methods: with the filters "(crush syndrome) AND (crush muscle injury)" and with the keywords "(crush syndrome) AND (animal model)" covering all articles in the PubMed databases. The search generated 378 articles. After screening abstracts, 91 articles were retrieved and read, then 11 repeated articles were removed and 2 reference papers were included. We finally reviewed 82 original articles. There appear to be two primary methods employed for inducing crush syndrome in animal models, which are chemically induced injury and physically induced injury. Chemical method mainly includes intramuscular (IM) injection of tissue extract solution and IM injection of 50% glycerine. Physical method can be classified into invasive and non-invasive physical compression by elasticated material, inflatable band and heavy load. Various species of animals have been used to study CS, including mice (13.4%), rats (68.3%), rabbits (11.0%), canines (4.9%), goats (1.2%), and pigs (1.2%). Small animals are suitable for researches exploring the mechanism of disease or drug efficacy while large animals can work better with clinical application-related researches. In regard to the choice of modeling method, compressing the certain muscle of animals by heavy things is superior to others to cause systemic trauma-related rhabdomyolysis signs. In addition, due to the significant burden of crush injuries on animals, further attention shall be paid to the selection of the most suitable anesthetics and appropriate analgesics.
Collapse
Affiliation(s)
- Yahua Liu
- Emergency Department, Chinese PLA General Hospital (The Third Center), Beijing, China
- Beijing Key Laboratory of Disaster Rescue Medicine, Beijing, China
| | - Mengyang Yu
- General Medicine Department, Chinese PLA General Hospital (The Third Center), Beijing, China
| | - Li Chen
- General Medicine Department, Chinese PLA general Hospital (The First Center), Beijing, China
| | - Jing Liu
- Pathology Department, Chinese PLA General Hospital (The Third Center), Beijing, China
| | - Xin Li
- Emergency Department, Chinese PLA General Hospital (The Third Center), Beijing, China
| | - Chengying Zhang
- General Medicine Department, Chinese PLA General Hospital (The Third Center), Beijing, China
| | - Xueyuan Xiang
- Urology, Chinese PLA General Hospital (The Third Center), Beijing, China
| | - Xiaoxue Li
- Beijing Key Laboratory of Disaster Rescue Medicine, Beijing, China
- Chinese PLA General Hospital (Innovative Medicine Division), Beijing, China
| | - Qi Lv
- Institute of Disaster Medicine, Tianjin University, Tianjin, China
- Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin, China
| |
Collapse
|
7
|
Zhang BF, Song W, Wang J, Wen PF, Zhang YM. Anti-high-mobility group box-1 (HMGB1) mediates the apoptosis of alveolar epithelial cells (AEC) by receptor of advanced glycation end-products (RAGE)/c-Jun N-terminal kinase (JNK) pathway in the rats of crush injuries. J Orthop Surg Res 2022; 17:20. [PMID: 35033142 PMCID: PMC8760810 DOI: 10.1186/s13018-021-02903-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 12/30/2021] [Indexed: 11/10/2022] Open
Abstract
Objectives The lung injury is often secondary to severe trauma. In the model of crush syndrome, there may be secondary lung injury. We hypothesize that high-mobility group box 1 (HMGB1), released from muscle tissue, mediates the apoptosis of alveolar epithelial cells (AEC) via HMGB1/Receptor of advanced glycation end-products (RAGE)/c-Jun N-terminal kinase (JNK) pathway. The study aimed to investigate how HMGB1 mediated the apoptosis of AEC in the rat model. Methods Seventy-five SD male rats were randomly divided into five groups: CS, CS + vehicle, CS + Ethyl pyruvate (EP), CS + FPS-ZM1 group, and CS + SP600125 groups. When the rats CS model were completed after 24 h, the rats were sacrificed. We collected the serum and the whole lung tissues. Inflammatory cytokines were measured in serum samples. Western blot and RT-qPCR were used to quantify the protein and mRNA. Lastly, apoptotic cells were detected by TUNEL. We used SPSS 25.0 for statistical analyses. Results Nine rats died during the experiments. Dead rats were excluded from further analysis. Compared to the CS group, levels of HMGB1 and inflammatory cytokines in serum were downregulated in CS + EP, CS + FPS-ZM1, and CS + SP600125 groups. Western blot and RT-qPCR analysis revealed a significant downregulation of HMGB1, RAGE, and phosphorylated-JNK in CS + EP, CS + FPS-ZM1, and CS + SP600125 groups, compared with the CS groups, excluding total-JNK mRNA. Apoptosis of AEC was used TUNEL to assess. We found the TUNEL-positive cells were downregulated in CS + EP, CS + FPS-ZM1, and CS + SP600125 groups. Conclusion The remote lung injury begins early after crush injuries. The HMGB1/RAGE/JNK signaling axis is an attractive target to abrogate the apoptosis of AEC after crush injuries.
Collapse
Affiliation(s)
- Bin-Fei Zhang
- Department of Joint Surgery, Honghui Hospital, Xi'an Jiaotong University, No. 555 Youyi East Road, Beilin District, Xi'an, Shaanxi Province, 710054, People's Republic of China
| | - Wei Song
- Department of Joint Surgery, Honghui Hospital, Xi'an Jiaotong University, No. 555 Youyi East Road, Beilin District, Xi'an, Shaanxi Province, 710054, People's Republic of China
| | - Jun Wang
- Department of Joint Surgery, Honghui Hospital, Xi'an Jiaotong University, No. 555 Youyi East Road, Beilin District, Xi'an, Shaanxi Province, 710054, People's Republic of China
| | - Peng-Fei Wen
- Department of Joint Surgery, Honghui Hospital, Xi'an Jiaotong University, No. 555 Youyi East Road, Beilin District, Xi'an, Shaanxi Province, 710054, People's Republic of China
| | - Yu-Min Zhang
- Department of Joint Surgery, Honghui Hospital, Xi'an Jiaotong University, No. 555 Youyi East Road, Beilin District, Xi'an, Shaanxi Province, 710054, People's Republic of China.
| |
Collapse
|
8
|
Li N, Wang X, Wang P, Fan H, Hou S, Gong Y. Emerging medical therapies in crush syndrome - progress report from basic sciences and potential future avenues. Ren Fail 2021; 42:656-666. [PMID: 32662306 PMCID: PMC7470165 DOI: 10.1080/0886022x.2020.1792928] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Crush injury is a disease that is commonly found in victims of earthquakes, debris flows, mine disasters, explosions, terrorist attacks, local wars, and other accidents. The complications that arise due to the crush injury inflicted on victims give rise to crush syndrome (CS). If not treated in time, the mortality rate of CS is very high. The most important measure that can be taken to reduce mortality in such situations is to immediately start treatment. However, the traditional treatment methods such as fluid resuscitation, diuresis, and hemodialysis are not feasible enough to be carried out at the disaster scene. So there is a need for developing new treatments that are efficient and convenient. Because it is difficult to diagnose in the disaster area and reach the treatment equipment and treat on time. It has become a new research needs to be directed into identifying new medical treatment targets and methods using the etiology and pathophysiological mechanisms of CS. In recent years, a large number of new anti-oxidant and anti-inflammatory drug therapies have been shown to be highly efficacious in CS rat/mouse models. Some of them are expected to become specific drugs for the emergency treatment of a large number of patients who may develop CS in the aftermath of earthquakes, wars, and other disasters in the future. Hence, we have reviewed the latest research on the medical therapy of CS as a source for anyone wishing to pursue research in this direction.
Collapse
Affiliation(s)
- Ning Li
- Institute of Disaster Medicine, Tianjin University, Tianjin, China.,Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin, China
| | - Xinyue Wang
- Institute of Disaster Medicine, Tianjin University, Tianjin, China.,Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin, China
| | - Pengtao Wang
- Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin, China.,General Hospital of Tianjin Medical University, Tianjin, China
| | - Haojun Fan
- Institute of Disaster Medicine, Tianjin University, Tianjin, China.,Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin, China
| | - Shike Hou
- Institute of Disaster Medicine, Tianjin University, Tianjin, China.,Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin, China
| | - Yanhua Gong
- Institute of Disaster Medicine, Tianjin University, Tianjin, China.,Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin, China
| |
Collapse
|
9
|
Haqshenas G, Terradas G, Paradkar PN, Duchemin JB, McGraw EA, Doerig C. A Role for the Insulin Receptor in the Suppression of Dengue Virus and Zika Virus in Wolbachia-Infected Mosquito Cells. Cell Rep 2020; 26:529-535.e3. [PMID: 30650347 DOI: 10.1016/j.celrep.2018.12.068] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 10/25/2018] [Accepted: 12/12/2018] [Indexed: 02/01/2023] Open
Abstract
Wolbachia-infected mosquitoes are refractory to super-infection with arthropod-borne pathogens, but the role of host cell signaling proteins in pathogen-blocking mechanisms remains to be elucidated. Here, we use an antibody microarray approach to provide a comprehensive picture of the signaling response of Aedes aegypti-derived cells to Wolbachia. This approach identifies the host cell insulin receptor as being downregulated by the bacterium. Furthermore, siRNA-mediated knockdown and treatment with a small-molecule inhibitor of the insulin receptor kinase concur to assign a crucial role for this enzyme in the replication of dengue and Zika viruses in cultured mosquito cells. Finally, we show that the production of Zika virus in Wolbachia-free live mosquitoes is impaired by treatment with the selective inhibitor mimicking Wolbachia infection. This study identifies Wolbachia-mediated downregulation of insulin receptor kinase activity as a mechanism contributing to the blocking of super-infection by arboviruses.
Collapse
Affiliation(s)
- Gholamreza Haqshenas
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, VIC 3800, Australia.
| | - Gerard Terradas
- School of Biological Sciences, Monash University, Clayton, VIC 3800, Australia
| | - Prasad N Paradkar
- CSIRO Health and Biosecurity, Australian Animal Health Laboratory, Geelong, VIC, Australia
| | - Jean-Bernard Duchemin
- CSIRO Health and Biosecurity, Australian Animal Health Laboratory, Geelong, VIC, Australia
| | - Elizabeth A McGraw
- School of Biological Sciences, Monash University, Clayton, VIC 3800, Australia; Department of Entomology, Center for Infectious Disease Dynamics, Pennsylvania State University, University Park, PA 16802, USA.
| | - Christian Doerig
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, VIC 3800, Australia.
| |
Collapse
|
10
|
Yu JG, Fan BS, Guo JM, Shen YJ, Hu YY, Liu X. Anisodamine Ameliorates Hyperkalemia during Crush Syndrome through Estradiol-Induced Enhancement of Insulin Sensitivity. Front Pharmacol 2019; 10:1444. [PMID: 31849684 PMCID: PMC6902024 DOI: 10.3389/fphar.2019.01444] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 11/12/2019] [Indexed: 12/12/2022] Open
Abstract
Hyperkalemia is a major cause of on-site death in crush syndrome (CS), which is more severe and common in male victims. Anisodamine is a belladonna alkaloid and widely used in China for treatment of shock through activation of α7 nicotinic acetylcholine receptor (α7nAChR). The present work was designed to study the protective effect of anisodamine in CS and the possible role of estradiol involved. Male and ovariectomized female CS mice exhibited lower serum estradiol and insulin sensitivity, and higher potassium compared to the relative female controls at 6 h after decompression. There was no gender difference in on-site mortality in CS mice within 24 h after decompression. Serum estradiol increased with similar values in CS mice of both gender compared to that in normal mice. Anisodamine decreased serum potassium and increased serum estradiol and insulin sensitivity in CS mice, and methyllycaconitine, selective antagonist of α7nAChR, counteracted such effects of anisodamine. Treatment with anisodamine or estradiol increased serum estradiol and insulin sensitivity, decreased serum potassium and on-site mortality, and eliminated the difference in these parameters between CS mice received ovariectomy or its sham operation. Anisodamine could also increase blood pressure in CS rats within 3.5 h after decompression, which could also be attenuated by methyllycaconitine, without influences on heart rate. These results suggest that activation of α7nAChR with anisodamine could decrease serum potassium and on-site mortality in CS through estradiol-induced enhancement of insulin sensitivity.
Collapse
Affiliation(s)
- Jian-Guang Yu
- Department of Pharmacy, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Bo-Shi Fan
- Department of Pharmacology, Second Military Medical University, Shanghai, China.,Department of Thoracic Surgery, Sixth Medical Center of PLA General Hospital, Beijing, China
| | - Jin-Min Guo
- Department of Pharmacy, 960 Hospital of the Joint Logistics Support Force of the Chinese People's Liberation Army, Jinan, China
| | - Yun-Jie Shen
- Department of Pharmacy, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Ye-Yan Hu
- Department of Pharmacy, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Xia Liu
- Department of Pharmacology, Second Military Medical University, Shanghai, China
| |
Collapse
|
11
|
Li H, Wang Z, Li Y, Fang R, Wang H, Shi H, Zhang X, Zhang W, Ye L. Hepatitis B X-interacting protein promotes the formation of the insulin gene-transcribing protein complex Pdx-1/Neurod1 in animal pancreatic β-cells. J Biol Chem 2017; 293:2053-2065. [PMID: 29259128 DOI: 10.1074/jbc.m117.809582] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 12/04/2017] [Indexed: 12/26/2022] Open
Abstract
The activation of insulin gene transcription depends on multiple nuclear proteins, including the transcription factors PDX-1 and NEUROD1, which form a transcriptional complex. We recently reported that hepatitis B X-interacting protein (HBXIP, also termed LAMTOR5) can modulate glucose metabolism reprogramming in cancer cells. However, the physiological role of HBXIP in the modulation of glucose metabolism in normal tissues is poorly understood. Here, we report that Hbxip is an essential regulator of the effect of the Pdx-1/Neurod1 complex on insulin gene transcription in murine pancreatic β-cells in vitro and in vivo We found that pancreatic β-cell-specific Hbxip-knockout mice displayed higher fasting blood glucose levels and impaired glucose tolerance. Furthermore, Hbxip was involved in the regulation of insulin in the pancreas islets and increased insulin gene expression in rat pancreatic β-cells. Mechanistically, Hbxip stimulated insulin enhancer activity by interacting with Pdx-1 and recruiting Neurod1 to Pdx-1. Functionally, we provide evidence that Hbxip is required for Pdx-1/Neurod1-mediated insulin expression in rat pancreatic β-cells. Collectively, these results indicate that Hbxip is involved in the transcription of insulin by increasing the levels of the Pdx-1/Neurod1 complex in animal pancreatic β-cells. Our finding provides the insight into the mechanism by which Hbxip stimulates the transcription of the insulin gene.
Collapse
Affiliation(s)
- Hang Li
- From the State Key Laboratory of Medicinal Chemical Biology, Departments of Biochemistry and
| | - Zhen Wang
- From the State Key Laboratory of Medicinal Chemical Biology, Departments of Biochemistry and
| | - Yinghui Li
- From the State Key Laboratory of Medicinal Chemical Biology, Departments of Biochemistry and
| | - Runping Fang
- From the State Key Laboratory of Medicinal Chemical Biology, Departments of Biochemistry and
| | - Huawei Wang
- From the State Key Laboratory of Medicinal Chemical Biology, Departments of Biochemistry and
| | - Hui Shi
- From the State Key Laboratory of Medicinal Chemical Biology, Departments of Biochemistry and
| | - Xiaodong Zhang
- Cancer Research, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Weiying Zhang
- From the State Key Laboratory of Medicinal Chemical Biology, Departments of Biochemistry and
| | - Lihong Ye
- From the State Key Laboratory of Medicinal Chemical Biology, Departments of Biochemistry and
| |
Collapse
|
12
|
Zhang BF, Wang PF, Cong YX, Lei JL, Wang H, Huang H, Han S, Zhuang Y. Anti-high mobility group box-1 (HMGB1) antibody attenuates kidney damage following experimental crush injury and the possible role of the tumor necrosis factor-α and c-Jun N-terminal kinase pathway. J Orthop Surg Res 2017; 12:110. [PMID: 28701229 PMCID: PMC5508710 DOI: 10.1186/s13018-017-0614-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 07/04/2017] [Indexed: 12/18/2022] Open
Abstract
Background Inflammation plays a crucial role in kidney damage after crush syndrome (CS). Several researchers report that high mobility group box-1 protein (HMGB1) may be the vital trigger in kidney damage, and tumor necrosis factor-α (TNF-α) and c-Jun N-terminal kinase (JNK) are involve in this pathophysiological process, but their biological roles are unclear. This study aimed to explore the relationship between HMGB1, JNK, and TNF-α in kidney damage. Methods The crush injury model was established using weight compression. The reliability of the crush injury model was determined by hematoxylin-eosin (HE) staining. Western blot was used to detect the expression of HMGB1, JNK, and TNF-α, and TUNEL was used to mark apoptotic cells in the renal cortex. Results The results showed that the highest expression of HMGB1 in muscle was 12 h after CS. JNK and TNF-α increased and peaked at 1 day after CS in kidneys. Western blot analysis revealed that anti-HMGB1 antibody could downregulate the expression of JNK and TNF-α. Anti-TNF-α could downregulate activation of JNK, and SP600125 could downregulate expression of TNF-α in the kidneys. In addition, anti-HMGB1 antibody, anti-TNF-α antibody, and SP600125 could reduce cellular apoptosis in the renal cortex. Conclusions It is possible that JNK and TNF-α commonly contribute to kidney damage by assembling a positive feedback cycle after CS, leading to increased apoptosis in the renal cortex. HMGB1 from the muscle may be the trigger.
Collapse
Affiliation(s)
- Bin-Fei Zhang
- Department of Orthopedic trauma, Honghui Hospital, College of Medicine, Xi'an Jiaotong University, Beilin District, No. 555 Youyi East Road, 710054, Xi'an, Shaanxi Province, People's Republic of China
| | - Peng-Fei Wang
- Department of Orthopedic trauma, Honghui Hospital, College of Medicine, Xi'an Jiaotong University, Beilin District, No. 555 Youyi East Road, 710054, Xi'an, Shaanxi Province, People's Republic of China
| | - Yu-Xuan Cong
- Department of Orthopedic trauma, Honghui Hospital, College of Medicine, Xi'an Jiaotong University, Beilin District, No. 555 Youyi East Road, 710054, Xi'an, Shaanxi Province, People's Republic of China
| | - Jin-Lai Lei
- Department of Orthopedic trauma, Honghui Hospital, College of Medicine, Xi'an Jiaotong University, Beilin District, No. 555 Youyi East Road, 710054, Xi'an, Shaanxi Province, People's Republic of China
| | - Hu Wang
- Department of Orthopedic trauma, Honghui Hospital, College of Medicine, Xi'an Jiaotong University, Beilin District, No. 555 Youyi East Road, 710054, Xi'an, Shaanxi Province, People's Republic of China
| | - Hai Huang
- Department of Orthopedic trauma, Honghui Hospital, College of Medicine, Xi'an Jiaotong University, Beilin District, No. 555 Youyi East Road, 710054, Xi'an, Shaanxi Province, People's Republic of China
| | - Shuang Han
- Department of Orthopedic trauma, Honghui Hospital, College of Medicine, Xi'an Jiaotong University, Beilin District, No. 555 Youyi East Road, 710054, Xi'an, Shaanxi Province, People's Republic of China
| | - Yan Zhuang
- Department of Orthopedic trauma, Honghui Hospital, College of Medicine, Xi'an Jiaotong University, Beilin District, No. 555 Youyi East Road, 710054, Xi'an, Shaanxi Province, People's Republic of China.
| |
Collapse
|
13
|
Combined administration of anisodamine and neostigmine rescued acute lethal crush syndrome through α7nAChR-dependent JAK2-STAT3 signaling. Sci Rep 2016; 6:37709. [PMID: 27874086 PMCID: PMC5118690 DOI: 10.1038/srep37709] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 11/03/2016] [Indexed: 12/18/2022] Open
Abstract
Previously we showed that Ani (anisodamine)/Neo (neostigmine) combination produced anti-shock effect via activating α7 nicotinic acetylcholine receptor (α7nAChR). In this study, we aim to investigate the therapeutic effect and underlying mechanisms of Ani/Neo combination in acute lethal crush syndrome (CS). In rat and rabbit CS models, Ani/Neo combination increased the 24 h survival rates, improved hemodynamics and decreased the levels of creatine kinase, MB isoenzyme of creatine kinase, blood urea nitrogen, creatinine, K+ in serum. It also decreased the levels of H2O2, myeloperoxidase (MPO) and nitric oxide (NO) in serum and compressed muscle in rat CS model. In wild-type (WT) mice with CS, Ani/Neo combination increased 24 h survival rate and decreased the levels of H2O2, MPO, NO, TNFα, IL-6 and IL-10 in compressed muscle. These effects were attenuated by α7nAChR knockout (KO). Moreover, Ani/Neo combination prevented the decrease of phosphorylation of Janus kinase 2 (JAK2) and phosphorylation of signal transducer and activator of transcription 3 (STAT3) induced by CS. These effects of Ani/Neo in CS mice were cancelled by methyllycaconitine (α7nAChR antagonist) and α7nAChR KO. Collectively, our results demonstrate that Ani/Neo combination could produce therapeutic effects in CS. The underlying mechanism involves the activation of α7nAChR-dependent JAK2-STAT3 signaling pathway.
Collapse
|